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We review two different noncommutative gauge models generaliz-
ing the approaches which lead to renormalizable scalar quantum
field theories. One of them implements the crucial IR damping
of the gauge field propagator in the so-called “soft breaking” part.
We discuss one-loop renormalizability.

1. Introduction

There are various motivations for studying noncommuta-
tive geometries. They range from general considerations
in Quantum Field Theory (QFT) [1, 2] and (Quantum)
Gravity [3, 4] to String Theory and Matrix Models [5–7]
and purely mathematical considerations [8]. One of the
first applications of noncommutative ideas was already
within the realm of gauge theories, namely the Quan-
tum Hall effect [9]. What is most remarkable, in my
eyes, is the intimate connection between noncommuta-
tive gauge theory and gravity. This connection is not
fully understood at present and studied from different
points of view, see, e.g., [10–15] and references therein
for a merely exemplary list of quotations.

In this note, we concentrate on models for noncommu-
tative gauge theories, where the idea of renormalizability
will be a guiding principle. Furthermore, we consider the
canonically deformed 4D Euclidean space. The coordi-
nates satisfy the commutation relations

[xi ?, xj ] = iΘij , (1)

where Θij = −Θji = const, and the star product is given
by the Moyal–Weyl product,

f ? g (x) = e
i
2Θij∂xi ∂

y
j f(x) g(y)

∣∣∣
y→x

. (2)

In the next section, we will discuss the so-called
UV/IR mixing problem in the case of scalar field the-
ory. It is a thread to renormalizability. Up to now, there

are two different models, which overcome this problem
and which are perturbatively renormalizable to all or-
ders. Both are formulated on the canonically deformed
Euclidean space. In Section 3, we will attempt to gen-
eralize both approaches to noncommutative U(1) gauge
theory. A brief summary and some concluding remarks
follow in Section 4.

2. UV/IR Mixing in Scalar Theories

The simplest approach to the noncommutative φ4 the-
ory is to take the commutative action and to replace
the pointwise products by star products. Since the star
product is not relevant for bilinear expressions, only the
self-interaction term is modified, and we obtain

S =
∫
d4x

(
1
2
∂µφ∂µφ+

m2

2
φ2+

λ

4!
φ ? φ ? φ ? φ

)
. (3)

The above action determines the Feynman rules. The
propagator is the same as in the commutative case,

G(p) =
1

p2 +m2
, (4)

while the vertex is decorated by momentum dependent
phase factors:

Γ(p1, . . . , p4) = −λδ(4)(p1 + p2 + p3 + p4)e−i
∑
i<j piΘpj .

(5)

As a consequence, new types of Feynman graphs occur:
In addition to the ones known from the commutative
space, where no phases depending on internal loop mo-
menta and showing the usual UV divergences appear,
the so-called nonplanar graphs, which are regularized by
phases depending on internal momenta, come into the



M. WOHLGENANNT

game. One-loop calculations have been performed ex-
plicitly [16–20], and, hence, the UV/IR mixing problem
has been found: Due to the phases in the nonplanar
graphs, their UV sector is regularized, on the one hand,
but, on the other hand, this regularization implies diver-
gences for small external momenta. For example, let us
consider the two-point tadpole graph. It is given by the
expression

Π(Λ, p) ∝ λ
∫
d4k

2 + cos(kp̃)
k2 +m2

= ΠUV (Λ) + ΠIR(Λ, p) .

(6)

The planar contribution is, as usual, quadratically di-
vergent in the UV cutoff Λ, i.e. ΠUV ∼ Λ2, and the
nonplanar part is regularized by the cosine,

ΠIR ∼ 1
p̃2
, (7)

where p̃µ = Θµνpν . The original UV divergence is not
present, but reappears when p̃ → 0 representing a new
kind of infrared divergence. Since both divergences are
related to each other, one speaks of “UV/IR mixing”.
At the one-loop level, this is no problem through. It
corresponds to a counter term∫
d4p φ̃(p)

1
p̃2
φ̃(−p) , (8)

which is well behaved even in the limit p̃ → 0. But the
higher loop insertions then lead to a term of the form∫
d4p φ̃(p)

1
(p̃2)n

φ̃(−p) , (9)

where n is the number of insertions. Clearly, this term
exhibits a serious IR singularity. It is this mixing which
renders the action (3) nonrenormalizable. Two differ-
ent strategies to cure UV/IR mixing are known. Both
modify the propagator by adding an additional term
quadratic in the fields: An oscillator term (Section 2 2.1)
and a 1/p̃2-term (Section 2 2.2), respectively. In what
follows, we will briefly review those approaches.

