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A principal role of radiation emission processes in deviations of the
electric-arc plasma at the atmospheric pressure from a state of lo-
cal thermodynamic equilibrium has been estimated, by taking the
radiation transfer into account. The problem was considered using
a cylindrical wall-stabilized electric arc as an example. The solu-
tion was obtained in the approximation of local thermodynamic
equilibrium with regard for the processes of radiation transfer and
radiation losses in plasma. The results of numerical simulation
obtained for copper atoms under conditions that correspond to
the state of plasma in the atmospheric electric arc between melt-
ing copper electrodes confirm the existence of deviations from the
equilibrium distribution between the populations at the resonance
and ground energy levels.

1. Role of Radiation Emission Processes in a
Violation of the Equilibrium State in Plasma

In the overwhelming majority of publications devoted
to plasma and gas discharge physics, the arc-discharge
plasma is assumed to be in the local thermodynamic
equilibrium (LTE) state at pressures p ≥ 1 atm . From
the viewpoint of the terminological classification, it is
the so-called thermal plasma [1]. The assumption of
LTE allows the mathematical apparatus applied for the
determination of plasma properties to be considerably
simplified, because, in this case, every property in an
elementary volume is a function of only two thermody-
namic parameters, for instance, the temperature T and
the particle density. In particular, the population num-
bers for excited levels in plasma-forming particles are
determined by the Boltzmann equation

n0
k = n0

i (gk/gi) exp(−ΔEik/T ), (1)

where n0
k and n0

i are the equilibrium atomic densities in
the upper, k, and lower, i, states, respectively; gk and gi
are the corresponding statistical weights of those levels;
and ΔEik is the excitation energy.

The detailed balancing principle is a key one for an
equilibrium system: every elementary process is pre-
cisely counterbalanced by the inverse process [2, 3]. For
example, the population of excited energy states in an
atom that collides with electrons in plasma is coordi-
nated with the inverse process of atomic level deactiva-
tion at inelastic collisions of the same particles [4]. In
this case, the detailed balancing principle looks like

n0
kωki = n0

iωik, (2)

where ωki and ωik are the frequencies of the atomic exci-
tation and the deactivation, respectively, between those
states. The frequency of excitation events is equal to

ωik = Neqik(kT/me)1/2 exp(−ΔEik/kT ), (3)

where Ne is the density of electrons, qik the average ex-
citation cross-section, k the Boltzmann constant, T the
temperature, and me the electron mass. The process is
possible, if the kinetic energy of an electron exceeds the
excitation energy ΔEik..

Strictly speaking, the thermodynamic equilibrium is
inherent to closed systems only. For the electric-arc
plasma, which is an open system at least with respect to
radiation emission losses, the validity of the LTE model
under ordinary assumptions can be explained by the cir-
cumstance that collision-induced processes that give rise
to the population of every energy state considerably pre-
vail over the radiative processes resulting in its deacti-
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vation. In other words, this assumption is suitable only
for a dense plasma.

As a rule, the most difficult task is to hold the con-
ditions for the LTE to be maintained at resonance tran-
sitions in plasma-forming particles. Really, from the
Saha equation of state, it follows that the ionization
maximum for particles of a certain kind and charge is
reached at a characteristic temperature T ∗ ∼ 0.1Ei,
where Ei is the ionization potential for those particles.
On the other hand, the energy of resonance level excita-
tion ΔE0r amounts to (0.7÷0.8)Ei for most gases and to
(0.4÷0.5)Ei for most metals used in plasma technologies
[5]. Therefore, with regard for the Maxwellian charac-
ter of the electron distribution in plasma over velocities,
there are a relatively insignificant number of electrons at
the temperature T ∗, the energy of which is sufficient for
an atom to be excited onto the resonance level from the
ground one (see Eq. (3)). On the contrary, the intensity
of resonance lines is the highest, as a rule, because the
intensity ε of a radiation line is governed by the popu-
lation number nk for the top level in the corresponding
spectral transition,

ε = Akigknk/λki, (4)

where Aki is the probability of the spectral λki-
transition. Those population numbers, as well as the
Aki-values, are the highest, if the resonance transition
occurs at the temperature T ∗.

As a result of the unbalanced action by those fac-
tors, the electron density N∗e , at which the LTE state
is reached in an optically thin plasma (e.g., hydrogen
plasma) turns out too high (namely, of about 1018 cm−3)
to be realized in the majority of practical cases.

