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A microscopic model of an open system interacting with an exter-
nal medium and exhibiting quasiclassical fluctuations of its energy
has been developed. The model is used to describe the irreversible
process of binding between ligand and receptor molecules in a so-
lution. Analytical expressions for the probabilities of transitions
between non-stationary states of the system averaged over both
equilibrium vibrations in the medium and stationary states in the
system were derived. The explicit dependences of the transition
rate constants on the ligand concentration, solution viscosity, and
temperature were found for the irreversible model with three ki-
netic stages.

1. Introduction

While studying non-equilibrium processes in various
physical, chemical, and biological systems (e.g., the ex-
citon transport in low-dimensional ordered structures,
the electron transfer in donor-acceptor molecular com-
plexes, the dynamics of ligand-induced conformational
transformations in receptor biomacromolecules, etc.) it
is of importance to know the specific dependences of ob-
servables on internal (microscopic) and external (macro-
scopic) parameters. Recently, this problem got an addi-
tional motivation, in particular, in connection with the
application of spectroscopy and atomic-force microscopy
methods to the study of single molecules in homogeneous
and heterogeneous environments [1–8]. As a result, there
appeared a unique possibility to observe, in the real-time
mode, the non-stationary (transient) evolution of sepa-
rate electron-vibrational states of individual molecules
caused by external perturbations applied to the system.
From the physical viewpoint, such a process is similar to
the instant filling of a certain initial state of the system,
which is depopulated afterward owing to a redistribu-
tion among other states. The latter become, in their
turn, gradually filled and, having achieved the maximal
filling degree, start to depopulate through a certain addi-
tional channel of irreversible decay. In this case, for the
statement of the problem to be consistent in the frame-
work of an irreversible kinetic model, the microscopic

description of relaxation transitions between the fluctu-
ating states in an open dynamic system, which interacts
with the environment, has to be carried out.

The microscopic approach to the kinetic description
of relaxation processes in quantum-mechanical systems
in the presence of energy-parameter fluctuations was de-
veloped in many works [9–21]. The main attention was
given to the analysis of the random low-intensity mod-
ulations of energy differences between transient states
[9, 10, 13, 14, 18, 19] and the influence of an external
stochastic field on the slowest transition rates, which
confine the establishment of an ultimate thermodynamic
equilibrium throughout the system [11–17,20,21]. At the
same time, it is well known that the state populations,
which are experimentally monitored during long-time in-
tervals, have substantially non-stationary values in open
molecular systems [22–25] in general, and, in particular,
in the majority of biological systems [26, 27]. Having
achieved the corresponding maximum values, those state
populations exponentially vanish, not obeying the equi-
librium Boltzmann relations in the general case. There-
fore, the quantitative description of transient states in
open quantum-mechanical systems, which interact with
a fluctuating molecular environment, demands that a
more general approach should be applied. First, such
an approach must be kinetically consistent at different
time scales, simultaneously covering both a very quick
filling of transient states and their rather slow depopu-
lation. Second, in the framework of this approach, it is
necessary to take into account simultaneously both the
microscopic relaxation interaction, which invokes transi-
tions between energy levels, and thermodynamic fluctu-
ations, which stochastically change the positions of those
levels following a certain statistics [26, 27]. In this work,
we develop a microscopic model of non-stationary states
in an open system, which is in contact with its molecu-
lar environment in the equilibrium state and undergoes
quasiclassical fluctuations of its energy. Then, we obtain
a master equation for the populations of those states,
which is averaged over the fluctuations in the system and
the vibrations in the environment. Then we derive an
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analytical expression for the averaged rate of transitions
between the states. At last, we demonstrate that, in
the generalized irreversible kinetic model of transitions
between three states, the corresponding magnitudes of
transition rates contain information needed for the de-
scription of the transition state dynamics depending on
the temperature, solution viscosity, and reactant concen-
tration.

2. Microscopic Model of the System and the
Master Equation

Consider a one-to-one-particle model of an open system
(OS), which evolves in time, depending on the initial
condition, at a given temperature T by exchanging vi-
brational quanta (phonons) with the environment. The
OS states |m〉 will be distinguished according to the con-
tact positions of a selected individual molecule (it will be
referred to as a ligand) with respect to molecules in the
solution volume and a selected binding center in a certain
macromolecule (the latter will be referred to as a recep-
tor). For the receptor model, we confine the considera-
tion to considering only one contact with the ligand char-
acterized by the binding energy E1. The corresponding
bound state between the ligand and the receptor is des-
ignated as |1〉. Bearing in mind the generalization of
the one-center model onto the irreversible case, let us
suppose that, besides this state, there exists a state |0〉
with the energy E0, in which the integrity of the ligand
as a separate molecule can be broken. In particular, in
this state, the ligand can decay into components owing
to a catalytic process or enter into a structurally trans-
formed state of the desensitized receptor as a subunit.
In this case, the energy difference between the states
of the ligand bound with the center and the degraded
one will always be much higher than the thermal energy
E1 − E0 � kBT , where kB is the Boltzmann constant.

In contrast to the receptor case where, as a simplifi-
cation, only one contact of the receptor with the ligand
can be taken into consideration (it is the “one-to-one-
particle” receptor model), the number of contacts of a
ligand with molecules in the solution volume is macro-
scopically large. In this case, we must distinguish be-
tween the number ℵV of such contacts with an arbitrary
molecule in the homogeneous (in essence, bulk) phase,
when the specific position of the ligand with respect to
the receptor is uncertain, and the number ℵS of con-
tacts with a selected molecule in the heterogeneous (at
the interface) phase, when the ligand is located in an
immediate proximity of the binding center. As a re-
sult, the total number of possible states |m〉 in the OS

is characterized by the quantity M + 1 = 2 +ℵS +ℵVN
(m = 0, 1, 2, . . . ,M), where N = 1/C is the number of
solvent molecules per one ligand with relative concentra-
tion C.