2.1. The scalar Grosse–Wulkenhaar model

After adding an oscillator potential and some awkward
rewritting, action (3) becomes [21, 22]

S =
∫
d4x

(
1
2
φ ? [x̃ν ?, [x̃ν ?, φ]] +

+
Ω2

2
φ?{x̃ν ?, [x̃ν ?, φ]}+µ2

2
φ?φ +

λ

4!
φ ? φ ? φ ? φ

)
, (10)

where x̃ν = θ−1
ναx

α, and we have used i ∂µf = [x̃µ ?, f].
This action is covariant, i.e.

S[φ;µ, λ,Ω] 7→ Ω2S[φ;
µ

Ω
,
λ

Ω2
,

1
Ω

] , (11)

under the so-called Langmann–Szabo duality transfor-
mation [23] between position and momentum:

φ̂(p)←→ π2
√
|detΘ|φ(x) , pµ ←→ 2x̃µ , (12)

where φ̂(pa) =
∫
d4xae(−1)aipa,µxa,µ φ(xa). The index a is

labelling the legs of vertex and propagator, respectively,
and defines the direction of the corresponding momen-
tum. This becomes a symmetry at Ω = 1. Due to the
oscillator term, the propagator is modified, and an IR
damping is implemented. The propagator is given by
the Mehler kernel:

KM (p, q) =
ω3

8π2

∞∫
0

dα

sinh2 α
×

×e−
ω
4 (p−q)2 coth α

2−
ω
4 (p+q)2 tanh α

2 , (13)

where ω = Θ/Ω. The IR damping is also responsible for
a proper handling of the UV/IR mixing problem. The
model is renormalizable to all orders in perturbation the-
ory. The propagator depends on two momenta, an in-
coming and an outgoing momentum, since the explicit
x-dependence of the action breaks the translation invari-
ance. Therefore, the momentum conservation is broken
as well. Remarkably, the oscillator term can be inter-
preted as a coupling of the scalar field to the curvature
of some specific noncommutative background [24].

2.2. 1/p2 model

In the second approach, a nonlocal term is added to
action (3). In the momentum space, it reads [25]

Snl =
∫
d4p

a

2
φ̃(p)

1
p̃2
φ̃(−p) . (14)

This is exactly the counter term (8) we have discussed
before. The resulting action is translation-invariant,
and thus the momentum conservation holds. Term (14)
implements the IR damping for the propagator, i.e.
G(p) → 0 as p → 0. The modified propagator has the
form

G(p) =
1

p2 +m2 + a2

p2

. (15)
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The damping effect of the propagator becomes obvious,
when one considers higher-loop orders. An n-fold in-
sertion of the divergent one-loop result (7) into a single
large loop can be written as

Πnnp−ins.(p) ≈ λ2

∫
d4k

eikp̃(
k̃2
)n [

k2 +m2 + a′2

k2

]n+1
,

(16)

neglecting any effects due to the recursive renormaliza-
tion and approximating the insertions of irregular single
loops by the most divergent (quadratic) IR divergence.
For model (3), i.e. a = 0, the integrand is proportional
to (k2)−n as k2 → 0, as we have already mentioned. But
a 6= 0 implies that the integrand behaves like

1(
k̃2
)n [

a′2

k2

]n+1
=

k̃2

(a′2)n+1 , (17)

which is independent of the loop order n. Using multi-
scale analysis, the perturbative renormalizability of this
model to all orders could be shown [25].

3. Noncommutative Gauge Theory

The aim of this section is to generalize the approaches
discussed above to noncommutative U(1) gauge theory.
They are good candidates for renormalizable models. As
we will see, the UV/IR mixing also occurs in the case
of noncommutative gauge theory, and so far, no model
could be shown to be renormalizable.