However, for an electric arc at the atmospheric pres-
sure, the characteristic path length 〈l〉 of resonance pho-
tons in the maximum of the radiation line, as a rule,
turns out much shorter than the typical electric arc ra-
dius. For its estimation, we can use the relation

〈l〉 = κ−1
0 , (5)

where κ0 is the absorption coefficient at the center of the
spectral line. It is determined by the population number
of the lower level, ni, as follows:

κ0 = (1− gink/gkni)pfikλ2
kini/Δλ. (6)

Here, p is a numerical coefficient, f the oscillator
strength for the corresponding transition, and Δλ the
half-height width of the spectral-line contour. The
parenthesized multiplier describes the induced radiation

emission, which has to be taken into account, if the top
level is occupied (as a rule, in earlier works dealing with
radiation transfer [4, 6,7], this multiplier was neglected).
If λ and Δλ are measured in nanometers and n in cm−3

units, the numerical value of p in formula (6) amounts to
8.19×10−20 for the Gaussian contour and to 5.64×10−20

for the Lorentzian one [8]. The dimensionless quantity
f is proportional to the transition probability,

Aki = 6.66× 1013gifik/
(
gkλ

2
ki

)
, (7)

where A is expressed in terms of s−1 units, and λ in
nanometers. According to Eq. (4), the path length
〈l〉 of resonance radiation emission at the characteris-
tic temperature T ∗ is of the order of 10−4 cm in the
atmospheric-pressure plasma in hydrogen, helium, nitro-
gen, and argon, and about 10−2 cm for the resonance
lines of a copper atom at 324.7 and 327.4 nm emitted
in the copper plasma at the copper vapor content of 1%
[5]. The self-absorption of radiation effectively reduces
the role of the radiative deactivation of excited levels
and, respectively, lowers the threshold of the electron
density, N∗e , at which the LTE state is achieved in the
optically dense uniform plasma. Numerically, the lat-
ter is characterized by the introduction of the effective
probability of radiative transition A∗r0, which takes the
self-absorption of radiation in plasma into account,

A∗r0 = Ar0θ (r) , (8)

where Ar0 is the probability of the resonance radiative
transition, and θ(r) is the probability for a resonance
photon at the point r to go beyond the plasma limits
without being absorbed.

The crucial influence of the resonance transition on
the equilibrium state in plasma is responsible for a wide
application of the so-called two-level model of atom with
two energy levels, the ground (1) and excited (2) ones.
In the stationary case, the balance of the population at
the excited level in this model can be presented in the
form

n1ω12 = n2ω21 + n2A
∗
21. (9)

Generally speaking, deviations from the equilibrium
value are convenient to be described in terms of the rel-
ative level population [4],

yk = nk/n
0
k. (10)

Substituting expressions (2) and (10) into Eq. (9), we
obtain the basic relation

y1 = y2(1 +A∗21/ω21). (11)
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Evidently, the criterion of relative equilibrium between
two states (i.e. yk ≈ yl) or, in the case of two-level
model, y2 ≈ y1 ≈ 1 is the inequality

A∗21/ω21 � 1. (12)

In other words, the collision processes that restore the
equilibrium state must prevail over the radiative pro-
cesses that violate it.

Below, we extend the ideology of the two-level model
in order to consider the energy transition not only from
the resonance onto the ground level, but also onto a
metastable one, in such a manner actually examining
a three-level system. However, in the framework of the
criterion approach, where insignificant deviations from
the equilibrium state are dealt with, it is quite a feasible
task. The only difference consists in that, in this case,
the population number for the lower level in the spec-
tral transition between the resonance and metastable en-
ergy levels is to be determined from Boltzmann distri-
bution (1), because no physical reason is contained in
the adopted assumptions for the spectral transition to
be nonequilibrium. In what follows, we use the indices
0, m, and r, when considering a three-level system, and
the numerical indices 1 and 2, when considering a gen-
eral two-level one.

We cannot assume that the influence of radiative tran-
sitions between the resonance and metastable levels is
crucial for deviations of the system from the LTE state.
However, the corresponding spectral lines are located in
the visible spectral range, being well accessible for re-
search purposes. In particular, one of those lines, at
510.5 nm, is among the most popular ones in the optical
diagnostics of the copper electric-arc plasma [5, 9].

Criterion approaches aimed at detecting the LTE state
in plasma on the basis of a radiation-loss analysis were
introduced as long ago as by Griem (see Chapter 6 in
book [10]). For the LTE to be maintained to within
10%, the rates of processes in relation (12) must differ
by an order of magnitude.

Actually, all that was discussed above concerning the
role of the radiation self-absorption was associated with
a temperature-uniform plasma. However, in case of an
inhomogeneous plasma, the radiation self-absorption can
result in the inverse effect. Really, radiation emitted in
hotter plasma regions and absorbed at a certain point
of observation r > 0 is able not only to compensate
the radiation energy losses, but also to stimulate the
inverse effect: at this point, the population number for
the excited level is higher than that for the equilibrium
one. The corresponding limit is the population number
obtained for the temperature at the arc axis.

A nonequilibrium state in the plasma of a freely sup-
ported electric arc between fusible copper electrodes un-
der environmental conditions, which was obtained as
a result of the resonance radiation transfer of copper
atoms, was experimentally observed in work [9]. Later,
a simple model for such a nonequilibrium state was pro-
posed, which consisted in that the population of the reso-
nance level of a copper atom along the electric arc radius
was supposed to correspond to the temperature inherent
to the arc-axis region (in other words, it corresponded to
an overpopulation of the resonance level at the electric
arc periphery, where the local temperature is lower than
that on the axis) [11]. Its analog at the macro-level is
the fireplace effect, i.e., the heating up of objects in a
cold room owing to the absorption of emitted thermal
radiation [12].