The following analysis of the OS dynamics aims at
a quantitative description of the amplitude and kinetic
characteristics of the transitions that take place between
miscellaneous states in the OS. Such a dynamics de-
pends on the transition probabilities under the given
initial conditions, the fluctuation parameters of OS, and
the parameters of the relaxation interaction between the
OS and the environment. As the initial state, we select
the OS state, which corresponds to an arbitrary con-
tact between the ligand and an arbitrary molecule in
the bulk phase, provided that the ligand is character-
ized by the equiprobable distribution over those states
and the ergodic approximation for transitions according
to the principle “everyone-with-everyone.”

The consideration routine for such processes is stan-
dard. In the adiabatic approximation, they are repre-
sented as a motion along multidimensional potential-
energy surfaces, which are usually associated with the
ground state in the OS. In simple OSs, in which the
trajectory of motion is definite, this motion can approx-
imately be considered as one-dimensional, and its trajec-
tory can be associated with a reaction coordinate. Such
an approximation turns out justified, e.g., for the rela-
tive length of a chemical bond in two-atom molecules.
However, in the cases where the selected frequency of
transitions between the ground and excited states in the
OS is of the order of or lower than the characteristic
phonon frequency in the environment, the adiabatic ap-
proximation fails [28]. In such cases, the transitions do
not take place as a result of the strong adiabatic inter-
actions, which form the potential surfaces of continuous
motion in the space of energies of the ground and excited
states in the OS, but are invoked exclusively by weaker
non-adiabatic interactions, which couple together dis-
crete (quantum) displacements of nuclei in the OS and
environment molecules. In the bilinear approximation
for those displacements, the non-adiabatic transitions
are, mainly, of one-phonon character [27]. This circum-
stance substantially facilitates their analysis. However,
in order that the consideration of such transitions in the
second order of perturbation theory with respect to the
magnitude of non-adiabatic interaction be correct, cer-
tain adiabatic corrections to the state energies must be
calculated exactly (without use of perturbation theory).
Such corrections, which are often taken into considera-
tion in the form of stochastic terms [9, 10, 12, 13, 18–
21, 26], can be substantial, as it happens in the classical
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limit for quasiisoenergic transitions [27], the frequencies
of which are low in comparison with the thermal one. In
the quantum-mechanical limit for endoergic transitions,
the frequencies of which are much higher than the ther-
mal one, those corrections can result in an increase of
transition probabilities [18].

Bearing in mind the above consideration, let the en-
ergy Em(t) of the OS state |m〉 be given in the gen-
eral form, Em(t) = Em + ΔEm(t), where ΔEm(t) is a
stochastic increment of the stationary value Em. The
transitions between OS states take place now against
a background of random shifts ΔEm(t) of the energies
from their corresponding average values Em. Therefore,
for the description of observable physical quantities to be
correct, an averaging over stochastic realizations of this
process has to be made (below, this operation is desig-
nated as 〈〈. . .〉〉). In particular, it is necessary to find
the averaged populations of states Pm(t) = 〈〈pm(t)〉〉,
where pm(t) = 〈m|ρ0(t)|m〉 are the non-averaged popu-
lations and ρ0(t) the density matrix for the OS, as well as
the averaged probabilities of transitions between states,
Wmm′ . The latter are considered in the next section.

Let us define the Hamiltonian of the whole system
(WS),

H(t) = H0(t) + V +HT (1)

as a sum of the Hamiltonian for the OS,

H0(t) =
∑
m

Em(t)|m〉〈m|, (2)

the Hamiltonian of the environment,

HT =
∑
λ

~ωλ(b†λbλ + 1/2) (3)

(~ is Planck’s constant), and the operator of a bilinear
interaction between the OS and the environment,

V =
∑
mm′

(1− δmm′)
∑
λ

χλmm′(b†λ + bλ)|m〉〈m′|, (4)

where b†λ and bλ are the operators of creation and annihi-
lation, respectively, of a normal vibration with frequency
ωλ in the environment. Owing to such a non-adiabatic
coupling between the OS and the environment, which
is characterized by the parameters χλmm′ in Eq. (4), the
processes of phonon creation and annihilation in the en-
vironment accompany the transitions between the OS
states, with the energy conservation law for the WS be-
ing preserved.

Let us write down the stochastic Liouville equation for
the density matrix ρ(t) of the WS in the form

ρ̇(t) = − i
~
[H(t), ρ(t)]. (5)

The trace of the operator ρ(t) over the environment
states, ρ0(t) = TrT ρ(t), composes a non-equilibrium
density matrix for the OS, the evolution of which is as-
sumed to be the slowest in the WS and is characterized
by the times of relaxation transitions τtr. Therefore,
since the establishment times of a vibrational equilib-
rium in the environment are much shorter, τvib � τtr,
the density matrix for the WS can be factorized: ρ(t) =
ρ0(t)ρT , where ρT = e−HT /kBT /TrT e−HT /kBT is the
equilibrium density matrix for the environment. In ad-
dition, the coarsened equation for ρ0(t) = ρd(t)+ρnd(t),
obtained owing to the action of the diagonal, Td, and
non-diagonal, Tnd, projective operators, becomes closely
related to the diagonal part of the OS density matrix
ρd(t) =

