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The de Broglie–Bohm theory allows us to have got a satisfactory
geometrodynamic interpretation of quantum mechanics. The fun-
damental element, which creates a geometrodynamic picture of
the quantum world in the non-relativistic domain, a relativistic
curved space-time background, and the quantum gravity domain,
is the quantum potential. It is shown that, in the non-relativistic
domain, the geometrodynamic nature of the quantum potential
follows from the fact that it is an information potential containing
a space-like active information on the environment; the geometric
properties of the space expressed by the quantum potential deter-
mine non-local correlations between subatomic particles. More-
over, in the de Broglie–Bohm theory in a curved space-time, it
is shown that the quantum, as well as the gravitational, effects of
matter have geometric nature and are highly related: the quantum
potential can be interpreted as the conformal degree of freedom of
the space-time metric, and its presence is equivalent to the curved
space-time. It is shown on the basis of some recent research that,
in quantum gravity, we have a generalized geometric unification of
gravitational and quantum effects of matter; Bohm’s interpreta-
tion shows that the form of a quantum potential and its relation
to the conformal degree of freedom of the space-time metric can
be derived from the equations of motion.

1. Introduction

Understanding the quantum theory in terms of a ge-
ometrodynamic interpretation is certainly an interesting
theme in the physical research. Many attempts toward
a geometric picture have been made recently, which base
themselves on the standard version of quantum mechan-
ics. In this regard, we can mention, for example, that
J.T. Wheeler suggested a new quantum theory charac-
terized by a purely geometric picture on the basis of the
Weyl picture [1]. In this approach, the observables are
introduced as zero Weyl weight quantities. Moreover,

any weightful field has a Weyl conjugate such as the
complex conjugate of a state vector in quantum mechan-
ics. By these dual fields, the probability can be defined.
These are the elements of a consistent quantum theory,
which is equivalent to the standard quantum mechanics.
Moreover, the quantum measurement and the related
uncertainty emerge from the Weyl geometry naturally.
One more approach to geometrize quantum mechanics
was suggested by W.R. Wood and G. Papini [2]. In this
approach, a modified Weyl–Dirac theory is used to join
the particle aspects of matter and the Weyl symmetry
breaking; the result is just a geometrization of quantum
mechanics. Moreover, B.G. Sidharth developed a ge-
ometric interpretation of quantum mechanics from the
point of view of a non-commutative non-integrable ge-
ometry [3].

According to the author, all the attempts toward a
geometric picture of quantum theory, which base them-
selves on the standard interpretation, cannot be consid-
ered completely satisfactory. In fact, it is important to
underline that the standard version of quantum mechan-
ics presents several conceptual problems concerning the
interpretation of atomic and subatomic processes and
the measurement processes, namely the objectivation of
macroscopic properties. As is known, we must ascribe a
special role to the observer in the description of atomic
processes, according to the standard version of quantum
theory, and it is not possible to provide a causal expla-
nation of atomic phenomena. Since the atomic processes
cannot be explained theoretically as events happening in
space-time, namely the dogma of formulation of physics
in terms of a motion in space-time (motion dogma) must
be abandoned, the standard version of quantum theory
cannot be considered an intrinsic geometrodynamic pic-
ture of microphysics. In virtue of its peculiar features,
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the standard version cannot be considered satisfactory if
we want to develop a coherent geometrodynamic picture
of the quantum world.

Today, we have got, however, an important consistent
version of quantum mechanics, which is able to explain
the quantum behavior of matter remaining faithful to the
principle of causality and the motion dogma: it is the de
Broglie–Bohm pilot wave theory. The de Broglie–Bohm
version of quantum mechanics reproduces all the empir-
ical results of quantum theory and, at the same time,
has the merit to describe atomic and subatomic pro-
cesses without ascribing a crucial role to the observer
and to recover some causality also in the microscopic
world [4–9]. Therefore, this theory seems better than
the standard one in order to give a geometrodynamic
picture of the quantum world. In this article, we want
to show that Bohm’s theory can be considered intrin-
sically as a satisfactory geometrodynamic interpretation
of quantum mechanics in virtue of its most important el-
ement, the quantum potential: it is possible to provide a
geometrodynamic interpretation to the key point of the
de Broglie–Bohm theory, namely the quantum potential.

2. Non-relativistic Bohmian Mechanics

The Bohmian mechanics, known also as the de Broglie–
Bohm pilot wave theory, is the most significant and
satisfactory theory with hidden variables, which is pre-
dictably equivalent to quantum mechanics and able to
give a causal completion to quantum mechanics. It can
be inserted inside that important research stream di-
rected to the complete standard quantum theory in a
deterministic sense.

This theory is based on two fundamental starting hy-
potheses. Before all, we mean the idea of that quantum
mechanics is not complete and must be completed by
adding supplementary parameters to the formalism, the
so-called hidden variables. The hidden variables of the
model are the positions of all the particles constituting
the physical system under study. The first starting hy-
pothesis of Bohm’s pilot wave theory is just this: the
physical system is prepared in such a way that, at the
initial time t = 0, it is associated with a specific wave
function ψ (x, 0) , which is assumed to be known per-
fectly, and, moreover, it is at a point x (among those
compatible with the wave function under examination)
that instead we ignore (it is in this sense that the posi-
tion is a hidden variable of this theory).

The second starting hypothesis of Bohm’s pilot wave
theory is de Broglie’s objective wave-corpuscle dualism.
On the ground of this idea proposed by de Broglie in

1927 at Solvay Conference, each fundamental particle
of physics is assumed to be constituted by a corpuscle
and by a wave which surrounds it and accompanies it
during its motion. As regards the non-relativistic prob-
lem, de Broglie suggested that the wave function of such
an object was associated with a set of identical parti-
cles which have different positions and are distributed in
space according to the usual quantum formula, given by
|ψ (x)|2. But he recognized a dual role for the wave func-
tion: on one hand, it determines the probable position
of the particle (just like in the standard interpretation);
on the other hand, it influences the position by exert-
ing a force on the orbit. According to de Broglie, the
wave function would act like a pilot wave, which guides
the particles in regions where such wave function is more
intense [10].