As follows from the aforesaid (see Eqs. (3), (4) and
involved text), the non-resonance radiation is not a sub-
stantial factor for the effects associated with the radi-
ation transfer. Addressing once more analogies at the
macro-level, the radiation emission from higher levels
can be confronted with the candle effect: the candle
shines, but does not warm.

As was shown in works [11–13], in the framework
of this assumption, the effect of arc-channel “enlighten-
ment”, i.e. a reduction of its resistance to the electric
current, can be obtained. The physical origin of the phe-
nomenon lies in a reduction of the ionization potential for
plasma-forming atoms at the electric arc periphery owing
to the overpopulation of atomic resonance levels in this
region. Therefore, from the viewpoint of further prac-
tical applications, it is important that the phenomenon
of the radiation transfer in plasma and its influence on
a deviation of plasma from the equilibrium state should
be taken into account rigorously. This work aimed at
developing this direction of researches dealing with the
electric-arc plasma.

Below, we report the results of our calculations, which
allow the role of radiation processes in a deviation of
the dense low-temperature plasma from the equilibrium
state to be estimated in principle. At this stage of con-
sideration, the solution of the problem is obtained in the
form of a criterion that the LTE model is applicable,
which involves the processes of radiation emission and
radiation losses in plasma. Such a formulation makes
the problem somewhat simpler, because, when seeking
for the solution analogously to what was done in work
[10], it allows the consideration to be confined by mak-
ing the assumption that the plasma is in the equilibrium
state.
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An objective shortcoming of this approach is an in-
dicative character of the result obtained, which only de-
tects a deviation of plasma from the equilibrium state,
but does not allow the magnitude of this deviation to be
determined quantitatively.

2. Formulation of the Problem and the Solution
Procedure

In contrast to the mass transfer, when the thermody-
namic parameters of a substance change insignificantly
at lengths of the order of the mean free path for a particle
of this substance, the account of the processes of radi-
ation transfer gives rise to considerable difficulties as-
sociated with a drastic dependence of the photon mean
free path on the photon frequency. Really, expression
([5]) was written down for the center of a spectral line
with frequency ν0. However, for the frequencies be-
yond the line limits, the local values of absorption factor
κ = f(ν−ν0) expand over the whole interval 0 < κ < κ0.
They correspond to the growth of local 〈l〉-values in ac-
cordance with formula (5). Therefore, a considerable
mutual effect between even rather remote elementary
plasma volumes and, moreover, the radiation absorption
outside of the electric arc channel become feasible, if
one takes into account that there are always such 〈l〉-
values, which are comparable with the distance between
those volumes (of course, considering the solid angle, in
which the mentioned radiation propagates or, in other
words, the distance between the mentioned elementary
volumes). Generally speaking this self-absorption is the
reason that induces the overpopulation at the excited
levels of copper atoms located beyond the arc channel in
the experiment [9].

It is impossible to introduce the concept of character-
istic path length for photons. That is why, the diffu-
sion approximation cannot be applied, whereas differen-
tial relations are not sufficient for the mathematical de-
scription of radiation transfer processes to be adequate.
Therefore, it is necessary that the integral equations,
which would take the mutual influence of processes over
the whole plasma volume into account, should be en-
gaged.

The dynamics of the population number n2(r, t) at the
resonance level in the two-level atomic model is governed
by transitions into the ground state and from it. Consid-
ering also the processes of excitation radiation transfer,
the corresponding equation looks like [4]

∂n2(r, t)
∂t

= −n2(r, t)A21 − n2(r, t)ω21+

+n1ω12 +
∫
V

n2(r′, t)A21K (|r − r′|) dr′. (13)

Here, the integral term makes allowance for the radiation
transfer, whereas the kernel K (|r − r′|) corresponds to
the probability that the resonance photon emitted from
an arbitrary point r′ is absorbed in a volume with the
coordinate r:

K(ρ) = − 1
4πρ2

df(ρ)
dρ

, ρ ≡ |r − r′| . (14)

The multiplier (4πρ2)−1 selects photons that propagate
from dr′ towards dr, (in other words, it determines the
solid angle), and f(ρ) is the probability for a particle to
pass the distance ρ and not to be absorbed or scattered,

f(ρ) =
∫
εν exp(−kνρ)dν, (15)

where εν is the distribution of photons over the frequen-
cies, normalized to 1, and kν is the spectral absorption
factor. The εν-distribution is determined by the shape
of the radiation-line contour, whereas the radiation line
intensity depends on the population at the top level,
which results in the appearance of the factor n2 in the
integrand in expression (13). The specific form of f(ρ)
depends on the shapes of the absorption and radiation
lines, i.e. on kν and εν . However, in view of the cir-
cumstances mentioned above, this function is not expo-
nential, as it was for the mass transport processes, and
falls down considerably more slowly with the growth of
ρ [4]. In Eq. (14), the multiplier df(ρ)/dρ describes the
attenuation of a photon beam on its way from point r′ to
point r and the probability that photons, when having
reached dr, are absorbed.

It is worth emphasizing that the formula for f(ρ) ex-
pressed in the form (15) is a substantial simplification for
the plasma medium, because, actually, it assumes that
the spectral absorption factor kν is constant. In essence,
it is a function of the radial coordinate; it is especially
true for a non-uniform electric-arc plasma.

