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We introduce basic concepts of noncommutative geometry and
noncommutative topological quantum field theory (NC TQFT).
Some approaches to noncommutative gravity are reviewed. Fur-
thermore, we discuss some applications to astrophysics.

1. Noncommutative Geometry

In noncommutative geometry, the coordinates are pro-
moted to operators with nonvanishing commutation re-
lations:

[x̂i, x̂j ] = iΘij(x̂) , (1)

where Θij = −Θji satisfies the Jacobi identity

[θij(x̂), x̂k] + [θki(x̂), x̂j ] + [θjk(x̂), x̂i] = 0 . (2)

The aim is to build models on such space-time struc-
tures and to study their properties. In this introduc-
tory section, we want to provide various motivations for
studying noncommutative geometries and to introduce
the basic mathematical notions. The most remarkable,
in our opinion, is the intimate connection between non-
commutative gauge theory and gravity. This connec-
tion is not fully understood at present and studied from
different points of view (see, e.g., [1–6] and references
therein for a merely exemplary list of quotations). In
this talk, we want to review some approaches to non-
commutative gravity and applications to astrophysics.

1.1. Motivation

Let us mention the Landau problem as the first exam-
ple. Here, the noncommutative coordinates arise classi-
cally in a certain limit. Let us consider a particle with
charge e moving in a plane with a magnetic field normal
to that plane. This situation is described by the action

S =
∫
dt(

1
2
mẋiẋ

i − e

c
Bijx

iẋj) , (3)

where Bij = −Bji = const. In the limit of strong mag-
netic field, we project onto the lowest Landau level. As
a result, we obtain a nonvanishing Dirac-bracket

{xi, xj}DB =
c(B−1)ij

e
. (4)

a. Quantum gravity. Measuring a distance l be-
tween two particles, we have to use photons of appro-
priate wavelength. An energy E = hc

λ ∼
hc
l has to be

deposited in the measuring region. If l is of the order of
the Planck length lPl,

l ∼ lPl =

√
~G
c3

(5)

the energy deposited is given by

E = hc

√
c3

~G
. (6)

This corresponds to an inertia of the Planck mass:

M =
E

c2
=
h

c

√
c3

~G
∼
√

~c
G

= MPl .

The associated Schwarzschild radius is given by rS =
2GM
c2 = 2

√
~G
c3 = 2lPl. This means that the measuring

process creates a black hole. In order to avoid this sce-
nario, the uncertainty relations for coordinates have to
be assumed [7]. A natural way to achieve the uncertainty
relations is via Eq. (1).

b. String theory. In the context of open strings with
D-branes in a background magnetic field Bµν , the end
points of the open strings are confined to the D-branes.
The space-time dynamics is given by a noncommutative
field theory in the low-energy limit [8–10].
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1.2. Coordinate algebra

Let us discuss the commutation relations for the coordi-
nates,

[x̂i, x̂j ] = iΘij(x̂) ,

in more details. The structure constants Θij(x̂) might
be any functions of the generators with Θij = −Θji and
satisfy the Jacobi identity. Most commonly, the com-
mutation relations are chosen to be constant, linear, or
quadratic in the generators. In the canonical case, the
relations are constant:

[x̂i, x̂j ] = iΘij = const . (7)

The linear or Lie-algebra case

[x̂i, x̂j ] = iλij
k x̂k , (8)

where λijk ∈ C are the structure constants, basically has
been discussed in two different settings, namely fuzzy
spaces and κ-deformation. The third commonly used
choice is a quadratic commutation relation,

[x̂i, x̂j ] =
(

1
q
R̂ijkl − δ

i
lδ
j
k

)
x̂kx̂l , (9)

where R̂ijkl ∈ C is the so-called R̂-matrix corresponding
to quantum groups and is the solution of the quantum
Yang–Baxter equation.