Bohm’s version of quantum mechanics is practically
the de Broglie pilot-wave theory carried to its logical con-
clusion. In his classic works [4, 5, 11], Bohm succeeded
in developing a mathematical treatment of de Broglie’s
objective wave-particle dualism. He showed that if we
interpret each individual physical system as composed
by a corpuscle and a wave guiding it, the movement of
the corpuscle under the guide of the wave happens in
agreement with a law of motion which assumes the fol-
lowing form

∂S

∂t
+
|∇S|2

2m
− ~2

2m
∇2R

R
+ V = 0 (1)

(where R is the amplitude and S is the phase of the wave
function, ~ is Planck’s reduced constant, m is the mass
of the particle, and V is the classical potential). This
equation is equal to the classical Hamilton–Jacobi equa-
tion except for the appearance of the additional term

Q = − ~2

2m
∇2R

R
(2)

having the dimension of energy and containing the
Planck constant and, therefore, appropriately defined
quantum potential. The equation of motion of the par-
ticle can be expressed also in the form

m
d2x
dt2

= −∇(V +Q), (3)

where x = x (t) is the trajectory of the particle asso-
ciated with its wave function. Equation (3) is equal
to Newton’s second law of classical mechanics, always
with the additional term Q of the quantum potential.
The movement of an elementary particle, according to
Bohm’s pilot wave theory, is thus tied to a total force
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which is given by the sum of two terms: a classical force
(derived from the classical potential) and a quantum
force (derived just from the quantum potential) [6, 8].

To summarize, we can say that, according to the de
Broglie–Bohm theory, each subatomic particle is com-
pletely described by its wave function (which evolves ac-
cording to the usual Schrödinger equation

i~
∂ψ

∂t
= Hψ (4)

and its configuration and follows a precise trajectory
x = x (t) in space-time that is originated by the ac-
tion of a classical potential and a quantum potential
(and that evolves according to Eq. (1) or to the equiv-
alent equation (3)). An ensemble of particles (distin-
guished by their initial locations) is associated with each
wave. In analogy with classical statistical mechanics, the
quantity ρ (x, t) ≡ R2 (x, t) = |ψ (x, t)|2 describes the
space-temporal distribution of an ensemble of particles
(namely the density of particles in the element of volume
d3x around a point x at time t) associated with the same
wave function. Just like in classical statistical mechan-
ics, the density of particles in the Bohmian mechanics
satisfies a continuity equation, which has the form

−∂ρ
∂t

= ∇
(
ρ
∇S
m

)
. (5)

If we consider an ensemble of particles distributed ini-
tially according to a given R2

0, these determine a quan-
tum potential in the surrounding space. This potential is
subjected, for non-stationary problems, to the temporal
evolution, as a consequence of the motion of the packet of
particles; the quantum potential retroacts on each par-
ticle, by determining its trajectory, with the classical
potential.

It is important to remark that the equations of Bohm’s
approach to quantum mechanics are nonlinear in nature,
via the dependence of the quantum potential on the wave
function given by Eq. (2). In other words, different ini-
tial conditions yield different quantum potentials. More-
over, the total effective potential (Q+V ) always acts as
to preserve the properties of single-valuedness and non-
nodalness of the trajectories, which follow directly from
the properties of the phase. At each point in space and at
each instant of time, only one trajectory passes through
that point, for each time t. The Bohmian trajectories
of the particles (derived from the combined action of
the classical and quantum potentials) cannot cross or
even touch. But there is an important exception to this
rule: particles cannot pass at all through nodal regions

(namely where ψ (x, t) = 0), for there ∇S (which rep-
resents the momentum of a particle) is undefined and
does not define the tangent to a curve. This property
is consistent with the continuity equation for density (5)
which maps non-nodal regions into themselves along tra-
jectories.

Because of the requirements of boundedness and con-
tinuity satisfied by the wave function, the nodes are the
points, where the quantum potential becomes singular.
The singularities of the quantum potential correspond-
ing with the nodes of the wave function result in a large
quantum force, rapid changes in the momentum, and
“jumps” in the phase of the Bohmian trajectories, as they
move around a node. In the nodes, the time propagation
becomes very expensive even if the quantum potential is
provided and nearly impossible with approximate meth-
ods. The trajectory momenta in the nodal regions grow
rapidly and reverse their direction after the minimum of
the wave function density reaches zero. The ranges of
the momenta for trajectories in the nodal regions can
differ by orders of magnitude, depending on how close a
trajectory is to the node. In contrast, the wave function
in its complex form remains smooth and simply changes
sign at the node. The only exception to this picture
are the nodes of excited eigenstates, for which singular-
ities in the quantum potential cancel exactly (because
here the quantum force is equilibrated by the classical
force), the density is stationary and the trajectories have
zero momenta (and, thus, the corresponding particle is
at rest). Stationary states with real-valued spatial wave
function part constitute therefore particular cases of sin-
gularities of the quantum potential. In fact, in station-
ary states, the wave function is a real function for many
bound states problems of interest. For these problems,
the particle is always at rest, where one would classically
expect it to move, since the quantum force cancels the
classical force (and thus even at the nodes of the wave
function).

The nodes of the wave function lead to quantum po-
tentials complicated and rapidly varying in time and
space and to quantum forces that are very difficult to
compute accurately. The accuracy of the quantum po-
tential and, consequently, the stability and the accuracy
of a dynamics were found to deteriorate with time, es-
pecially in the presence of the density nodes, which mo-
tivated the development of the representation transfor-
mation, adaptive moving grids, artificial viscosity tech-
niques, covering functions, and wave function decompo-
sition [12, 14]. In this regard, it is also important to men-
tion that recently Garashchuk and Rassolov proposed a
mixed coordinate space/polar representation of the wave
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function [15]. The modified trajectory dynamics result-
ing from this mixed representation has the advantage to
avoid the problems associated with the instability of the
quantum trajectories and with the singularities of the
quantum potential at the nodes of the wave function.
At the same time, this mixed description incorporates
the feature of the quantum trajectories, being the “ulti-
mate” moving grid for the wave function.