Differentiating in formula (14), we obtain

K(ρ) = (4πρ2)−1

∫
ενkν exp(−kνρ)dv. (16)

Although, according to the asymptotic behavior of the
probability f(ρ), the function K(ρ) falls down slowly,
its integral over the infinite volume equals 1. This fact
follows from the physical sense of the problem.

In the case of stationary processes, it is convenient to
write down Eq. (13) with regard for relation (10) for the
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reduced population of the excited state. We have

y2(r)=(1 + β)−1

∫
V

y2(r′)K (|r−r′|) dr′+β/(1+β). (17)

Here, we introduced the notation

β = ω21/A21 (18)

and used the relation between the quantities ω12 and
ω21, which follows from the detailed balancing principle
(Eq. (2)). We also adopted that the value of n0

2 does
not depend on coordinates. The latter assumption is a
substantial simplification of the problem under consid-
eration, but, at the same time, it is rather a grounded
approximation. Actually, it consists in that the value
n1 is determined not from the relation n1 ≈ Na ∼ T−1,
where the quantity Na, in turn, is determined from the
following equation for the partial pressure of copper va-
por,

[Na + (1 + xCu)Ne]kT = xCup, (19)

where p is the atmospheric pressure, and xCu the con-
tent of copper vapor in the plasma-forming mixture, but
from a formula n1 ∼ n0

2 exp(ΔE12/T ) = const which
corresponds to the Boltzmann equation. However, its
validity for our approximate calculations stems from the
mean-value theorem for definite integrals.

To find an analytical solution for the equation of ra-
diation transfer is a complicated problem. In those rare
cases where analytical solutions were managed to be ob-
tained, they turned out rather cumbersome [6]. There-
fore, numerical methods play an important role, while
solving such problems.

L.M. Biberman [7] proposed a simple approximate
method for the solution of Eq. (17). Namely, the quan-
tity that characterizes a local violation of the equilibrium
state is assumed to vary weakly enough, even if the de-
pendence of n2(r) on the radial coordinate is strong. It
is an additional approximation, but enables the function
y2(r′), by assigning it the value

y2(r′) = y2(r) (20)

to be taken outside the integral sign. In this case,
Eq. (17) becomes an algebraic one, which can be used
to obtain the following approximate results (we denote
them, by using the tilde sign):

ỹ2(r) =
β(r)

θ(r) + β(r)
, (21a)

ñ2(r) = n1ω12/(ω21 +A21θ(r)), (21b)

θ(r) = 1−
∫
V

K (|r − r′|) dV ′. (21c)

The latter of those expressions describes the probability
for a photon starting from point r to escape, not being
absorbed, beyond the plasma boundaries (this quantity
was introduced in relation (8)). Here, the integration is
carried out over the whole arc volume, and its result in-
dicates which part of radiation was absorbed in this vol-
ume. Hence, the influence of finite optical-density values
is taken into account through the effective probability of
spontaneous radiation A∗21. A reduction of this quan-
tity gives rise, naturally, to an increase of the reciprocal
quantity τeff = (A∗21)

−1, which is called the effective life-
time of the excited level. Therefore, this approximation
is often referred to as the method of effective lifetime.

This method has been used successfully (see work [4])
to obtain solutions for a number of problems dealing
with a temperature-uniform plasma, for which expres-
sions (15) and, respectively, (16) are valid. In such a
version, 0 ≤ θ(r) < 1, which completely satisfies the
requirements imposed onto the variable describing the
probability.

Let the coordinate dependence of the absorption fac-
tor κν be associated only with the number of absorbing
atoms, provided that the contours of spectral lines do not
change, i.e. κν = an1(r), where a is a proportionality
coefficient. Then the optical thickness can be introduced
into consideration for its application in Eq. (13),

r′∫
r

kν(r′′)dr′′ = t′ − t, dt = an1(r̄)dr̄ (22)

as a new coordinate system, in which the method of effec-
tive lifetime remains valid. However, this problem does
not allow one to reveal specific effects in plasma, which
would stem from the discrepancy between the charac-
teristic path lengths of resonance radiation, which was
mentioned above.

In contrast, we seek for the solution of problem (13)
in the case of inhomogeneous media. The general form
of the solution, Eqs. (21), remains correct at that. How-
ever, in expression (21c), we will consider such a kernel
K(r′, r) that would include the integration of the self-
absorption along every beam:

K(r′, r) =
1
4π

∞∫
0

kν(r′)εν(r′)
|r− r′|2

exp[−
r′∫

r

kν(r′′)dl]dν. (23)
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Here, the exponent includes the contour integral along
the beam that connects the r- and r′-points. We also
assume that the plasma is contained in a long cylindrical
volume with radius R.

Considering the dependence of the line absorption fac-
tor in the integral kernel (23) on the temperature, which
is a function of coordinates, the quantity θ(r) does not
possess, in contrast to work [4], a simple probabilistic
meaning. Now, it can acquire both positive and negative
values [6]. In our case, this parameter makes allowance
for the influence of two probabilistic processes, which
exert opposite effects on the energy level population in
a local plasma volume, namely, a reduction of the pop-
ulation owing to radiation losses from this volume and
a growth of the population owing to the absorption of
radiation from other plasma regions, if they have higher
temperatures. Nevertheless, the quantity A21θ(r) allows
one to obtain an approximate value for the photon flux
divergence at a point.