∑
m〈m|ρ0(t)|m〉|m〉 〈m| = Tdρ0(t), (ρnd(t) =

Tndρ0(t)). Applying the Nakajima–Zwanzig method
[29, 30] to the stochastic equation (5) [27], we obtain
the coarsened master equation for ρd(t),

ρ̇d(t) = − 1
~2

t∫
0

dτTd[V,U(τ)[V, ρd(t− τ)]U†(τ)], (6)

where U(τ) = D̂ exp{− i
~
∫ τ
0
dt′[H0(t′) + HT ]} is the

stochastic operator of evolution, and D̂ is the Dyson
operator of chronological ordering. Equation (6) demon-
strates that, in the second order of perturbation theory
in the magnitude of interaction between the OS and the
environment (4), the non-Markovian evolution of OS,
coarsened over discretization times Δt > τvib, is gov-
erned by the evolution of only the diagonal part of the
OS density matrix and the diagonal stochastic fluctu-
ations in the non-perturbed OS (2), which take place
against the background of equilibrium vibrational pro-
cesses in the environment (3).

3. Kinetic Equations and Averaged Transition
Probabilities

Knowing the specific form of a Hamiltonian for the WS
(see Eqs. (1)–(4)) allows one to use Eq. (6) to obtain
a closed system of non-Markovian kinetic equations for
non-averaged state populations in the OS,

ṗm(t) = − 2
~2

Re
∑
m′

t∫
0

dτ [Qmm′(τ)pm(t− τ)−
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−Qm′m(τ)pm′(t− τ)]. (7)

Here, Qmm′(τ) =
∑
λ |χλmm′ |2fmm′(τ)Rλ(τ)eiΩmm′τ =

Q∗m′m(τ) are the time-dependent transition coefficients,
fmm′(τ) = fm′m(−τ) = f∗mm′(−τ) = ei

∫ τ
0 ΔΩmm′ (t′)dt′

are the stochastic functionals of relative random fre-
quency shifts ΔΩmm′(t) = [ΔEm(t) − ΔEm′(t)]/~ for
the transition frequencies Ωmm′ ≡ (Em − Em′)/~,
Rλ(τ) = R∗λ(−τ) = n(ωλ)eiωλτ + [1 + n(ωλ)]e−iωλτ

is the one-phonon correlation function, and n(ωλ) =
[e~ωλ/kBT − 1]−1 is the Bose distribution function for
vibrations. The main complexity for the solution of
Eqs. (7) consists in the non-Markovian behavior of their
integrand expressions and the necessity to average the
stochastic functionals in the explicit form. However,
if the positions of energy levels depend on thermody-
namic fluctuations, which correspond, at room temper-
ature, to intermolecular collisions with the frequency
ν ≡ ωT /2π = kBT/2π~ ∼= 6 × 1012 s−1, the aver-
age time intervals between consecutive collision events,
τν = ν−1, are much shorter than the transition times,
τν � τtr. As a consequence, the stochastic averag-
ing of functionals on the right-hand side of expression
(7) can be factorized, provided that the discretization
time Δt > τν : 〈〈fmm′(τ)pm(t − τ)〉〉 = F (τ)Pm(t).
Here, we supposed that the relative frequency fluctua-
tions ΔΩmm′(t) = ΔΩ(t) do not depend on the numbers
of states in the OS,

F (τ) = 〈〈ei
∫ τ
0 ΔΩ(t′)dt′〉〉 = Fmm′(τ) = 〈〈fmm′(τ)〉〉. (8)

We also took into account that the non-Markovian be-
havior does not reveal itself in the second order of per-
turbation theory [27]. Therefore, Pm(t− τ) ≈ Pm(t).

The dependence of the correlation function F (t) on
stochastic frequency shifts (8) is dictated by a specific
model for the stochastic processes under consideration.
However, in the case of the most widespread processes
such as a damped dichotomic process, the Gaussian
Markov process, or the white noise, a simple exponen-
tial Kubo representation F (t) = e−γt, where the mean-
ing of γ-parameter is the fluctuation half-width of the
level, is more adequate. The latter is usually directly
associated with the friction coefficient, which is linearly
proportional, in accordance with the Stokes law, to the
viscosity [12, 13]. It can be shown [26, 27] that the
parameter γ is expressed in terms of the standard en-
ergy deviation ε and the average frequency fluctuation
ν as follows: γ = ε2/(4π2~2ν). Therefore, the time
τγ = γ−1 = (4π2~2ν)/ε2 needed for the correlation func-
tion F (t) = e−t/τγ to change is short enough relative to
the characteristic variation time τtr for Pm(t), τγ � τtr.

This circumstance allows the upper limit of the inte-
gral on the right-hand side of Eq. (7) to be safely ex-
tended to infinity, which is equivalent to the neglect of
the t-dependence in the integral kinetic coefficients for
the discretization times Δt > τγ .