3.1. Oscillator approach

As the first step, a BRST invariant action including an
oscillator term has been proposed in [26]:

S =
∫
d4x

(
1
4
Fµν ? F

µν + s(c̄ ? ∂µAµ)−

−1
2
B2 +

Ω2

8
s(c̃µ ? Cµ)

)
, (18)

where Cµ contains the crucial new terms:

Cµ = {{x̃µ ?, Aν} ?, Aν}+ [{x̃µ ?, c̄} ?, c] + [c̄ ?, {x̃µ ?, c}] ,
(19)

and c̃µ is a new parameter which also transforms under
BRST. The noncommutative field strength is given by

Fµν = ∂µAν − ∂νAµ − i [Aµ
?, Aν ]. Summing up, action

(18) is invariant under the following BRST transforma-
tion:

sAµ = Dµc, sc̄ = B, sc = igc ? c,

sB = 0, sc̃µ = x̃µ . (20)

The above set of transformations is nilpotent. The prop-
agator of the gauge field is given by the Mehler ker-
nel (13). One-loop calculations have been performed
in [27]. A power counting formula has been obtained,
and the corrections to the vertex functions have been
computed. Remarkably, the one-point tadpole is UV-
divergent. Therefore, action (18) is not stable under one-
loop corrections, and linear counter terms are needed.

It seems natural to look for a more general action. The
so-called induced gauge action [28,29] contains the terms
of (18) and more. It is invariant under noncommutative
U(1) transformations. The starting point is the scalar φ4

model with the oscillator potential (10). The scalar field
is then coupled to an external gauge field. The dynamics
of the gauge field is given by the divergent contributions
of the one-loop effective action generalizing the method
of heat kernel expansion to the noncommutative realm.
The induced action is given by

S =
∫
d4x

{
3
θ
(1− ρ2)(µ̃2 − ρ2)(X̃ν ? X̃

ν − x̃2)+

+
3
2
(1− ρ2)2

(
(X̃µ ? X̃µ)?2 − (x̃2)2

)
− ρ4

4
FµνFµν

}
, (21)

where ρ = 1−Ω2

1+Ω2 , µ̃2 = m2θ
1+Ω2 . Furthermore, the field

strength is given by

Fµν = −i[x̃µ, Aν ]? + i[x̃ν , Aµ]? − i[Aµ, Aν ]? ,

and X̃µ denote the covariant coordinates, X̃µ = x̃µ+Aµ.
In the limit Ω → 0 (i.e., ρ → 1), we recover the usual
noncommutative Yang-Mills action. An interesting limit
is Ω → 1 (i.e., ρ → 0), where we obtain a pure matrix
model. It has a nontrivial vacuum, which makes the
quantization more difficult. The computation of prop-
agators, construction of Feynman rules, and one-loop
calculations are now in progress.

An alternative model has been proposed in [30]. The
gauge model is constructed on a specific curved non-
commutative background space, the so-called truncated
Heisenberg space. In two dimensions, the action reads

S =
∫
d2x

(
(1− α2)F ∗212 − 2(1− α2)µF12 ? φ+
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+(5− α2)µ2φ2 + 4iαF12 ? φ
?2+

+(Diφ)2 − α2 {pi +Ai ?, φ}2
)
, (22)

where α is some parameter, and µ has dimension of a
mass.

3.2. 1/p2 approach

The same strategy as in 2.2 is applied here, and the IR
divergence is added as a counter term. Considering the
action

S =
∫
d4xFµν ? Fµν (23)

for noncommutative U(1) theory, the vacuum polariza-
tion shows the following IR divergent contribution:

Πµν ∝
p̃µp̃ν
(p̃2)2

. (24)

A gauge invariant implementation of the above is given
by the term [31]∫
d4xFµν

1
D̃2D2

Fµν . (25)

The inverse covariant derivatives in the above expression
should be expanded in terms of the gauge field. Hence,
the vertices with an arbitrary number of photon legs
occur. This situation might still be treatable, but it is
simpler to use a localized version of (25). Basically, there
are two different ways to implement the localization:

• By introducing an antisymmetric field Bµν [32]:∫
d4xFµν

a2

D̃2D2
Fµν →

→
∫
d4x

(
aBµνFµν −Bµν ? D̃2D2Bµν

)
. (26)

But this field is physical and introduces addi-
tional degrees of freedom. Therefore, the model is
not pure noncommutative U(1) gauge theory any
more, but describes different physics.