It follows from Eq. (21a) that, for the quantity y2(r)
to be close to 1, the inequality

|θ(r)/β(r)| � 1 (24)

must be satisfied, i.e. it is an LTE criterion, which is
intrinsically consistent with assumption (20). In accor-
dance with the results of work [6], this LTE condition
gives rise to a correct result, if it is obeyed in the whole
volume occupied by plasma. In view of relations (8) and
(18), criterion (24) is a generalization of condition (12)
for the LTE to take place in plasma, which considers
only radiation losses. The generalization can be consid-
ered equivalent as far as the contents of the quantity
θ(r) can be regarded equivalent in the cases of radiation
losses and transfer.

In order to calculate the numerical value of the integral
in expression (21c), it is convenient to pass to the local
spherical coordinate system connected with the point of
observation r,

I =
1
4π

∞∫
0

∫∫∫
V

kν(r′)εν(r′)
|r− r′|2

exp[−
r′∫

r

kν(r′′)dl]dV ′dν =

=
1
4π

∞∫
0

2π∫
0

π∫
0

R(ϕ)∫
0

kν(ρ)εν(ρ)
ρ2

×

× exp[−
ρ∫

0

kν(t)dt]ρ2 sin(θ) dρ dθ dϕ dν, (25)

where I =
∫
V

K(r′, r)dV ′, ρ = |r− r′|, and 0 ≤ ρ < ∞.

On the basis of the symmetry of the problem, let us
expand the limits of integration over the frequency and
make the change of the variable ω = (ν − ν0)/Δν(r), so
that

I =
1
π

∞∫
−∞

π∫
0

π/2∫
0

R(ϕ)∫
0

kν(ρ)εν(ρ)×

× exp[−
ρ∫

0

kν(t)dt] sin(θ) dρ dθ dϕ dω. (26)

Consecutively changing the variables, namely, ρ =
ρ′/ sin(θ) and ρ′ = ρ′′/ sin(θ), this integral is trans-
formed to the form

I =
1
π

∞∫
−∞

π∫
0

π/2∫
0

r0(ϕ)∫
0

kν(ρ)εν(ρ)×

×
exp[−

ρ′′∫
0

kν(t)dt/ sin2(θ)]

sin(θ)
dρ′′ dθ dϕ dω, (27)

where the function r0(ϕ) is determined from the relation
R2 = r2 + r20(ϕ) − 2rr0(ϕ) cos(π − ϕ), and R is the arc
radius. In essence, the quantity r0(ϕ) is a projection of a
radius-vector, which connects the point r with a point on
the internal surface of the cylinder, onto the polar plane
(θ = π/2). In view of the integral representation for the
modified Bessel function of the third kind of imaginary
order (the Macdonald function),

π/2∫
0

exp[−z/ sin2(θ)]
sin(θ)

dθ =
1
2

exp
(
−z

2

)
K0

(z
2

)
,

we ultimately obtain

I =
1
2π

∞∫
−∞

π∫
0

r0(ϕ)∫
0

kν(ρ)εν(ρ)×

× exp
(
−Z

2

)
K0

(
Z

2

)
dρ′′ dϕ dω, (28)

where

Z =

ρ′′∫
0

kν(t)dt. (29)
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With regard for the divergence of the Macdonald func-
tion in a vicinity of its zero argument, the difference of
the function K0 (z) and it asymptote expression K0(t) ≈
− ln

(
t
2

)
− γ

2 , where γ is the Euler constant, were inte-
grated. As the last integral has analytic expression, the
value I from Eq. (28) is calculated as a sum of the ana-
lytic expression and the numerical value of difference of
these integrals. The trapezium method was applied to
integrate with a uniform mesh.

3. Spectral Characteristics of Plasma

The list of spectral lines emitted by a copper atom from
both resonance levels, Ek = 3.79 and 3.82 eV, and
their spectroscopic parameters are presented in the ta-
ble. Some of those lines have the ground level as the
lower level of a spectral transition, whereas the others
the metastable levels Ei = 1.39 and 1.64 eV. To esti-
mate the role of the radiation transfer effects in a de-
viation of plasma from the LTE state, the researches
were carried out for a pair of such spectral lines at 327.3
and 510.5 nm. In the qualitative aspect, the results of
our researches can be extended to include other groups
of resonance lines, because the oscillator strengths for
them do not differ considerably from one another.