3. Quantum Potential in a Non-relativistic
Domain and Its Geometrodynamic Nature

In quantum mechanics, the quantum potential must not
be considered a term which is introduced ad hoc, con-
trary to the opinion of the supporters of the Copen-
hagen interpretation. In the formal plant of Bohm’s
non-relativistic theory, it emerges directly from the
Schrödinger equation, and the energy should not be con-
served without it. In fact, taking into account that the
quantity −∂S∂t is the total energy of the particle and that
|∇S|2
2m is its kinetic energy, Eq. (1) can be also written in

the equivalent form as

|∇S|2

2m
− ~2

2m
∇2R

R
+ V = −∂S

∂t
, (6)

which can be seen as a real energy conservation law in
quantum mechanics. Here, one can easily see that the
energy could not be conserved without the quantum po-
tential (2), and this means that the quantum potential
plays an essential role in the quantum formalism. It must
be observed, as it was showed recently by Hiley, that the
quantum potential can be derived also within Heisen-
berg’s formalism by choosing a particular representation
for operators, and such a term must be present to assure
the conservation of the total energy of the system [16].

The basic equations (1) and (3) of the non-relativistic
de Broglie–Bohm theory could give the impression that
we have a return to a classical account of quantum pro-
cesses. However, this is not the case just because of
the features of the quantum potential. If we examine
its form, we may note that the quantum potential does
not have the usual properties expected from a classic po-
tential. Relation (2) tells us clearly that the quantum
potential depends on how the amplitude of the wave
function varies in space. The presence of the Laplace
operator indicates that the action of this potential is
like-space, namely it renders a non-local instantaneous
action on a particle. The appearance of the amplitude of
the wave function in the denominator also explains why
the quantum potential can produce strong long-range ef-
fects that do not necessarily fall off with distance and so

the typical properties of entangled wave functions. Even
though the wave function spreads out, the effects of the
quantum potential need not necessarily decrease. This
is just the type of behavior required to explain the EPR
paradox.

If we examine the expression of the quantum poten-
tial in the two-slit experiment, we find that it depends
on the width of the slits, their distance apart, and the
momentum of the particle. In other words, it has a con-
textual nature, namely it brings a global information
on the process and its environment. It contains an in-
stantaneous information about the overall experimental
arrangement, the environment. Moreover, this informa-
tion can be regarded as being active in the sense that
it modifies the behavior of the particle. In a double-slit
experiment, for example, if one of the two slits is closed,
the quantum potential changes, and this information ar-
rives instantaneously to the particle, which behaves as a
consequence.

Now the fact that the quantum potential produces
an active information, a global information on the en-
vironment means that it cannot be seen as an external
entity in space but as an entity which contains a spa-
tial information, as an entity which represents space. It
is thus possible to provide a geometrodynamic picture
to the quantum potential (2). In virtue of its features,
the quantum potential can be considered a geometrody-
namic entity: it has a geometric nature, just because
it has a contextual nature and contains a global infor-
mation on the environment, in which the experiment is
performed; at the same time, it is a dynamical entity
just because its information about the process and the
environment is active, determining the behavior of the
particle. The geometrodynamic picture of the quantum
potential derives therefore just from the interpretation
of the quantum potential as an “information potential”
(proposed by Bohm and Hiley in 1984).

In this geometrodynamic picture, we can say that the
quantum potential indicates and represents the geomet-
ric properties of space, from which the quantum force
and thus the behavior of quantum particles are derived.
Considering the double-slit experiment, the fact that the
quantum potential is linked with the width of the slits,
their distance apart, and the momentum of the parti-
cle, namely that brings a global information on the en-
vironment means just that it describes the geometric
properties of the experimental arrangement (and there-
fore of space), which determine the quantum force and
the behavior of the particle. Moreover, the presence of
the Laplace operator indicates that the geometric prop-
erties contained in the quantum potential determine a
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non-local instantaneous action on the particle. We can
say therefore that Bohm’s theory manages to make man-
ifest this essential feature of quantum mechanics, just
by means of the geometric properties of space described
and expressed by the quantum potential. In virtue of
the features of the quantum potential, namely in virtue
of the geometric properties of space, which determine
the quantum forces, Bohm’s theory turns out to be in-
trinsically holistic, in which “the whole is more than the
sum of the parts”. It is a merit of the pilot wave theory
(and, in particular, of the geometrodynamic nature of
the quantum potential) to show, in such a direct way,
the non-locality that, according to Bohm, “. . . is the
newest and most fundamental ontological characteristic
implied by quantum theory” [17].

The appearance of non-separability and non-locality
in the Bohm approach led Bell to his famous inequalities
[18]. Of course, the non-locality is not a feature that
fits comfortably with the mechanical paradigm, but it
was this feature that led Bohm to the conclusion that
his approach was not mechanical. In this regard, more
details can be found in [19].

Detailed investigations into these questions in the
Bohm approach and in the review of other approaches to
quantum mechanics led to the idea of that the Cartesian
order could no longer be used to explain quantum pro-
cesses, in particular the quantum non-locality. What is
needed is a radically new order in which to understand
quantum phenomena.

In this regard, G. Chew [20] pointed out that there
is no necessity to explain quantum processes on the ba-
sis of the space-time manifold. This consideration of G.
Chew appears legitimate if it is applied to the interpreta-
tion of EPR-type experiments. We encounter problems
in explaining the instantaneous communication between
subatomic particles, if we assume that space-time is a
fundamental entity. If space-time is assumed as primary,
then, ipso facto, the locality should be absolute. Instead,
the quantum particles show non-local correlations.