Hence, for the stochastic averaging of Eqs. (7) to be
correct, we must (i) factorize the products of stochas-
tic functionals, (ii) neglect the non-Markovian behav-
ior of the populations and the kinetic coefficients, and
(iii) write down the correlation function (8) in the form
F (t) = e−γt, in which the effective coefficient of viscos-
ity contains information about stochastic fluctuations.
In the framework of this algorithm, the non-Markovian
stochastic equations (8) become simpler, being reduced
to the kinetic equations for the observable populations
Pm(t),

Ṗm(t) = −Pm(t)
∑
m′

Wmm′ +
∑
m′

Pm′(t)Wm′m. (9)

It is important that, in contrast to standard kinetic equa-
tions of the balance type [17], the corresponding transi-
tion probabilities in Eqs. (9),

Wmm′ =
2γ
~2

∑
λ

|χλmm′ |2×

×
[

n(ωλ)
γ2 + (Ωmm′ + ωλ)2

+
n(ωλ) + 1

γ2 + (Ωmm′ − ωλ)2

]
(10)

are averaged over equilibrium vibrations in the envi-
ronment and thermodynamic fluctuations in the OS.
Despite that the characteristic durations of those pro-
cesses are less than the times of discretization of the
observations in the system, τvib ∼ τν ∼ τγ <
Δt � τtr, they are not rejected (not filtered out),
but are consistently taken into consideration in the
form of their averaged characteristics, namely, the oc-
cupation numbers n(ωλ) for vibrations in the envi-
ronment and the viscosity coefficient γ for fluctua-
tions in the OS. As a result, the coarsened description
(Eqs. (9) and (10)) reduces the fast processes to equi-
librium (for vibrations) and stationary (for fluctuations)
ones, as well as traces, on the average, the kinetics of
slower non-equilibrium (irreversible non-stationary) pro-
cesses.

4. Kinetics of the Generalized Three-Phase
Irreversible Process

There are no general relations describing the depen-
dences of dynamic characteristics of some process on
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its kinetic parameters. The application of the approxi-
mate balance kinetic equations (9) with the transition
rate constants presented in form (10) gives a coars-
ened description of transient processes against the back-
ground of the completed equilibrium and stationary
stages. In the framework of such a statement of the
problem, the open systems, whose states are depopu-
lated following the exponential law with given rate con-
stants, are of special interest. An essential aspect of
this problem is the development of simple analytical
models, which would reveal key factors, owing to which
the variation of rate constants at definite kinetic stages
could affect certain dynamic characteristics of the pro-
cess.

As an example of such a model, let us consider a sys-
tem with three states (i = 1, 2, 3) and the initial con-
ditions P3(0) = 1 and P2(0) = P1(0) = 0. If an irre-
versible kinetic stage is available, the system states are
depopulated in the course of time, with their total pop-
ulation falling down exponentially from 1 to 0. This
irreversible stage, which starts, for definiteness, from
the state i = 1, will be characterized by the rate con-
stant k. Our aim is to compare this system with the
general system (Eq. (9)) in the framework of the ki-
netic problem considered in Section 2. For this purpose,
the state i = 1 must simulate a state of point contact
between the bound ligand and the receptor, the state
i = 2 must combine ℵS contact states of the ligand
in the heterogeneous phase, and the state i = 3 must
cover the set of ℵVN ligand states in the homogeneous
(bulk) phase, and the numbers of local contacts of the
ligand can be different in different phases. Therefore,
we may assume that W21 = W31 = . . . = Wℵ+11 ≡ A,
W12 = W13 = . . . = W1ℵ+1 ≡ B, W2ℵ+2 = W3ℵ+2 =
. . . = Wℵ+1ℵ+2 = W2ℵ+3 = . . . = Wℵ+1ℵ(N+1)+1 ≡ W ,
and Wℵ+22 = . . . = Wℵ+2ℵ+1 = Wℵ+32 = . . . =
Wℵ(N+1)+1ℵ+1 ≡ W in Eq. (9). It is equivalent to the
assumption that, when the states of every phase are com-
bined into the corresponding cumulative state, the tran-
sition probabilities of all stages are ergodically equiva-
lent. Again, according to the principle of microscopic re-
versibility of the processes, we should consider a certain
state i = 0 such that the probability of the transition
from it into the state i = 1 is much lower than those
of other transitions, W01 � W,W,A,B,W10. If the en-
ergy of this state is decreased infinitely, E0 → −∞, it is
equivalent to that the irreversible kinetic stage with the
transition probability k ≡ W10 is included into the dy-
namics of the system. In what follows, the system with
three states is considered as a basic one. This system
represents a simplified case, ℵV = ℵS = N = 1, of the

Fig. 1. Block diagram for the irreversible kinetic model of transi-
tions between three states

general case with M + 1 states (9), for which ℵV,S ≥ 1
and N ≥ 1. To distinguish among those cases, let the
small letters a, b, w, and w designate the probabilities of
transitions in the basic system. Having obtained an ex-
act solution for the three-state case, we compare each of
those probabilities with the probabilities in the general
case A, B, W , and W . Note at once that B = b, be-
cause those probabilities do not depend on the numbers
of contact states in different phases.

The diagram of the basic model for transitions be-
tween three states with an irreversible stage is depicted
in Fig. 1. The rigorous solution of the kinetic problem
for the state populations in this model is determined
from a system of three differential equations, which is re-
duced to a system of nine algebraic equations with nine
unknown variables. The exact solution of this problem
looks like

P3(t) = ww

3∑
i=1

(λi − b− k)e−λit×

×

(λi − w)
3∏

j=1;j 6=i

(λi − λj)

−1

;

P2(t) = w

3∑
i=1

(b+ k − λi)e−λit
 3∏
j=1;j 6=i

(λi − λj)

−1

;

P1(t) = wa

3∑
i=1

e−λit

 3∏
j=1;j 6=i

(λi − λj)

−1

, (11)

where λ1, λ2, and λ3 are the real-valued positive roots
(for definiteness, let they be arranged in the growing
order) of the characteristic equation

λ3 − λ2(w + w + a+ b+ k)+

+λ[(w + w)(b+ k) + a(w + k)]− wak = 0. (12)

Solution (11), (12) is mathematically rigorous, because
it excludes, in fact, the exact coincidence of two or three
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roots (this event is considered to be infinitely rare or
almost negligible). The kinetic description of popula-
tions Pi(t) (11) is made within the whole admissible
scale of relaxation times λ−1