The temperature in an electric arc changes in a wide
interval, ranging from the plasma one to the tempera-
ture of the internal surface of a stabilizing wall or to the
environmental one, if the arc is supported in atmospheric
air. Accordingly, the local radiative (4) and absorptive
(6) properties of plasma are substantially different along
the arc radius. As a result, the different mechanisms of
spectral line broadening prevail in each of those cases.
Two main groups of spectral line contours are typical of
those mechanisms [8]: the Gaussian contour (it corre-
sponds to the Doppler effect),

εν(r) = εD0 (r)p exp[−(Δν/ΔνD(r))2], (30a)

κν(r) = κD
0 (r) exp[−(Δν/ΔνD(r))2], (30b)

Resonance spectral lines of a copper atom and their spec-
troscopic parameters

Line, nm Ek, eV gk Ei, eV gi Δλ∗s , nm f
(at Ne = 1017 cm−3) [15]

324.7 3.82 4 0 2 0.430
510.5 3.82 4 1.39 6 0.021 0.0051
570.0 3.82 4 1.64 4 0.026 0.0011
327.3 3.79 2 0 2 0.220
578.2 3.79 2 1.64 4 0.027 0.0042

and the dispersion (or Lorentzian) one,

εν(r) = εL0 (r)p[1 + (Δν/ΔνL(r))2]−1, (31a)

κν(r) = κL
0 (r)[1 + (Δν/ΔνL(r))2]−1, (31b)

where Δν = ν−ν0; εL,D0 (r) and kL,D0 (r) are the emissive
capacity and the absorption factor, respectively, at the
line center; and ΔνL,D(r) are the widths of the radia-
tion and absorption lines for the Lorentzian and Gaus-
sian contours, respectively. The values of coefficient p in
formulas (30a) and (31a) are determined from the con-
dition of their normalization to value (4), when being
integrated over the frequency. The corresponding values
obtained insignificantly differ from each other for differ-
ent contours. For this reason, the p-values in expressions
for kL,D0 (r) are also different, in accordance with formula
(6).

In the practical spectroscopy, such a scale of radia-
tion wavelengths is usually used, in which the following
relation is valid for the line width:

Δλ = (c/ν2)Δν. (32)

The Doppler contour is governed by the thermal motion
of atoms. Its width is

ΔλD = 7.16× 10−7λ0

√
T/µ, (33)

where µ is the atomic weight, and T is the Kelvin tem-
perature. For µ ≈ 64 and λ0 = 500 nm, the value of
ΔλD is about 0.77× 10−3 nm at T = 300 K and about
3.7× 10−3 nm at T = 7000 K.

The Lorentzian contour of a spectral line describes
both its natural broadening and the broadening induced
by collision processes. The former is associated with
a finite lifetimes τk and τi of the atomic energy states
of the transition, at which the spectral line is emitted.
For every of the lines emitted from the resonance levels,
this time, τr, is determined by the sum of probabili-
ties of spontaneous transitions from the given resonance
level onto the ground and metastable (including the case
where there are several of them) levels,

τ−1
r = τ−1

r0 + τ−1
rm1 + τ−1

rm2 + . . . = Ar0 +Arm1 +Arm2+....

(34)

The corresponding line broadening reads

ΔλLn = λ2
0/(2πτrc) = (Ar0 +Arm1 +Arm2+...)λ2

0/(2πc).
(35)
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For the spectral lines at 510.5 and 324.7 nm, which are
emitted from the same resonance level of a copper atom
with Er = 3.82 eV (see the Table), ΔλLn amounts to
0.5× 10−5 nm, which is smaller by one or two orders of
magnitude than the Doppler width.

The broadening of spectral lines owing to collision pro-
cesses is associated with a violation of the line monochro-
maticity as a result of collisions of the emitting particles
with the neutral or charged plasma component. In the
former case [8],

ΔλLg = 6.6× 105σ2pλ2
0(µT )−1/2, (36)

where σ2 is the effective cross-section of collisions (cm2),
p the pressure (mm Hg), and λ0 is expressed in nanome-
ters. At the pressure p = 1 atm, σ = 5 × 10−8 cm2,
µ ≈ 30, and T = 1000 K, the ΔλLg -value is about
2 × 10−3 nm. It is much larger than the natural width
and is comparable with the maximal Doppler width.

At last, the Stark mechanism [14] gives the largest
contribution to the line broadening owing to collision
processes, if it is related to the density of particles that
are responsible for collisions. In this case, we selected
the data given by R. Konjevic and N. Konjevic [15] for
the broadening parameters of those resonance lines for
a copper atom, the lower level of which is metastable
(see table). Earlier [15], we have carefully analyzed the
publications that included this parameter for another
spectral line, at 515.3 nm, which is widely applied in the
copper plasma diagnostics. On the basis of the results
obtained while comparing accessible data (the relevant
values differ from one another by an order of magnitude)
with our own experimental results, we chose the data of
work [15]. Here, we also use them, but for the 510.5-nm
line, as such that were obtained in the framework of the
same methodological basis. They are normalized to the
electron density in plasma Ne = 1017 cm−3, so that the
real effect can be evaluated according to the expression

ΔλLs = 10−17NeΔλ∗s, (37)

where the quantity Ne is expressed in cm−3, and Δλ in
nanometers. The other data were taken from handbook
[17]. It is worth emphasizing that the deeper the energy
levels are located in the atomic structure, the more they
are screened from the influence of external electric fields,
and the less the Stark broadening effect for them. For the
lines emitted from the upper excited states of a copper
atom, the values of broadening parameter Δλ∗s are larger
by an order of magnitude [5]. On the contrary, for the
resonance lines corresponding to the transitions onto the
ground state, the Doppler mechanism of line broadening
turns out sufficient, as a rule.