In 1980, Bohm suggested that the new order, in which
to understand quantum phenomena, would be based on
a process and called this new order the implicate or-
der: the quantum potential must be considered an ac-
tive information source linked to a quantum background,
namely just the implicate order. Taking its geometrody-
namic nature into account, now we can also say that the
quantum potential expresses the geometric properties of
space, which determine the behavior of the particles and
follow just from the implicate order.

The intention behind the introduction of the impli-
cate order was simply to develop new physical theories

together with the appropriate mathematical formalism,
which will lead to new insights into the behavior of mat-
ter and ultimately to new experimental tests. In this
way, Bohm in his last years departed from de Broglie’s
pilot wave: he suggested the necessity to consider the
non-locality as a primary fundamental characteristic of
space-time and to introduce an intrinsic non-locality of
the quantum world. The idea of the implicate order
can be collocated just in this context. Bohm’s work
was practically directed toward overcoming the tradi-
tional role of space-time (which instead was present in de
Broglie’s original view) and developing a theory of space-
time, where the quantum concepts appear as structural
elements of the world, which can be expressed through
opportune topological constructions. In Bohm’s view,
the non-locality is a characteristic subtended of space-
time, and the particles are seen as vibration modes of
the global field, which is the dynamical expression of the
fundamental level, i.e., of the deep geometric structure.
Bohm’s project was to develop a top-down approach: to
introduce a global ontological structure and to try to
obtain the form of the objects which emerge from this
as manifestations of the undivided totality. As regards
his research on the implicate order, conducted mainly
with Hiley, Bohm used very refined mathematical instru-
ments. In particular, he directed his attention toward
the non-commutative geometries, the non-linearity, and
the discreteness.

As regards this research line, Hiley recently suggested
that the quantum processes evolve not in space-time but
in a more general space called pre-space, which is not
subjected to the Cartesian division between res extensa
and res cogitans. In this view, the space-time of the
classical world would be some statistical approximation,
and not all quantum processes can be projected into this
space without producing the familiar paradoxes, includ-
ing non-separability and non-locality [21]. According to
Hiley’s approach, a quantum domain is to be regarded
as a structure or order evolving in space-time, but space-
time is to be regarded as a higher order abstraction aris-
ing from this process involving events and abstracted no-
tions of space or space-like points [22]. These points are
active in the sense that each point is a process that pre-
serves its identity and its incidence relations with neigh-
boring points. Thus, the points themselves are not static
concepts, but a part of the underlying process. Hiley and
Monk showed that this could be realized in a very sim-
ple algebraic structure, namely the discrete Weyl alge-
bra [23]. According to Hiley’s view, the process must be
taken as fundamental, while space-time, fields, and mat-
ter can be derived from this basic process on the basis of
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the idea of that process is describable by elements of an
algebra, and the relevant structure process is defined by
the algebra itself. In particular, Hiley used a symplec-
tic Clifford algebra which can be constructed from the
boson annihilation and creation operators. This algebra
contains the Heisenberg algebra, suggesting thus it will
strongly feature in a process-oriented approach to quan-
tum theory. It was these possibilities that lead Hiley and
Monk to explore a simpler finite structure, the discrete
Weyl algebra.

In synthesis, the basic underlying assumption of Hi-
ley’s general approach is that the ontology is based on a
process that cannot be described explicitly. It can only
be described implicitly with the terminology “implicate
order”. This implicate order is a structure of relation-
ships and is not some woolly metaphysical construction;
it is a precise description of the underlying process math-
ematically expressed in terms of a non-commuting al-
gebra. This process allows partial views, because the
nature is basically participatory.

The considerations of Chew and the research of Bohm
and Hiley clearly show the legitimacy to understand and
to explain quantum processes on the basis of approaches
different from the space-time manifold. The space-time
manifold characteristic of special relativity cannot be
considered as basic and fundamental, because it does
not seem compatible with non-locality, with the instan-
taneous communication between subatomic particles. In
particular, by virtue of the peculiar characteristics of the
quantum potential and by virtue of its geometrodynamic
nature, according to the author, it seems legitimate to
suggest the idea that the Bohmian implicate order (or,
analogously, Hiley’s pre-space and notion of underlying
process of quantum phenomena) can be assimilated to a
physical space as an immediate information medium.

The features of the quantum potential imply that the
geometric properties of space have clearly an important
role in determining the motion of a subatomic particle.
On the basis of relation (2), one can say that it is the
geometric properties of space expressed by the quantum
potential, the medium responsible for the behavior of
quantum particles and, thus, for the instantaneous con-
nection between them. One can say that the quantum
potential (2) contains the idea of space as an immediate
information medium in an implicit way.

In other words, when one considers an atomic or sub-
atomic process (such as, e.g., the case of an EPR-type
experiment with two subatomic particles, before joined
and then separated and carried away at big distances
one from the other), the physical space assumes a spe-
cial “state” represented by the quantum potential, and

this state is characterized by geometric properties which
allow an instantaneous communication between the par-
ticles into consideration [24]. It is the geometric prop-
erties of space expressed by the quantum potential that
produce an instantaneous connection between two par-
ticles A and B: by disturbing system A, system B may
indeed be instantaneously influenced despite the big dis-
tance separating the two systems thanks to space which
puts them in an immediate contact.

Space expressed by the quantum potential allows us
to explain why and in which sense, in an EPR exper-
iment, two particles coming from the same source and
going away remain joined by a mysterious link, why and
in which sense, if we intervene on one of two particles
A and B, the other feels the effects instantaneously de-
spite the relevant distances separating them. By virtue
of the features of the quantum potential, the instanta-
neous connection between two quantum particles, when
they are at a big distance, can be seen as an effect of
space. One can say also that information does not travel
between particle A and particle B, information between
particle A and particle B has no speed: by means of the
quantum potential, space itself is informing particle A
about the behavior of particle B and conversely [25].