3 < λ−1
2 < λ−1

1 , provided
that the paired differences between the roots, which are
in the denominators of exponential components, never
vanish. In this case, it is necessary to know the explicit
dependences of the root values on the parameters of the
characteristic equation (12). The exact Cardano formula
provides no visualization for the real-valued roots of the
cubic equation. More ostensive is the Vieta algorithm,
in which separate scales for times are introduced explic-
itly. In the framework of this algorithm, Eq. (12) can be
identically transformed to the form

λ3 − λ2τ−1
eq + λ(τeqτst)−1 − (τeqτstτeff)−1 = 0, (13)

where the kinetic processes are grouped according to the
time values, which are most typical of them. Here, the
fastest processes are defined by the time of the establish-
ment of a local equilibrium in the system,

τeq = (λ1 + λ2 + λ3)−1 = (w + w + a+ b+ k)−1. (14)

The processes that correspond to an intermediate equi-
librium between states of the system are characterized
by the stationary time

τst = (λ1 + λ2 + λ3)(λ1λ2 + λ1λ3 + λ2λ3)−1 =

= (w + w + a+ b+ k)×

×[(w + w)(b+ k) + a(w + k)]−1, (15)

whereas the slowest processes that confine the ultimate
depopulation of states of the system correspond to the
effective time

τeff = 1/λ1 + 1/λ2 + 1/λ3 =
ã(1 + k/w) + b+ k

kã
, (16)

where

ã ≡ a

1 + w/w
(17)

is a predicted rate constant for filling the final state.
Hence, instead of engaging the times λ−1

3 < λ−1
2 < λ−1

1 ,
which must be determined from Eq. (12) numerically,
provided that that the relations between them are ar-
bitrary, the kinetic description of system (11) can be
carried out analytically (Eqs. (13)–(16)) in the resolved-
time scale τeq � τst � τeff . This circumstance can

make the results obtained more understandable from the
physical viewpoint, in particular, while analyzing the dy-
namic characteristics of the system.

Equations (11)–(13), taking Eqs. (14)–(17) into ac-
count, allow exact expressions to be obtained for the
magnitudes of separate integral yields, θi =

∫∞
0
dtPi(t),

and for the total integral yield, θeff =
∫∞
0
dtP (t), of

states of the system, which are, by definition, the inte-
grals of the separate populations Pi(t) and the total pop-
ulation P (t) =

∑3
i=1 Pi(t), respectively, over the whole

time interval. The magnitudes of those yields, which
have the meaning of a dynamic duration for the depop-
ulation of corresponding states, are given by the expres-
sions

θ1 =
1
k

; θ2 =
K

k
; θ3 =

1 + θ2w

w
; θeff = τeff , (18)

where K = (b + k)/a is the equilibrium constant for
the final state. Equations (18) demonstrate that the dy-
namic duration θ1 of the depopulation of the final state
is determined only by the time 1/k, which is given for
the kinetic channel of irreversible decay in the system.
The quantity θ1 and the duration θ2 of the intermediate
state depopulation satisfy the general equality

θ1K

θ2
= 1, (19)

which does not depend on the input stage. On the other
hand, the dynamic duration θeff of the ultimate (effec-
tive) depopulation of states coincides with the effective
(slowest) time τeff (Eqs. (13) and (16)) of the kinetic evo-
lution of the system. In contrast to the quantities θ1 and
θ2, the quantity τeff = θeff substantially depends on the
rate constants at the input stage (Eqs. (14) and (15)).
This dependence manifests itself both directly, by means
of the initial state depopulation time 1/w < θ3 (18), and
indirectly, by means of the equilibrium constant w/w for
the bulk stage with respect to the transient state. The
latter influences the population rate a of the final state
by reducing it to a certain predicted value ã (17).

In what follows, we must definitely determine how the
quantities a, w, and w can depend on the number of
ligand contact positions in the bulk and heterogeneous
phases. Since the corresponding numbers are directly
related to the bulk concentration of a ligand and the en-
tropy factors, we can use this way to find the specific re-
lations between the parameters of the three-state model
(Fig. 1) and the corresponding quantities A, W , and W
for the general system (Eq. (9)). For this purpose, how-
ever, we must consider a model, which describes the dy-
namics of a ligand in the bulk and heterogeneous phases.
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Let the parameter W = D/Δl2 determine the proba-
bility for the ligand to make a diffusion jump over the
distance Δl, which corresponds to the distance between
its neighbor contact positions, in a solution with the dif-
fusion coefficient D. The same probability is inherent
to the jump of the ligand from an arbitrary state in the
heterogeneous phase into an arbitrary state in the ho-
mogeneous phase. If the initial state of a ligand in the
solution is random, we may put its contact positions into
the correspondence with the centers in some regular or
disordered lattice. Then, according to the graph the-
ory theorem [31], the most probable number of jumps
needed for the ligand to cross the distance between ar-
bitrary centers equals M1/d, where M is the number of
lattice centers per one ligand, and d is the lattice dimen-
sion. If the lattice centers are equivalent and connected
with one another in such a way that the probabilities
of transitions between them are identical, the topology
of such a lattice is ergodic, its dimension coincides with
that of a surface (d = 2), and the ligand states in the
lattice become degenerate. In the equilibrium case, we
may change from the identical states of the ligand in the
solution bulk to a single summary ℵVN -fold degenerate
state i = 3 [32, 33], as well as from the ligand states in
the heterogeneous phase to an ℵS-fold degenerate state
i = 2. This causes a reduction of the probability for the
effective jump from the summary state i = 3 into the
summary state i = 2 with respect to the probability of a
backward jump by a factor of RN , with the correspond-
ing heterogeneity factor R ≡ ℵV /ℵS :

w =
W

ℵS
=

W

ℵVN
=
wC

R
. (20)