• Secondly, BRST doublet structures are employed
in [33]. The additional fields are needed for the
localization of the built BRST doublets (25). This
avoids the introduction of new physical degrees of
freedom. Unfortunately, the model presented in
[33] is not renormalizable.

The virtue of the latter approach is the implementation
of the IR damping as the so-called “soft breaking”. This
is in analogy to the Gribov–Zwanziger approach to un-
deformed QCD [34, 35], where an IR modification of the
propagator is suggested to cure the Gribov ambiguities.
The UV renormalizability is not altered. In [36], the
“soft breaking” approach has been developed further. As
a result, the following action is proposed:

S = Sinv + Sgf + Saux + Ssoft + Sext , (27)

Sinv =
∫
d4x

1
4
FµνFµν , (28)

Sgf =
∫
d4x s(c̄∂µAµ) , (29)

Saux =
∫
d4x s

(
ψ̄µνBµν

)
, (30)

Ssoft =
∫
d4x s

(
(Q̄µναβBµν +QµναβB̄µν)×

× 1
�̃

(fαβ + σ
θαβ
2
f̃)
)
, (31)

Sext =
∫
d4x (ΩAµ sAµ + Ωcsc) , (32)

where fαβ = ∂αAβ−∂βAα is the commutative U(1) field
strength, Θαβ = ε θαβ , f̃ = θαβfαβ , and �̃ = ∂̃µ∂̃µ =
θµαθµβ∂α∂β . For convenience, ε has mass dimension −2,
whereas θµν is rendered dimensionless. The additional
sources Q̄,Q, J̄ , J ensure the BRST invariance of (27).
In the IR, they take their physical values:

Q̄µναβ |phys = 0,

J̄µναβ |phys =
γ2

4
(δµαδνβ − δµβδνα),

Qµναβ |phys = 0,

Jµναβ |phys =
γ2

4
(δµαδνβ − δµβδνα) . (33)
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Inserting the physical values and integrating out the field
Bµν , the following action is obtained:

Sphys =
∫
d4x

(
1
4
FµνFµν + γ4

[
∂µAν

1

2�̃2
fµν+

+
(
σ +

θ2

4
σ2

)
(∂̃A)

1

�̃2
(∂̃A)

]
+ s (c̄∂µAµ)

)
. (34)

The term proportional to γ4 breaks the gauge invariance.
It is called the “soft breaking,” since the parameter γ has
dimension of mass. We have used the commutative field
strength in this expression, although it is not covari-
ant under noncommutative gauge transformations. But
it only appears in the breaking term and cannot make
it worse, since the gauge invariance is already violated.
The advantage is that only the propagation, but not the
interaction, is modified due to the “soft breaking.”

The full action (27) is invariant under the following
set of BRST transformations:

sAµ = Dµc , sc = igcc , sc̄ = b , sb = 0 ,

sψ̄µν = B̄µν , sB̄µν = 0 ,

sBµν = ψµν , sψµν = 0 ,

sQ̄ = J̄ , sJ̄ = 0 , sQ = J , sJ = 0 . (35)

The fields ψ and B, respectively, ψ̄ and B̄, and the
sources Q and J , respectively, Q̄ and J̄ , are BRST dou-
blets. Let us discuss the Feynman rules for (27). The
vertex functions are the same as in the usual noncom-
mutative U(1) theory defined by action (23). The prop-
agator is more complicated; it reads

GAµν(k) =
(
k2 +

γ4

k̃2

)−1

×

×

(
δµν −

kµkν
k2
− σ̄4

(k2 + (σ̄4 + γ4) 1
k̃2 )

k̃µk̃ν

(k̃2)2

)
, (36)

where

σ̄ = 2γ4

(
σ +

θ2σ2

4

)
.