Independent of the explicit form of Θij , the commuta-
tive algebra of functions on space-time has to be replaced
by the noncommutative algebra Â generated by the co-
ordinates x̂i, subject to the ideal I of relations generated
by the commutation relations,

Â =
C〈〈x̂1, ...x̂n〉〉
[x̂i, x̂j ]− iΘij

. (10)

A noncommutative function f̂ is given by a (formal)
power series

Â 3 f̂(x̂) =
∞∑
n=0

ci1...in : x̂i1 . . . x̂in : , (11)

where :: indicates an ordering for monomials in Â. In
case of the normal ordering, i.e. coordinates with lower
index to the left, this means, e.g.,

: x̂1x̂2x̂1 := (x̂1)2x̂2 (12)

or, in case of the symmetric ordering,

: x̂1x̂2x̂1 :=
1
3
((x̂1)2x̂2 + x̂1x̂2x̂1 + x̂2(x̂1)2) . (13)

In the latter situation, we can also use plane waves as
the basis:

eikj x̂j .

Let A be the commutative algebra of functions. Then
there is an isomorphism mapping the commutative func-
tion algebra equipped with an additional noncommuta-
tive product ? to the noncommutative one Â,

W : (A, ?) −→ (Â, ·) ,

This isomorphism exists, iff the noncommutative alge-
bra together with the chosen basis (ordering) satisfies
the so-called Poincaré–Birkhoff–Witt property, i.e. any
monomial of order n can be written as a sum of the ba-
sis monomials of order n or smaller, by reordering and
thereby using the algebra relations (1).

Let us stick to the most important example: the
canonical deformation with Θij(x̂) = const and the sym-
metric ordering: The Weyl-map is given by

W : f(x) 7→ f̂(x̂) :=
∫
d4kf̃(k)eikj x̂j , (14)

where

f(k) =
1

(2π)4

∫
d4xf(x)e−ikjxj ,

i.e., plane waves are mapped to plane waves,

W : eikjxj 7→ eikj x̂j .

The map W establishes an isomorphism of vector spaces.
In order to extendW to an algebra isomorphism, we have
to introduce a new noncommutative multiplication ? in
A. This star product is defined by

W (f ? g) := W (f) ·W (g) = f̂ · ĝ, (15)

where f, g ∈ A, f̂ , ĝ ∈ Â. We obtain

W (f)W (g) =
∫
d4kd4pf̃(k)g̃(p)eikj x̂jeipj x̂j =

=
∫
d4kd4pf̃(k)g̃(p)× e−

i
2pmΘmnknei(kj+pj)x̂j , (16)

and applying W−1 yields

f ? g (x) =
∫
d4kd4pf̃(k)g̃(p)e−

i
2pmθmnknei(kj+pj)xj =

= e
i
2Θij∂xi ∂

y
j f(x) g(y)

∣∣∣
y→x

. (17)
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This is the so-called Moyal–Weyl star product, and W
is an algebra isomorphism, by construction,

(A, ?) ∼= (Â, ·) . (18)

The information about the noncommutativity of Â is
encoded in the star product.

1.3. Twists

The Weyl–Moyal case is also the simplest example for a
twist deformation:

f ? g(x) = m ◦ F−1(f ⊗ g) , (19)

where F = e−
i
2 θ
ij∂i⊗∂j denotes the so-called Drinfel’d

twist. Let us introduce the useful Sweedler notation:

F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α , (20)

where fα, fα are some vector fields, and we imply a sum
over α. With this notation, we have

f ? g(x) = f̄α(f) f̄α(g) . (21)

The so-called R matrix is defined by

R := F21F−1 = Rα ⊗Rα, R−1 = R̄α ⊗ R̄α , (22)

with F21 = fα ⊗ fα. The R matrix “measures” the
noncommutativity:

f ? g = R̄α(g) ? R̄α(f) . (23)

Even more: The twist deforms the classical symmetry
group G of the space – considered as the Hopf algebra
U g = (h,Δ, ε, S), which is the universal enveloping al-
gebra of its Lie algebra g. The Hopf algebra possesses
dual structures. On the one hand, it is an algebra; on
the other hand, it has a co-algebra structure consisting
of a co-product Δ (dual to the normal multiplication),
the so-called antipode, and a co-unit. These structure
maps need to satisfy consistency conditions. For our
purposes, the co-product Δ is most important. In case
of the universal enveloping algebra of a Lie algebra g,
the co-product is given by

Δh = h⊗ 1 + 1⊗ h , h ∈ g . (24)

In the case of twisted symmetries, this co-product is
modified in the following way:

Δ : U g → U g ⊗ U g ,
Δ → ΔF = F ΔF−1 , (25)
F ∈ U g ⊗ U g ,

using the twist defined in (20). It has to satisfy the co-
cycle condition, which guarantees the associativity of the
?-product.