In the non-equilibrium case, along with ℵVN bulk lig-
and states, it is also necessary to consider the average
distance l crossed by the ligand, when wandering over
the bulk phase until it contacts with the heterogeneous
phase. Under the ergodic initial conditions, this distance
is equal to l = Δl

√
ℵVN . Therefore, we obtain the

probability w = D/l
2

= w/RN for the effective jump
over this distance, which coincides with expression (20).
Analogously, for the predicted constant ã (see Eq. (17)),
we have

ã =
A

ℵVN + ℵS
=

aC

C + R
, (21)

where a = Ae−σ, and σ ≡ lnℵS is the entropy factor (in
natural units), which reveals the advantage of a joint lig-
and position over a local one in the heterogeneous phase.

In general, the kinetic scheme for transitions in the
three-state system with an irreversible stage, which was

considered in this section, appended by the regularities
found using formulas (20) and (21) for the rate constants
at its input stages, is a basic model for the generalized
three-phase irreversible process. This process is com-
pletely adequate to the problem, which was formulated
in Section 2 for the description of the non-stationary
dynamics of relaxation transitions in open quantum-
mechanical systems. In this case, we must adopt that, in
the framework of the kinetic scheme depicted in Fig. 1,
the rate constants contain averaged internal and external
parameters, the variation of which affects the dynamic
characteristics of the system.

5. Simplified Kinetics of Irreversible Processes

While analyzing the experimental data, besides the ex-
pressions for populations (11) in the form of a sum of
three exponential components, it is also necessary to
have the simplified expressions, which would contain
sums of two such components or even be represented as
a single component. However, for this purpose, it has to
be indicated in Eqs. (13)–(16) which of the three kinetic
stages – the bulk, heterogeneous, or decay one – plays
the dominating role in the establishment of a local equi-
librium in the system. From the general physical rea-
sons, we may consider that the heterogeneous processes
with the relaxation times (a+b)−1 run much more slowly
than the bulk ones, which are characterized by the times
(w + w)−1,

a+ b� w + w. (22)

Moreover, in order that the population magnitudes for
the transient states be not very low, we may suppose that
the characteristic depopulation rate of the final state at
the stage of irreversible decay is much slower than the
corresponding population rate w of the transient state
at the input stage,

k � w. (23)

Therefore, below, we may adopt that a local equilibrium
in the system is reached owing to superfast processes
running just in the bulk phase.

Conditions (22) and (23) determine the quasistation-
ary approximation a+b+k � w+w for the transient and
final stages with respect to the equilibrium input stage.
It is equivalent to the requirement that the semistrong
inequalities τeq � τst < τeff and λ3 � λ2 > λ1 in
Eqs. (13) and (12) be satisfied, respectively. Therefore,
the exact three-exponential expressions (11) are trans-
formed into the simplified forms with two exponents
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each,

P2(t) = (λ2 − λ1)−1[(λ2 − ã)e−λ1t + (ã− λ1)e−λ2t];

P1(t) = ã(λ2 − λ1)−1[e−λ1t − e−λ2t] , (24)

where

λ1,2 =
1
2
[(ã+ b+ k)∓

√
(ã+ b+ k)2 − 4ãk]. (25)

In this case, the kinetic description of the system is car-
ried out on the scale of equilibrium discretization times,
Δt > τeq (14). Those times, by their essence, are com-
pletely similar to the discretization times for the vibra-
tional, τvib, and fluctuational, τν ∼ τγ , equilibria intro-
duced in Sections 2 and 3, although the former consider-
ably exceed the latter by magnitude: Δt > τeq � τvib ∼
τν ∼ τγ .

As we see, if conditions (22) and (23) are satisfied,
the fast kinetic component P3(t) ∼ e−λ3t in Eq. (11),
which characterizes the bulk stage, disappears from ex-
pressions (24). However, the averaged information about
it remains to be included into the predicted rate ã
(17). Now, if we suppose that the stronger inequali-
ties, τeq � τst � τeff and λ3 � λ2 � λ1, are satisfied
in Eqs. (13) and (12), respectively, the heterogeneous
component P2(t) ∼ e−λ2t also disappears from the con-
sideration. In this case, the description of the system
becomes coarsened to a single component

P1(t) = Pst
1 e
−t/τeff , (26)

where Pst
1 = ã/(ã + b + k) is the magnitude of the final

state population P1(t), which is established in the sta-
tionary regime. However, such a coarsened description
is no more complete. Really, unlike the total population
P1(t)+P2(t) in Eq. (24), the population P1(t) in Eq. (26)
falls down to zero not from unity at t = 0, but from a
lower value Pst

1 < 1. According to Eqs. (18), (21), and
(25), this quantity depends on the bulk concentration C
of a ligand, following the modified Langmuir isotherm

Pst
1 = C[C(1 +K) + RK]−1. (27)

This enables the magnitude of Pst
1 to be varied within a

wide interval ranging from zero at C = 0 to (1+K)−1 <
1 at C → ∞. The same quantity, in effect, governs the
corresponding times of stationary population and effec-
tive depopulation of states (Eqs. (23)–(26), (15), and
(16)),

τst = Pst
1 (ã)−1 i τeff = (Pst

1 k)
−1. (28)

Hence, formula (26) is not practically valid at t = 0,
being true only at the stationary discretization times
Δt > τst � τeq (Eqs. (14) and(15)). Only after those
times have passed, the one-exponential description (26)
for the behavior of the system, which is characterized
by the effective time τeff � τst (see Eqs. (16) and (28)),
becomes possible.