But, in 1-loop calculations, it can be approximated by

GAµν ∼
1
k2

(δµν −
kµkν
k2

), k2 � 1 , (37)

since both UV and IR divergences result from the high-
momentum range in the loop. This ignores the IR damp-
ing, but, as we have seen, the damping has no effect at
the one-loop level. Considering higher-loop insertions of
a single tadpole (cf. (16)), the damping of the propa-
gators between the single loops is essential and renders
the result independent of the number of inserted loops at
least in the scalar case. For the gauge model discussed
here, this still needs to be shown.

A power counting formula,

dG = 4− EA − Ecc̄ , (38)

where Eφ denotes the number of external φ-legs, and
one-loop results have been obtained in [36]. The correc-
tion to the vacuum polarization is given by

Πµν =
2g2

ε2π2

p̃µp̃ν
(p̃2)2

+
13g2

3(4π)2
(p2δµν − pµpν) lnΛ , (39)

where Λ denotes a momentum cut-off. Remarkably, the
one-loop correction is transversal. Furthermore, we ob-
tained the following results for the vertices:

Γ3A,IR
µνρ = −2ig3

π2
cos

εp1p̃2

2

∑
j=1,2,3

p̃j,µp̃j,ν p̃j,ρ
ε(p̃2

j )2
, (40)

Γ3A,UV
µνρ = − 17g2

6(4π)2
ln Λ Ṽ 3A,tree

µνρ (p1, p2, p3) , (41)

Γ4A,UV
µνρσ = − 5

8π2
ln Λ Ṽ 4A,tree

µνρσ , (42)

where V 3A,tree
µνρ and V 4A,tree

µνρσ denote the tree level vertex
functions. Regarding the three-point function, the IR
divergent result (40) corresponds to a counter term

S3A,corr =
∫
d4x g3 {Aµ ?, Aν}

∂̃µ∂̃ν ∂̃ρ

ε �̃2
Aρ . (43)

Such a term can readily be introduced into the “soft
breaking“ part of the action Ssoft in (27). But in order
to do so, we have to restore the BRST invariance in the
UV regime. Again, this can be achieved by introducing
sources Q′ and J ′, which form a BRST doublet,

sQ′ = J ′ , sJ ′ = 0 . (44)

Consequently, we insert the following terms into Ssoft:∫
d4x

(
J ′ {Aµ ?, Aν}

∂̃µ∂̃ν ∂̃ρ

�̃2
Aρ−
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−Q′s

(
{Aµ ?, Aν}

∂̃µ∂̃ν ∂̃ρ

�̃2
Aρ

))
. (45)

This term is BRST-invariant by itself. In the IR, the
sources take on their physical values

J ′ = gγ′2 , Q′ = 0 , (46)

and the counter term in (43) leads to a renormalization
of γ′, which is another parameter of mass-dimension 1.

The above one-loop result leads to the negative β-
function:

β = − 7g3

12π2
. (47)

The commutative β-function is positive. From this equa-
tion alone, it becomes clear that there is no smooth tran-
sition to the undeformed physics on a quantum level.

4. Concluding Remarks

The one-loop corrections for the novel action (27) re-
duce to the ones known from the usual noncommutative
U(1) theory (see, e.g., [18, 37]). At higher-loop orders,
differences will arise. Both, UV and IR divergences can
be absorbed in the tree level action (27) plus (45). But
so far, a renormalization (dis)proof is still missing. We
plan to attack this problem by applying a renormaliza-
tion scheme such as multiscale analysis or flow equations.
The negative β-function reflects the non-Abelian struc-
ture of noncommutative U(1) gauge theory.

Concerning the induced gauge action (21), we plan to
study the vacuum structure, to study its quantization,
and, as a first step, to compute one-loop corrections.
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НЕКОМУТАТИВНI КАЛIБРУВАЛЬНI ТЕОРIЇ

М. Волгенант

Р е з ю м е

Розглянуто два рiзних пiдходи, якi узагальнюють калiбруваль-
нi моделi до перенормованих скалярних квантових теорiй поля.
Один з них реалiзує критичне iнфрачервоне затухання про-
пагатора калiбрувального поля в так званiй частинi “м’якого
розриву”. Також обговорено однопетлеве перенормування.

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 4 395