Using the twist, all kinds of products can be deformed
[11, 12]. The star product between functions we had
before is as follows:

f ? g = f̄α(f) f̄α(g) .

In the same way, we can consistently deform the product
between a function h and a vector field v

h ? v ≡ f̄α(h) f̄α(v) (26)

or between tensor fields τ, τ ′:

τ ⊗? τ ′ := f̄α(τ)⊗ f̄α(τ ′) , (27)

where f̄α(·) is understood as the classical Lie derivative
with respect to the vector field f̄α.

2. Twisted Gravity

Using the technique of twist deformation introduced be-
fore, let us define the ?-Lie derivative, i.e., infinitesimal
diffeomorphisms:

L?u(h) := f̄α(u)(f̄α(h)) . (28)

The space of vector fields equipped with the ?-Lie
bracket

L?uL?v − L?R̄α(v)L
?
R̄α(u) =: L?[u,v]? , (29)

where [u, v]? = u ? v − R̂α(v) ? R̂α(u), defines the ?-Lie
algebra of vector fields, denoted by Ξ?. Following [11,
12], we can introduce the notions of twisted Riemannian
geometry. The star-connection ∇?

∇?u : Ξ? → Ξ?

is defined to satisfy the axioms

∇?u+vz = ∇?uz +∇?vz ,

∇?h?uv = h ?∇?uv ,

∇?u(h ? v) = L?u(h) ? v + R̄α(h) ?∇?R̄α(u)v , (30)

where u, v, z ∈ Ξ?, h is a function. Next, we define
connection coefficients by

∇?µ∂̂ν := Γσµν ? ∂̂σ ,
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using the basis {∂̂µ} of Ξ?. The torsion and curvature
tensors are given by

T ?(u, v) = ∇?uv −∇?R̄α(v)R̄α(u)− [u, v]?, (31)

R?(u, v, z) ≡ R?(u, v)z =

= ∇?u∇?vz −∇?R̄α(v)∇
?
R̄α(u)z −∇

?
[u,v]?

z , (32)

or, in components,

T (∂̂µ, ∂̂ν) = Tµν
ρ∂̂ρ ,

R(∂̂µ, ∂̂ν , ∂̂ρ) = Rµνρ
σ∂̂σ . (33)

As in the commutative case, the Ricci tensor is defined
by the following contraction of indices:

Ricµν = Rρµν
ρ (34)

The metric is a ?-symmetric tensor

g? = g?µν ? dx̂
µ ⊗? dx̂ν .

The components of the inverse metric are determined
with respect to the star product,

g?µν ? g?νρ = g?ρν ? g
?νµ = δµν .

A noncommutative metric is said to be compatible with
the star-connection, if

∇?ug? = 0 ,∀u ∈ Ξ? .

Therefore, given a metric g?, one can consistently de-
fine Christoffel symbols Γ?ijk, a compatible connection
∇?, and the Riemann R?ijk

l and Ricci tensors Ric?ab.
Then the deformed Einstein equation has the familiar

form

R?ab −
1
2
g?ab ? R

? = 8πGNT ?ab . (35)

Of special interest are Einstein spaces, where the de-
formed Ricci tensor is proportional to the noncommuta-
tive metric,

R?µν = c g?µν . (36)

3. Noncommutative Astrophysics

In this section, we want to present a brief review and
to discuss the noncommutative Einstein equations (35).
The equations are fairly complicated, since they involve
the star product. Therefore, only very few explicit solu-
tions are known.

In the simplest case, the twist consists of Killing vec-
tors, i.e., of vector fields Kα with LKα g? = 0. Let us
denote the Lie algebra of (affine) Killing vector fields by
gK . Then the twist is an element of the tensor product
of the respective universal enveloping algebras,

F ∈ UgK ⊗ UgK ,

and the deformed Einstein equations are reduced to the
undeformed ones [13].

Some explicit examples are studied in [14, 15], where
we have showed that the deformed Einstein spaces (the
Weyl–Moyal plane and the twisted sphere) are noncom-
mutative Einstein spaces.