Note that, at τst � τeff or, equivalently, ãk < ã(b +
k)� (ã+ b+ k)2 (see Eqs. (16) and (28)), the following
inequality is satisfied:

D1 = Pst
1 (1− Pst

1 )� 1. (29)

Here, D1 means the distribution dispersion for the ran-
dom amplitude of a stationary binary process with the
probability Pst

1 , and it is associated with the uncer-
tainty in the determination of some values of magni-
tudes. Therefore, inequality (29) actually means that,
for the magnitudes of transient state populations to ob-
tain maximal definiteness (or minimal uncertainty), the
process should run as close to the stationary one as pos-
sible. According to Eq. (27), this requirement constrains
the applicability of the Briggs–Haldane solution for the
Michaelis–Menten problem in the stationary mode [34],
by reducing it only to the case of a very high concentra-
tion, C � K, and/or a considerable affinity of the ligand
to the receptor, K−1 � 1. In the cases of moderate C
and K where inequalities (23) and (29) are not satis-
fied, more exact equations (11)–(18) or their simplified
analogues (24) and (25) are to be used.

6. Influence of Parameters of the System on the
Dynamics of Transient States

Knowing the analytical dependences of state populations
on the rates of kinetic stages (see Eqs. (11)–(13)), as well
as the dependences of the latter on various structural
(relaxation, fluctuation, entropy) factors (see Eqs. (10),
(20), and (21)), it is possible to analyze the influence
of macroscopic parameters (concentration, viscosity, and
temperature) on the dynamics of states of the system.
Since this influence is different for different phases, we
have to consider those parameters separately. Note that,
under ergodic conditions for the diagram in Fig. 1, the
ligand concentration C, which affects only the input pop-
ulation rate w for the transient state (20), can influence
other parameters of the system only by means of this
quantity (see Eqs. (14)–(28)). Therefore, by fixing the
rate w, which is reciprocal to the rate w, at a certain
value satisfying the condition w/w = C/R � 1, we
can study the concentration dependence in Eqs. (11) in
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terms of the relative change of the final state population
magnitude P1 = max{P1(0 ≤ t < ∞)}, i.e. the ratio
P1/(1 − P1), as a function of the quantity ã = aC/R
(see Eqs. (20) and (21)). On the log-log scale, the slope
of the plot of this function coincides with the Hill coeffi-
cient nH describing the cooperativity of the system [35],
provided that the system can freely carry out a control-
lable variation of the magnitudes of its dynamic char-
acteristics, when the concentration changes. If nH = 1,
the system is considered to be non-cooperative; the value
nH > 1 means a positive cooperativity; and nH < 1 tes-
tifies to a “negative” cooperativity. In Fig. 2, an example
of the cooperative effect owing to a certain variation of
the kinetic parameters in Eq. (11) is shown. In the sta-
tionary limit (Eq. (29)), the concentration dependence
of the final state population magnitude P1(C) must co-
incide with that for the stationary quantity Pst

1 (C) and,
consequently, must be described by a non-cooperative
(Langmuir) concentration dependence (27). As Fig. 2
demonstrates, this case can be realized only in a very
narrow range of parameters, when the rate constant for
the irreversible decay of the final state is negligibly small.
Practically for all other values of the parameters, the
system reveals a negative cooperativity, with the low-
est value among nH < 1 being achieved in the limiting
case of non-stationary mode, in which two of three roots
of the characteristic equation (12) become degenerate,
λ1 = λ2 � λ3.

As follows from Eq. (10), the rates of relaxation tran-
sitions must depend explicitly on the fluctuation half-
width γ of the levels. However, this dependence mani-
fests itself mainly for one-phonon quasiisoenergic transi-
tions, when the frequencies of transitions in the system
coincide with the frequencies of vibrations in the envi-
ronment, being at the same time lower in comparison
with the thermal frequency, |Ωmm′ | = ωλ � ωT . This
criterion is satisfied by transitions occurring in the homo-
geneous phase, where the parameter γ corresponds to the
friction coefficient, which is proportional to the viscosity.
Within the single-mode representation for the spectral
function, J = (2π/~2)

∑
λ

∑
mm′ ω

−1
λ |χλmm′ |2δ(|Ωmm′ | −

ωλ), Eqs. (10) and (21) yield

w =
w

RN
=

D

Δl2M
= 2J

kBT

~γ
. (30)

Here, the dependence on the viscosity γ reveals itself
by means of the diffusion coefficient D, which obeys
the Einstein relation D = 2kBT/γ. Besides Eq. (30),
we have J = ~/Δl2M . In other words, the spectral
function J corresponds to the quantum of least action
~, which is related to the dispersion Δl2 of elementary

Fig. 2. Dependence of the Hill coefficient nH on the rate constants
b and k (see the diagram in Fig. 1), provided that w/w = ã/a =

C/R� 1

shifts stimulated by this action, and to the degree of
state degeneracy M of the system. This means that
the quantity J depends only on the structure factors of
the relaxation interaction and characteristic vibrations
in the system [27], whereas the coefficient D contains in-
formation about macroscopic parameters of the system,
such as the viscosity and the temperature.