4. Geometrodynamic Nature of the Quantum
Potential of the de Broglie–Bohm Theory in
a Curved Space-Time

The next important step of the geometrodynamic na-
ture of the quantum potential concerns the de Broglie–
Bohm theory in a curved space-time. The treatment of
the behavior of a spin-zero particle moving in a curved
background is not very difficult. Before all, by writing
the wave function in its polar form ψ = |ψ| exp

(
iS
~
)

and
decomposing the real and imaginary parts of the Klein–
Gordon equation, one obtains the quantum Hamilton–
Jacobi equation

∂µS∂
µS = m2c2 (1 +Q) , (7)

with the quantum potential defined as

Q =
~2

m2c2

(
∇2 − 1

c2
∂2

∂t2

)
|ψ|

|ψ|
(8)

and the continuity equation

∂µ (ρ∂µS) = 0, (9)

where ρ is the ensemble of particles. The above
Hamilton–Jacobi equation shows that, in the relativis-
tic case, the quantum potential is essentially the mass

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 5 565



D. FISCALETTI

square. Thus, one can define the quantum mass M of a
particle on the basis of the relation

M2 = m2 (1 +Q) . (10)

Since the quantum potential can be a negative number,
tachyonic solutions would emerge, in general. In this
regard, it must be remarked that Eq. (7) is not the
correct equation of motion [26]. A correct relativistic
equation of motion should not only be Poincarè-invariant
but also give the correct non-relativistic limit. In [26], it
was shown that, on the basis of these requirements, one
obtains the correct equation of motion as

∂µS∂
µS = m2c2 expQ, (11)

and, thus, the quantum mass must be defined in the
following manner:

M2 = m2 expQ, (12)

which is clearly free from the mentioned problem.
Now, as it has been underlined by F. Shojai and

A. Shojai [27], by starting from Bohm’s version of the
Klein–Gordon equation, it is possible to combine the de
Broglie–Bohm quantum theory of motion and gravity
and to show that the key point of the de Broglie–Bohm
theory, the quantum potential, can be interpreted as the
conformal degree of freedom of the space-time metric.
This means that the effects of gravity on the geometry
and the quantum effects on the geometry of space-time
are highly coupled.

In this regard, one must write the equations of motion
for a particle (of spin 0) in a curved background and sim-
ply utilize the de Broglie remark [28] that the quantum
theory of motion for relativistic spinless particles is very
similar to the classical theory of motion in a conformally
flat space-time, in which the conformal factor is related
to Bohm’s quantum potential.

Starting from Bohm’s version of the Klein–Gordon
equation, the extension to the case of a particle mov-
ing in a curved background can be done by changing the
ordinary differentiation ∂µ with the covariant derivative
∇µ and by changing the Lorentz metric with the curved
metric gµν . In this way, we obtain the equations of mo-
tion for a particle (of spin 0) in a curved background:

∇µ (ρ∇µS) = 0, (13)

gµν∇µS∇νS = m2c2 expQ, (14)

where

Q =
~2

m2c2

(
∇2 − 1

c2
∂2

∂t2

)
g
|ψ|

|ψ|
(15)

is the quantum potential. Utilizing now the above-
mentioned fruitful observation of de Broglie [28], the
quantum Hamilton–Jacobi equation can be written as

m2

M2
gµν∇µS∇νS = m2c2. (16)

From this relation, it can be concluded that the quan-
tum effects are equivalent to a change of the space-time
metric from gµν to

g̃µν =
M2

m2
gµν , (17)

which is a conformal transformation. In this way, Eq.
(16) can be written as

g̃µν∇̃µS∇̃νS = m2c2, (18)

where ∇̃µ represents the covariant differentiation with
respect to the metric g̃µν . Moreover, in this new curved
space-time, the continuity equation takes the form

g̃µν∇̃µ
(
ρ∇̃µS

)
= 0. (19)

The important conclusion we can draw from this treat-
ment is that the presence of the quantum potential is
equivalent to a curved space-time with its metric being
given by (17).

In this way, we have achieved the geometrization of
the quantum aspects of matter. It seems that there is
a dual aspect to the role of geometry in physics. The
space-time geometry sometimes looks like what we call
gravity and sometimes looks like what we understand as
the quantum behavior.

F. Shojai’s and A. Shojai’s treatment of the motion
of a particle of spin zero in a curved background can
be considered a very relevant result: it provides a fur-
ther development to the geometrodynamic nature of the
quantum potential, which concerns the non-relativistic
de Broglie–Bohm theory. In fact, on the ground of rela-
tion (17), we can say that the geometric properties which
are expressed by the quantum potential and which deter-
mine the behavior of a particle of spin zero are linked to
the curved space-time. In other words, we can say that
the particles determine the curvature of space-time, and,
at the same time, the space-time metric is linked to the
quantum potential, which influences the behavior of the
particles. The quantum potential creates itself a curva-
ture which may have a large influence on the classical
contribution to the curvature of the space-time.

It can be also interesting to observe that the parti-
cle trajectory can be derived from the guidance formula
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and by differentiating Eq. (11), which leads to Newton’s
equation of motion

M
d2xµ

dτ2
+MΓµνκu

νuκ =
(
c2gµν − uµuν

)
∇νM, (20)

by using the above conformal transformation. Equation
(20) reduces to the standard geodesic equation via the
above conformal transformation.