Schupp and Solodukhin [16] constructed a spherical
symmetric vacuum solution (black hole) in (3+1)D, by
using the fuzzy sphere as the underlying noncommuta-
tive space:

[x̂a, x̂b] = iλ(ρ̂)εabcx̂c , (37)

where a, b, c = 1, 2, 3, and λ denotes a function of the
Casimir operator ρ̂ = x̂2 + ŷ2 + ẑ2 in the coordinate
algebra. The corresponding twist is given by

F =
∑
n

Cn(
λ

ρ
)Lnξ+ ⊗ L

n
ξ− , (38)

where ξ± are rotation generators. Since the rotation
generators are Killing vectors, the solution is the classical
one except for the parameters (eigenvalues of ρ̂) ρ = nλ,
n = 2j = 0, 1, 2, . . . :

g00 =
a

r
− 1 , g0,i = 0 , gij =

r2

ρ2
δij , (39)

where r = 1
ρ (ρ+ a

4 ). Some remarks are in order:

• The above solution is valued outside the horizon
r = a or ρ = a/4. Therefore, n > a/(4λ).
• The noncommutative space-time is sliced by fuzzy

spheres with radius ρ.
• Inside the horizon, they have found a different so-

lution:

g00 = 1− a

r
, g0,i = 0 , gij =

r2

ρ2
(δij −

xixj
ρ2

) , (40)
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where ρ2 = a2

2r
1
a−r .

The classical singularity, r = 0, corresponds to ρ =∞.
Therefore, the singularity does not disappear, but it is
replaced by a sequence of fuzzy spheres. One hope of
noncommutative geometry is that singularities are dis-
solved. However, in this case, this is not true.

Ohl and Schenkel [17] discuss more general twists of
the form

F = exp(− ih
2
θabXa ⊗Xb) , (41)

θab = const and Xa, Xb any vector fields satisfying

[Xa, Xb] = 0 . (42)

Starting from symmetry arguments, they classified the
possible twists leading to deformed black hole mod-
els (spherical symmetric) and to deformed cosmological
(Friedman–Robertson–Walker) models.

Let us turn to applications of noncommutative ideas
to astrophysics. If the noncommutativity exists in the
Nature, it seems that its effects can be observed more
easily in astrophysical scenarios, than in collider exper-
iments. The former always include huge distances, and
small effects can add up. The noncommutative theories
lead, in general, to modified dispersion relations of the
kind

E2 = p2c2(1 + λE)2 +m2c4 , (43)

where λ is the noncommutative deformation parameter.
Bertolami and Zarro [18] used the modified dispersion
relation (43) in order to calculate corrections to the en-
ergy and the particle density, as well as to the pressure
of a photon gas, a nonrelativistic ideal gas, and a de-
generate fermion gas. These results are applied to study
the stability of stars. There, the gas pressure and the
radiation one

P = Prad + Pgas (44)

are in equilibrium with the gravitational force. Let us
choose λ = 2.5 × 10−19 GeV−1. Then the following
results for the ratio PNC/PC hold (the index distin-
guishes between the noncommutative and the commu-
tative case):

• Main sequence stars: PNC
PC

= 10−25.

• White dwarfs: PNC
PC

= 10−22.

• Neutron stars: PNC
PC

= 10−19.

This means that the stability regions of stars are en-
larged. The effect increases with the mass of stars. This
calculation may not be very realistic, since it relies on
many approximations and assumptions. But it points
into the right direction and gives some hints what the
effects of noncommutativity could be.

Another example is provided by γ-ray bursts in active
galaxies (see, e.g., [19]). Due to the modified dispersion
relations (43), there is a difference in the arrival time of
photons with different energies:

|δt| ≈ λL
c
δω ,

where L denotes the distance of the galaxy, and δω is
the energy range of the burst. So far, an effect like this
has not been detected. This leads to bounds for the
noncommutativity parameter λ.

4. Noncommutative Topological Quantum Field
Theory

Atiyah’s axioms for an n-dimensional topological quan-
tum field theory (TQFT) describe it as a symmetric
monoidal functor

Z : nCob→ Hilb. (45)

One value of TQFTs is that they provide invariants of
manifolds and, in particular, of 3-manifolds (potentially
with boundary). This is closely related to the subject of
knot theory, since knots are studied by their complement
in some 3-manifold. In particular, in the codimension-2
case, we replace nCobi by nCob [25], a double bicate-
gory, whose 2-morphisms are cobordisms between cobor-
disms. We have also passed from Vect, the category of
vector spaces and linear maps, to 2Vect, a double bi-
category, whose objects are 2-vector spaces, whose mor-
phisms are 2-linear maps (linear functors) and whose
2-morphisms are natural transformations.