The result of the mutual action by several disper-
sion mechanisms of line broadening is characterized by
a Lorentzian contour, the total width of which is deter-
mined by a sum of individual terms,

ΔλL = ΔλLn + ΔλLg + ΔλLs . (38)

The result of the combined action by line broadening
mechanisms, one of which is described by the Gaussian
contour and the other by the Lorentzian one, is deter-
mined by the convolution operation [8, 14]. It is the so-
called Voigt contour, which has a special conventional
notation, H:

H(a, u) =
a

π

+∞∫
−∞

exp(−y2)
a2 + (u− y)2

dy, (39a)

a = (ln 2)1/2ΔνL/ΔνD, (39b)

u = 2(ln 2)1/2(ν − ν0)/ΔνD. (39c)

Its features have been described in sufficient details in
the literature (e.g., see p. 15 in [8]). The most impor-
tant of them consists in that the central part of the con-
tour (around its maximum) mainly corresponds to the
Doppler contour, while its “wings” to the Lorentzian one.
In all numerical calculations, the integrated influence of
spectral line broadening was taken into account in ac-
cordance with the last relation.

4. Simulation of Properties of an Electric Arc

For calculations, we used a temperature profile obtained
from the solution, in the one-dimensional approximation,
of the equation of energy balance for a cylindrical wall-
stabilized arc (the Elenbaas–Heller equation) [18, 19],

1
r

d

dr

(
r
dS

dr

)
+ σE2 = 0, S =

T∫
0

λ(T )dT , (40)

where r is the radial coordinate, σ(T ) the electrocon-
ductivity coefficient, E the electric field strength, S the
heat potential, and λ(T ) the heat conductivity. The cor-
responding boundary conditions are

ds/dr(r=0) = 0; S(r=rw) = Sw, (41)

where the parameter Sw characterizes the temperature
Tw of a cooling quasiwall. Its introduction allows the
arc to be simulated assuming the one-dimensional axial
symmetry of the problem [20].

318 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 3



EFFECT OF RADIATION TRANSFER ON A DEVIATION

Fig. 1. Radial distributions of the temperature (curve 1) and the
electron density (curve 2) in an electric arc with the copper content
xCu = 1%

The numerical solution of the nonlinear boundary-
value problem (Eqs. (40) and (41)) is determined using
the parameter continuation method [21]. At every step
of calculations, a linearized differential equation of the
second order is solved by reducing the boundary-value
problem to a sequence of Cauchy problems. The latter,
it turn, are solved using the Dormand–Prince method
[22] to the fifth order of accuracy. The electric current
and the absorbing quasiwall radius are supposed to be
known. The analytical solution obtained for the qua-
sichannel model of electric arc [11, 18] was used as the
first approximation.

The electric and heat conductivities of a copper–
nitrogen mixture are approximated in accordance with
the results of works [11, 23] as follows:

σ = σ0S
nσ , λ = λw (T/Tw)nλ . (42)

At xCu = 1%, the approximation coefficients are σ0 =
5.9× 10−8 (W·m)kσ/(Ω ·m), nσ = 17/7, nλ = 5/2, and
λw = 0.066 W/(m ·K) at Tw = 1000 K.

In view of the estimation character of our calculations,
the plasma state was described by the Saha equation for
the first ionization level,

N2
e

Na
= 2

(
2πmekT

h2

)3/2 Σi
Σa

exp
(
− Ei
kT

)
, (43)

where Σa and Σi are the partition functions for an atom
and an ion, respectively; and Ei = 7.73 eV is the ioniza-
tion potential for a copper atom. This equation should
be supplemented by an equation for the partial pressure

Fig. 2. Criterion estimations of conditions for a deviation of the
plasma from the equilibrium state owing to the radiation transfer
for the 327.3-nm resonance line in electric arcs with various copper
contents xCu = 0.1 (1), 1 (2), and 10% (3)

of copper vapor ([19]), which takes into account that the
air component is actually adopted to be inert.

For the numerical integration of the internal integral
in the contour integral (29), as well as for the deter-
mination of the Voigt contour for spectral lines (39a),
the trapezium method was applied. The functional de-
pendence of the plasma temperature on the radius was
determined for the points of integration by carrying out
the linear interpolation of the temperature profile, which
was found as a solution of the boundary-value problem
(40), (41).

5. Results of Calculations

Numerical calculations were carried out for an atmo-
spheric electric arc burning between melting copper elec-
trodes. The discharge current was 30 A. The radius of a
cooling quasiwall was Rw = 3 mm, and its temperature
was Tw = 1000 K. In Fig. 1, the calculated temperature
profile T (r) in this arc and the corresponding distribu-
tion of the electron density Ne(r) obtained by solving
the equation of energy balance (40) for a wall-stabilized
cylindrical arc in the one-dimensional approximation are
shown.