F. Shojai’s and A. Shojai’s research suggests to us
that there are practically two equivalent pictures for in-
vestigating the quantum effects of matter in a curved
space-time background. According to the first – stan-
dard - picture, the space-time metric contains only the
gravitational effects of matter. The quantum effects af-
fect the path of the particles via the quantum force. In
the second picture, that we have analyzed now in F. Sho-
jai’s and A. Shojai’s treatment of the de Broglie–Bohm
theory in a curved space-time, the space-time metric is
related to the quantum force by a conformal factor and
contains the gravitational and quantum effects of matter.
This second picture is the real geometrodynamic picture
of the world, because it shows just that the quantum, as
well as the gravitational, effects of matter have geomet-
ric nature and are strictly related. This second picture
provides a unified geometric framework for understand-
ing the gravitational and quantum forces. Accordingly,
we can call the conformal metric (containing both grav-
ity and quantum forces) as the physical metric while the
other metric (including only gravity) is the simple back-
ground metric.

5. Geometrodynamic View in Bohmian
Quantum Gravity

The next important step in the interpretation of the
quantum potential as a geometrodynamic entity is rep-
resented by the results regarding the quantum gravity
domain (in particular, in the context of a scalar-tensor
Bohmian model). In this regard, before all, it is impor-
tant to underline that, despite some problems and weak
points (for example, the still open question among the
so-called Bohmian community, which sense can be given
– if any – to the wave function of the Universe), some re-
cent researches indicate that the Bohmian interpretation
of canonical quantum gravity turns out to have several
useful aspects and merits [6, 29, 30, 31, 32].

Some of them are:
– It leads to the time evolution of dynamical variables
whether the wave function depends on time or not.
Therefore, in the Bohmian quantum gravity, we have
no time problem.

– Bohm’s theory describes a single system, unlike the
standard interpretation of quantum theory, which does
not tell anything about a single system. About an en-
semble of systems both interpretations are equivalent.
This is because of the specific form of Bohm’s equa-
tions of motion. They are the Bohmian version of the
Hamilton–Jacobi equation and the conservation equa-
tion of probability density. These equations can be
transformed to the Schrödinger equation by some canon-
ical transformation. This aspect is useful in quantum
cosmology, where the system is the Universe, and no en-
semble of systems exists. Therefore, from the Bohmian
point of view, we have not the conceptual problem of
the meaning of the Universe’s wave function in quantum
cosmology.
– Normalization of the wave function is needed only for
the probabilistic description. Here, there is no need to
normalize the wave function for a single system.
– The classical limit has a well-defined meaning. When
the quantum potential is less than the classical potential,
and the quantum force is less than the classical force, we
are in the classical domain.
– There is no need to separate the classical observer and
the quantum system in the measurement problem. In
the Bohmian picture of the measurement process, we
have two interacting systems, the system and the ob-
server. After the interaction takes place, the wave func-
tion of the system is reduced in a causal way. It must
be noted that the same statistical results for the stan-
dard and Bohmian interpretations do not mean that the
two theories are equivalent. They are different in phys-
ical concepts. The most important difference is that,
in the Bohmian interpretation, one deals with trajecto-
ries. This can lead to new concepts. For example, one
can evaluate the tunneling time of a particle through
a potential barrier in the non–relativistic quantum me-
chanics. This is a concept that has no clear meaning in
the standard interpretation [6, 33].
– Till now, the Bohmian interpretation of the Wheeler–
De Witt quantum gravity and cosmology has given some
physical results that could be found in the literature:
– In the Bohmian quantum cosmology, the quantum
force can remove the Big-Bang singularity, because it
can behave as a repulsive force [34, 35].
– The quantum force may be present on large scales,
because the quantum effects of the quantum potential
are independent of the scale [36].
– One can find the graceful exit behavior in the super-
inflation model in a super string cosmology. The evo-
lution begins with inflation and smoothly changes to
the decelerating expansion, without any singularity in
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the transition [37]. For a more detailed discussion of
the de Broglie–Bohm interpretation of quantum super
string cosmology, pre–Big-Bang inflation, and graceful
exit problem considering various classes of wavepackets,
see [38].
– Real time tunneling can be occurred in the classically
forbidden regions, through the quantum potential. For
this effect in a closed de-Sitter Universe in 2+1 dimen-
sions, see [39].
– Finally, and this is the point toward which now it is
important to focus our attention, in a generalized geo-
metric picture of Bohm’s interpretation, one can unify
the quantum effects and gravity [35, 40–45].

The latest point represents a very important re-
sult that the Bohmian version of quantum gravity can
achieve. In this regard, F. Shojai and A. Shojai de-
veloped a toy model of quantum gravity (providing a
scalar-tensor picture of the ideas developed in Section
4), in which the form of the quantum potential and
its relation to the conformal degree of freedom of the
space-time metric can be derived using the equations of
motion. This model can be considered another inter-
esting development in the geometrodynamic nature of
the quantum potential. By showing that it is just the
quantum gravity equations of motion which make the
quantum potential the entity expressing the geometric
properties, which influence the behavior of the particles,
and relating to the space-time metric, F. Shojai’s and
A. Shojai’s model suggests a sort of unification of the
gravitational and quantum aspects of matter at the fun-
damental level of physical reality.

Starting from the most general scalar-tensor action

A =
∫
d4x

{
φR− ω

φ
∇µφ∇µφ+ 2Λφ+ Lm

}
, (21)

in which ω is a constant independent of the scalar field
φ, Λ is the cosmological constant, and Lm is the matter
Lagrangian (which is assumed to be in the form

Lm =
ρ

m
φa∇µS∇µS −mρφb − Λ (1 +Q)c , (22)

in which a, b, and c are constants), using a perturbative
expansion for the scalar field and the matter distribution
density as

φ = φ0 + αφ1 + ...,

√
ρ =
√
ρ0 + α

√
ρ1 + ...