In general, a “k-tuply extended TQFT” assigns higher-
categorical structures called k-vector spaces to manifolds
of codimension k. In particular, it is a (weak, monoidal)
k-functor [25]:

Z : nCobk→k−Vect. (46)

Here, nCobk is a k-category (that is, a higher category
having j-morphisms for j = 1 . . . k), whose objects are
(n − k)-dimensional manifolds, and whose j-morphisms
are (n− k+ j)-dimensional cobordisms between (j − 1)-
morphisms. That is, they are manifolds with corners,
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which have the source and target cobordisms as bound-
ary components. The k-category k−Vect is a higher-
categorical analog of Vect in an appropriate sense. In
our case, the extended topological quantum field theory
is a double functor Z from the double bicategory CM(d)
of d-dimensional manifolds to the double bicategory of
H of (usually Hermitian) finite dimensional (noncom-
mutative) vector spaces, and some axioms are satisfied
[25].

Thus, the extended topological quantum field theory
in dimension d is a functor

Z : C(d)→Morph(H),

between double bicategories such that:
(1) the disjoint union in C(d) goes to the tensor prod-

uct

∪ 7→ ⊗,

where (_)∗: H → H◦ is a dualization of vector spaces.
(2) changing the orientation in C(d)0 goes to the du-

alization

(−) 7→ (.)∗

Thus, as a consequence of double bicategorical functorial
properties, we get

(1) for each compact closed oriented smooth d-
dimensional manifold X ∈ Obj(C(d)0), the value
of the functor Z(X) is a finite dimensional (non-
commutative) vector space over the field C of com-
plex numbers (usually with the Hermitian metric),

(2) for each (Y, f) : X ⇒ X ′ from Obj(C(d)1), the
value of the functor Z(Y, f) is a homomorphism
Z(X) → Z(X ′) of (Hermitian) (noncommutative)
vector spaces,

and the following well-known axioms of the extended
topological quantum field theory are satisfied:

A(1) (involutivity) Z(−X) = Z(X)∗, where −X de-
notes the manifold with opposite orientation, and
∗ denotes the dual (noncommutative) vector space.

A(2) (multiplicativity) Z(X ∪ X ′) = Z(X) ⊗ Z(X ′),
where ∪ denotes a disconnected union of manifolds.

A(3) (associativity) For the composition (Y ′′, f ′′) =
(Y, f) ∗ (Y ′, f ′) of cobordisms,

Z(Y ′′, f ′′) = Z(Y ′, f ′)◦Z(Y, f) ∈ HomC(Z(X), Z(X ′′)).

(Usually the identifications

Z(X ′ −X) ∼= Z(X)∗ ⊗ Z(X ′) ∼= HomC(Z(X), Z(X ′))

allow us to identify Z(Y, f) with the element
Z(Y, f) ∈ Z(∂Y ).

A(4) For the initial object, ∅ ∈ Obj(C(d)0) Z(∅) = C.

A(5) (trivial homotopy condition) Z(X × [0, 1]) =
idZ(X).

5. Summary

In our opinion, noncommutative ideas can best be tested
in astrophysical scenarios. Up to now, there are some
predictions, but a contact to “real” physics and exper-
iments is not yet established. The presented model of
twisted gravity is an interesting candidate implementing
the noncommutativity into gravitational physics. How-
ever, matter has not been included so far and resembles
a further step in the development. This might allow the
study of effects like the cosmic microwave background or
Hawking radiation within this framework.
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Academy of Sciences of Ukraine.
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НЕКОМУТАТИВНА ГЕОМЕТРIЯ ТА ЗАСТОСУВАННЯ
В АСТРОФIЗИЦI

М. Волгенант, С.С. Москалюк

Р е з ю м е

Наведено основнi концепцiї некомутативної геометрiї та неко-
мутативної топологiчної квантової теорiї поля. Дано огляд де-
яких пiдходiв до некомутативної гравiтацiї. Також обговорено
застосування некомутативної геометрiї в астрофiзицi.
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