From the exact expressions (11)–(16), we see that the
viscosity effects (30) may, most probably, manifest them-
selves in strongly degenerate systems with M � 1 (low
C’s), owing to the term ∼ k/w, which is included into
the time τeff (16) of effective state depopulation in the
three-phase model (Fig. 1). However, the increase of
γ gives rise to only a weak growth of τeff against an
insignificant decrease of the magnitude P1 of the final
state (11), accompanied by an increase of the integral
yields of the summary, θeff , and initial, θ3, states (18).
In addition, at low C’s, the magnitudes of the dynamic
characteristics of the system are very insignificant, the
corresponding values being of the same order as their
errors. Therefore, the viscosity effects, most likely, do
not authentically manifest themselves at the stages of
ultimate depopulation of states of the system.

At last, let us dwell on the temperature dependences,
which can be observed during transient processes. It is
a general problem, because almost all transition rates
must be more or less dependent on the temperature in
that or another way. In some cases, the temperature
dependences can be completely analyzed at the quanti-
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tative level and, therefore, systematized [26, 27, 36–39].
However, such dependences remain undetermined for the
overwhelming majority of transient processes. First of
all, this concerns the kinetic and dynamic parameters,
which enter into the sums of exponents in the expres-
sions for the populations of transient states (11). If the
external conditions (in particular, the temperature) are
varied, the evaluation of those parameters is an inverse
problem, which is ill-posed from the mathematical view-
point [40–42] and can be inexact in principle. To a less
extent, this concerns the integral yields of states (18).
Those quantities are directly related to the dynamic
characteristics for separate kinetic stages of the system.
Therefore, they allow the regressive analysis to be car-
ried out in terms of a well-formulated direct problem.
For instance, the integral yield θ1 of the final state unam-
biguously characterizes the duration of its depopulation,
1/k, which sometimes turns out absolutely independent
of the temperature [26,39]. On the contrary, the integral
yield θ2 of the transient state depends on the equilibrium
constant b/a for the heterogeneous stage. This quantity
substantially depends on the temperature, the dominat-
ing contribution being played by the rate b of endother-
mic dissociation of the ligand from the receptor. This
process is characterized by the activation energy, which
is the highest for the system and which is estimated, in
accordance with Eq. (10), as Ea = ~Ω21 � kBT . We
note that it is just the energy that is measured directly
in experiments [39]. Therefore, knowing the quantity
Ea, putting b = B = A exp(−Ea/kBT ) in accordance
with Eq. (9) and Fig. 1, and taking the established de-
pendence (21) into account, we find the following upper
limit for the entropy factor:

σ ≤ ln
b

a
+

Ea

kBT
. (31)

In work [39], it was shown that, for P2X3 receptors,
which are activated by adenosine triphosphate ligands,
the typical values of equilibrium constant and activation
energy are, respectively, b/a = 10−11 and Ea = 1.7 eV ≈
70kBT . Taking into account that ln 10 ≈ 7/3 and us-
ing Eq. (31), we directly obtain the estimate σ ≤ 44,
which can be applied to the entropy factors for organic
molecules in nanovolumes.

A temperature behavior similar to that of θ2 is also
demonstrated by the equilibrium constant K = θ2k (18);
in particular, it enters into expression (27) for the am-
plitude Pst

1 . However, since the temperature dependence
of K manifests itself only at insignificant concentrations
C � K, i.e., when Pst

1 is small, this analysis is little
informative. To make a more reliable estimation for K,

both the temperature and concentration variations are to
be applied. In so doing, it is possible to experimentally
verify the validity of the predicted theoretical equality
(19), which is insensitive to such a variation.

To summarize, the process of irreversible binding be-
tween the ligand and the receptor in the solution depends
on the ligand concentration, as well as on the viscosity
and the temperature of the solution. The concentra-
tion dependence, which arises owing to the degeneracy
of states in the open system, extends over all kinetic
stages of the process. This dependence, in its stationary-
state limit, coincides with the Langmuir non-cooperative
isotherm (27). However, in the non-stationary case, it
becomes negatively cooperative in whole (Fig. 2). On the
contrary, the viscosity dependence reflects bulk phase
fluctuations in the system and has almost nothing in
common with its heterogeneous and solid phases. There-
fore, at the transient and final stages of the process, this
dependence does not manifest itself, as a rule. At last,
the temperature dependence is completely governed by
the occupation numbers for vibrations that correspond
to the characteristic frequencies of transitions (10) be-
tween states of the system. This dependence mainly re-
flects the activation processes, which occur at the phase
interface. At low temperatures, the rate of endoergic
heterogeneous transitions becomes exponentially small.
It may probably result in the degeneration of the roots of
the characteristic equation (12), which complicates the
separation of the kinetic processes by their characteristic
times (13)–(16). Therefore, at low temperatures, an ir-
reversible system, which becomes non-stationary, starts
to demonstrate a negative cooperativity, which brings
about a reduction in the controllability degree of its am-
plitude characteristics (29).
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ДИНАМIКА ПЕРЕХIДНИХ ПРОЦЕСIВ У НЕЗВОРОТНИХ
КIНЕТИЧНИХ МОДЕЛЯХ

В.I. Тесленко, О.Л. Капiтанчук

Р е з ю м е

Для опису процесу незворотного зв’язування молекул лiганду i
рецептора у розчинi побудовано мiкроскопiчну модель вiдкри-
тої системи, що взаємодiє iз зовнiшнiм середовищем та зазнає
квазiкласичних флуктуацiй своєї енергiї. Отримано аналiти-
чнi вирази для ймовiрностей переходiв мiж нестацiонарними
станами системи, що усереднюються як за рiвноважними ко-
ливаннями у середовищi, так i за стацiонарними станами у си-
стемi. Для незворотної моделi iз трьома кiнетичними стадiями
знайдено явнi залежностi констант швидкостей переходiв вiд
концентрацiї лiганду, в’язкостi розчину та температури.
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