The criterion estimations of conditions for the plasma
to deviate from the equilibrium state in such an arc as
a result of the radiation transfer for the 327.3-nm res-
onance line, the lower transition level for which is the
ground level of copper atoms, are depicted in Fig. 2.
The figure demonstrates (see curve 2) that the parame-
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ter β(r)/[θ(r) + β(r)] for this line reveals a drastic evo-
lution along the arc radius. In particular, it is close to 1
in a vicinity of the arc axis, which testifies that the radi-
ation effects, if they take place here, maintain the LTE
state in plasma. On the contrary, in the peripheral re-
gion of the arc, this parameter is negative, being almost
equal to zero. This fact testifies that, in this region, the
radiation influence represented by a term in the denom-
inator becomes prevailing. This circumstance indicates
that a considerable absorption of resonance spectral lines
should be expected here, which results in a plasma de-
viation from the LTE state [24, 25].

To specify the character of the transition between the
above-mentioned regions (for r/R = 0.8÷0.9), we varied
the copper content in this arc. Curves 1 and 3 in Fig. 2
correspond to xCu = 0.1 and 10%, respectively. In the
former case, a reduction of the electron density at the arc
axis, Ne(r = 0), to 0.7 × 1015 cm−3 is observed. In the
latter one, one can observe the electron density growth
to 6.8× 1015 cm−3. (In this version, the problem is not
absolutely self-consistent, because the temperature pro-
file in the arc, presented in Fig. 1, was considered con-
stant.) Accordingly, the populations at the excited levels
of copper atoms change. The character of the transition
between those regions at xCu = 10% testifies that, in the
region near r/R ≈ 0.8, the effects of radiation losses and
radiation absorption are compensated. The transition is
associated with the vanishing of the denominator of the
parameter β(r)/[θ(r)+β(r)] or with the transition “plus
infinity–minus infinity” of this parameter itself.

On the contrary, for the 510.5-nm resonance line of
copper atoms, for which the lower level of the spectral
transition is metastable, the parameter β(r)/[θ(r)+β(r)]
changes smoothly from 0.8 at r/R = 0 to zero at r/R =
0.9. Therefore, the result of calculations for this line
does not demonstrate that there exists a region, in which
the spectral line is substantially absorbed, although this
effect was observed experimentally [5, 9]. This fact is
evidently related to the simplifications adopted at the
statement of the problem concerning the constant pop-
ulation of a resonance level along the arc radius, which
ultimately results in a partial loss of the criterion ap-
proach sensitivity in this version. The cancellation of
this approximation should expectedly bring about an
improvement of the criterion approach sensitivity, but
would make the problem considerably more complicated.

The results obtained give an opportunity to carry
out the detailed calculations of the nonequilibrium
plasma parameters considering the radiation transfer
processes and including the kinetics of population of

the metastable and resonance levels into the model con-
cerned.

6. Conclusions

In this work, the preliminary calculations have been car-
ried out, which allow the role of radiation emission pro-
cesses in the deviation of plasma from the equilibrium
state to be estimated in principle. Since the calculations
are rather complicated, the solution of the problem was
obtained as a criterion for the LTE-model applicabil-
ity, by considering the role of the processes of radiation
transfer and radiation losses in plasma. Such a formu-
lation simplifies the problem to some extent, because it
allows the consideration to be confined to the model, in
which the equilibrium state of plasma is assumed.

The results obtained undoubtedly testify that the
plasma is in a nonequilibrium state in a large part of the
discharge channel volume in the atmospheric electric arc
between fusible copper electrodes. The character of this
nonequilibrium behavior corresponds to the overpopula-
tion of resonance levels in plasma-forming atoms at the
arc channel periphery owing to the absorption of reso-
nance radiation emitted from the hot arc region located
near the arc axis.

The results obtained evidence the ineligibility of the
widely applied assumption concerning the presence of
the LTE state in plasma produced in electric arcs be-
tween melting electrodes.

The work was supported in the framework of the Pro-
gram of common projects of the National Academy of
Sciences of Ukraine and the Russian Foundation for Fun-
damental Research (project No. 44-11).
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ВПЛИВ ПЕРЕНЕСЕННЯ ВИПРОМIНЮВАННЯ
НА ВIДХИЛЕННЯ ВIД РIВНОВАЖНОГО СТАНУ
ЩIЛЬНОЇ ЕЛЕКТРОДУГОВОЇ ПЛАЗМИ:
КРИТЕРIАЛЬНИЙ ПIДХIД

В.А. Жовтянський, Ю.I. Лелюх, Я.В. Ткаченко

Р е з ю м е

Принципово оцiнено роль процесiв випромiнювання з урахува-
нням його перенесення щодо вiдхилення вiд рiвноважного ста-
ну щiльної електродугової плазми атмосферного тиску. Задачу
розглянуто на прикладi електричної дуги цилiндричної форми,
стабiлiзованої стiнкою. Розв’язок отримано у варiантi критерiю
застосовностi припущення локальної термодинамiчної рiвнова-
ги з урахуванням ролi процесiв перенесення випромiнювання
у плазмi та його втрат. Данi числового моделювання доводять
наявнiсть ефектiв вiдхилення вiд рiвноважного розподiлу засе-
лення мiж резонансними та основним енергетичними рiвнями
атомiв мiдi в умовах, що моделюють стан плазми в атмосфер-
нiй електричнiй дузi мiж плавкими мiдними електродами.
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