(and imposing the opportune physical constraints in or-
der to determine the parameters a, b, and c), F. Shojai

and A. Shojai have found the following quantum gravity
equations:

φ = 1 +Q− α

2

(
∇2 − ∂2

∂t2

)
Q, (23)

∇µS∇µS = m2φ− 2Λm
ρ

(1 +Q)
(
Q− Q̃

)
+

+
αΛm
ρ

[(
∇2 − ∂2

∂t2

)
Q− 2∇µQ

∇µ√ρ
√
ρ

]
, (24)

∇µ (ρ∇µS) = 0, (25)

Gµν−Λgµν= − 1
φ
Tµν− 1

φ

[
∇µ∇ν − gµν

(
∇2 − ∂2

∂t2

)]
×

×φ+
ω

φ2
∇µφ∇νφ− 1

2
ω

φ2
gµν∇αφ∇αφ, (26)

where Q̃ = α
∇µ
√
ρ∇µ√ρ√
ρ and Tµν =

− 1√
−g

δ
δgµν

∫
d4x
√
−gLm is the energy-momentum

tensor.
This geometrodynamic quantum gravity model sug-

gested by F. Shojai and A. Shojai (and synthesized in
Eqs. (23) and (26) allows us to draw some important
conclusions:
– In this model, Eq. (26) shows that the causal structure
of the space-time gµν is determined by the gravitational
effects of matter. On the basis of Eq. (23), the quantum
effects determine directly the scale factor of space-time.
– The mass field given by the right-hand side of Eq. (24)
consists of two parts. The first part, which is propor-
tional to α, is a purely quantum effect, while the second
part, which is proportional to αΛ, is a mixture of the
quantum effects and the large-scale structure introduced
via the cosmological constant.
– In this model, the scalar field produces the quantum
force, which appears on the right-hand side and violates
the equivalence principle (just like, in the Kaluza–Klein
theory, the scalar field – dilaton – produces a fifth force
leading to the violation of the equivalence principle [46]).

In conclusion, it is also important to underline that
the geometrodynamic quantum gravity model suggested
by F. Shojai’s and A. Shojai’s equations (23), (26) (ac-
cording to which the geometry of space-time and the
trajectories of quantum particles are simultaneously de-
fined by a closed set of equations of evolution) intends,
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in some way, to compete general relativity. Therefore, it
would be interesting to check whether it also leads to the
same experimental confirmations (gravitational redshift,
deflection of light grazing the Sun, shift of Mercury’s
perihelion, and so on). It would also be interesting to
check whether the standard effects of gravity on quan-
tum systems (for instance, the analogous effect of the
Bohm–Aharonov phase shift in the presence of gravi-
tational forces in an interference experiment) are also
predicted by this model, and how this model could lead
to new experimental predictions in similar set-ups. The
further research about these topics will give you more
information.

6. Geometrization of the Quantum Effects and
the Generalized Equivalence Principle

One of the new points of the approach treated in Sec-
tions 4 and 5 (regarding the Bohmian theory in a
curved space-time and the Bohmian scalar-tensor quan-
tum gravity model) on the geometrization of quantum
effects is the dual role of the geometry in physics. The
gravitational effects determine the causal structure of
space-time, as long as quantum effects give its confor-
mal structure. This does not mean that the quantum ef-
fects have nothing to do with the causal structure; they
can act on the causal structure through back-reaction
terms appearing in the metric field equations [43, 42,
40]. We only mean that a dominant role in the causal
structure belongs to the gravitational effects. The same
is true for the conformal factor. The conformal factor of
the metric is a function of the quantum potential, and
the mass of a relativistic particle is a field produced by
quantum corrections to the classical mass. In Section 4,
we have shown that the presence of the quantum poten-
tial is equivalent to a conformal mapping of the metric.
Thus, in conformally related frames, we measure differ-
ent quantum masses and different curvatures. It is possi-
ble to consider two specific frames. One of these frames
contains the quantum mass field (appearing in the quan-
tum Hamilton–Jacobi equation) and the classical metric,
while the other contains the classical mass (appearing in
the classical Hamilton–Jacobi equation) and the quan-
tum metric. In other frames, both the space-time metric
and the mass field have quantum properties. By virtue
of this argument, one can say that different conformal
frames are equivalent pictures of the gravitational and
quantum phenomena.

Considering the quantum force, the conformally re-
lated frames are not distinguishable. This is just what
happens when we consider gravity: different coordinate

systems are equivalent. Since the conformal transforma-
tion changes the length scale locally, we measure differ-
ent quantum forces in different conformal frames. This
is analogous to what happens in general relativity, in
which a general coordinate transformation changes the
gravitational force at any arbitrary point. Then, the fol-
lowing basic question becomes natural. Does applying
the above correspondence between quantum and gravi-
tational forces and between the conformal and general
coordinate transformations mean that the geometriza-
tion of quantum effects implies the conformal invariance
just as gravitational effects imply the general coordinate
invariance?

In order to discuss this question, we need to recall
what has happened in the development of general rel-
ativity. The general covariance principle leads to the
identification of gravitational effects of matter with the
geometry of the space-time. In general relativity, the
important fact which supports this identification is the
equivalence principle. According to it, one can always
remove the gravitational field at some point by a suit-
able coordinate transformation. Similarly, according to
the new approach to quantum gravity in the context of
the Bohmian theory illustrated in Sections 4 and 5, the
quantum effects of matter can be removed at any point
(or even globally) by a suitable conformal transforma-
tion. Thus, in that point(s), matter behaves classically.
In this way, we can introduce a new quantum equiva-
lence principle, similar to the standard equivalence prin-
ciple, and we can call it the conformal equivalence prin-
ciple. According to this quantum equivalence principle,
the gravitational effects can be removed by going to a
freely falling frame, while the quantum effects can be
eliminated by choosing an appropriate scale. The latter
interconnects gravity and general covariance, while the
former has the same role about quantum and conformal
covariance. Both these principles state that there is no
preferred frame, either coordinate or conformal.

Moreover, according to the geodesic equation (23), the
appearance of quantum mass justifies Mach’s principle,
which leads to the existence of an interrelation between
the global properties of the Universe (space-time struc-
ture, the large-scale structure of the Universe) and its lo-
cal properties (local curvature, motion in a local frame,
etc.). In the approach analyzed in Sections 4 and 5, it
can be easily seen that the space-time geometry is deter-
mined by the distribution of matter. A local variation of
the matter field distribution changes the quantum po-
tential acting on the geometry. Thus, the geometry is
altered globally (in conformity with Mach’s principle).
In this sense, the Bohmian approach to quantum grav-
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ity is highly non-local, as it is forced by the nature of the
quantum potential. What we call geometry is only the
gravitational and quantum effects of matter. Without
matter, the geometry would be meaningless.

7. Conclusions

The de Broglie–Bohm theory allows us to portray a sat-
isfactory geometrodynamic description of quantum me-
chanics. Under this point of view, it presents some im-
portant advantages with respect to the standard ver-
sion of quantum mechanics. On one hand, the inher-
ent conceptual problems of standard quantum mechan-
ics concerning the interpretation of quantum processes,
the meaning of the wave function and the measurement
processes are not present. On the other hand, and this is
the fundamental result, the most important element of
the de Broglie–Bohm theory, namely the quantum po-
tential, has got an intrinsic geometrodynamic nature.
The quantum potential can be considered the fundamen-
tal element which creates a geometrodynamic picture of
the quantum world. It is a geometrodynamic entity in
the non-relativistic domain, the relativistic curved space-
time background, and the quantum gravity domain de-
scribed by a scalar-tensor model.

The first important step concerning the geometrody-
namic nature of the quantum potential lies in the fact
that, in the non-relativistic domain, the quantum poten-
tial is an information potential, a potential which con-
tains a space-like active information on the environment.
As a consequence of this feature, the quantum potential
can be seen as the entity indicating the geometric prop-
erties of space, from which the quantum force and, thus,
the behavior of quantum particles follow. In particular,
the geometric properties of space expressed by the quan-
tum potential (linked to the presence of the Laplace op-
erator) determine a non-local instantaneous action onto
a particle. We can say therefore that it is a merit of
the geometrodynamic nature of the quantum potential
to reveal the non-local correlations between subatomic
particles, i.e., to create the quantum non-locality. As
a consequence, the Bohmian implicate order (or equiv-
alently, Hiley’s pre-space) can be interpreted as a deep
level of physical reality, which follows from the geometric
properties of space expressed by the quantum potential
and determines the quantum force acting on the parti-
cles.

The next important step concerning the geometrody-
namic nature of the quantum potential can be found in
the de Broglie–Bohm theory in a curved space-time. In
this regard by investigating the coupling of purely grav-

itational effects and purely quantum effects of a parti-
cle in a general background space-time metric, we have
achieved a very important result: the equivalence of
quantum effects of matter and a curved space-time. By
analyzing the quantum effects of matter in the frame-
work of the Bohmian mechanics, we have shown that the
motion of a particle (of spin zero) with quantum effects
is equivalent to its motion in a curved space-time. The
quantum effects of matter, as well as the gravitational
effects of matter, have geometric nature and are highly
related: the quantum potential can be interpreted as the
conformal degree of freedom of the space-time metric,
and its presence is equivalent to the curved space-time.
In fact, the presence of the quantum force is just like
having a curved space-time, which is conformally flat,
and the conformal factor is expressed in terms of the
quantum potential.

Finally, the last important step able to close the circle
lies in the fact that, in a scalar-tensor version of quantum
gravity, Bohm’s interpretation achieves a generalized ge-
ometric unification of gravitational and quantum effects
of matter, showing that the form of the quantum poten-
tial and its relation to the conformal degree of freedom
of the space-time metric can be derived from the equa-
tions of motion. This scalar–tensor model shows clearly
that it is the equations of motion that lead to the cor-
rect form of the quantum potential. We can therefore
say that not only quantum effects are geometric in na-
ture, but also that it is possible to derive the form of
the quantum potential from the Bohmian approach to
quantum gravity (precisely in the form of a scalar-tensor
model). Thus, it is just the Bohmian quantum gravity
equations of motion that make the quantum potential
the entity expressing the geometric properties, which in-
fluence the behavior of the particles and determine the
quantum force.
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ГЕОМЕТРОДИНАМIЧНА ПРИРОДА КВАНТОВОГО
ПОТЕНЦIАЛУ

Д. Фiскалеттi

Р е з ю м е

Теорiя де Бройля–Бома дозволяє отримати задовiльну геоме-
тродинамiчну iнтерпретацiю квантової механiки. Фундамен-
тальним елементом, який створює геометродинамiчну карти-
ну квантового свiту в нерелятивiстськiй областi, в релятивiст-
ському викривленому просторi-часi i в квантової гравiтацiї, є
квантовий потенцiал. Показано, що в нерелятивiстськiй областi
геометродинамiчна природа квантового потенцiалу випливає з
того факту, що вiн є iнформацiйним потенцiалом, що мiстить
просторово-подiбну активну iнформацiю про середовище; гео-
метричнi властивостi простору, вираженi квантовим потенцi-
алом, визначають нелокальнi кореляцiї мiж субатомними ча-
стинками. В рамках теорiї де Бройля–Бома у викривленому
просторi-часi показано, що як квантовi, так i гравiтацiйнi ефек-
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ти матерiї мають геометричну природу i сильно пов’язанi:
квантовий потенцiал може бути iнтерпретований як конфор-
мацiйний ступiнь вiльностi просторово-часової метрики, i йо-
го наявнiсть еквiвалентна викривленому простору-часу. Ґрун-
туючись на недавнiх дослiдженнях, показано, що в квантовiй

гравiтацiї ми маємо узагальнене геометричне об’єднання гра-
вiтацiйних i квантових ефектiв матерiї; iнтерпретацiя Бома по-
казує, що форма квантового потенцiалу та його вiдношення до
конформацiйного ступеня вiльностi просторово-часової метри-
ки можуть бути отриманi з рiвнянь руху.
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