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A theory of light scattering by ellipsoidal metal nanoparticles, the
size of which is smaller than the free electron path length in those
nanoparticles and much smaller than the light wavelength, has
been developed. Effects of nanoparticle shape on both the frequen-
cies and the band half-widths of plasmon resonances have been
taken into account. The tensor character of the optical conduc-
tivity, which is typical of ellipsoidal metal nanoparticles with such
dimensions, has been considered for the first time in the frame-
work of the light scattering problem. The obtained formula for
the scattering cross-section demonstrates a substantial influence
of the nanoparticle shape on the frequency and polarization de-
pendences of scattered light.

1. Introduction

The classical results obtained by Rayleigh in 1871
started many theoretical and experimental works de-
voted to the phenomenon of light scattering by small par-
ticles, the dimensions of which are considerably smaller
than the length of a scattered wave. A review of basic
results obtained in this direction can be found in re-
cently published monographies [1, 2] and the references
therein. According to the Rayleigh theory, the cross-
section of light scattering by a spherical particle at a far
distance from it is proportional to ω4|α(ω)|2, where ω
is the light frequency, and α(ω) is the particle polariz-
ability. In metallic nanoparticles, the frequency depen-
dence of the polarizability is mainly governed by plasma
resonances. A spherical particle is known to have one
such resonance, a spheroidal one (an ellipsoid of revo-
lution) is characterized by two resonances, whereas an
ellipsoidal particle with three different curvature radii
possesses three plasma resonances. If the nanoparticle
shape deviates from the sphere, the particle polarizabil-
ity is no more a scalar, but a tensor quantity. The gen-
eral form for the polarization of an ellipsoidal metallic
nanoparticle induced by an electromagnetic wave, the
length of which considerably exceeds the particle dimen-
sions, is given in work [1]. The polarizability tensor can
be used to express the cross-sections of light absorption
and scattering by metallic nanoparticles.

In theoretical works dealing with the phenomenon of
light scattering by metallic nanoparticles, the latter are
characterized by such parameters as their size, shape,
and dielectric permittivity ε(ω). As a rule, the depen-
dence ε(ω) is taken from the Drude–Sommerfeld model
[1],

ε(ω) = ε′(ω) + iε′′(ω) = 1−
ω2
p

ω2 + ν2
+ i

ν

ω

ω2
p

ω2 + ν2
, (1)

where ω is the light frequency, ν−1 is the relaxation time
of the electron subsystem,

ωp =
(

4π e2

m
n

)1/2

, (2)

is the plasma (bulk) frequency, e the electron charge, m
the electron mass, and n the electron concentration.

When being applied to metallic clusters, formula (1)
is often corrected. First, the unity on its right-hand
side is often substituted by ε0, a number, which should
approximately take into account the contribution of the
ionic subsystem to ε(ω). This number is different for
different metals [3].

Second, when the size of a spherical metallic particle
becomes smaller than the electron mean free path, the
formal substitution

ν → 3
4
υF

R
, (3)

where υF is the Fermi velocity, and R is the particle
radius (or, in a more general form [4],

ν → ν +A
υF

R
,

where A is a certain number (an effective parameter))
should be made in Eq. (1). Substitution (3) for spheri-
cal nanoparticles can be rigorously substantiated in the
limiting cases of high and low frequencies (in comparison
with the collision frequency) [5, 6]. However, a question
arises: What should be done in the cases where the par-
ticle is asymmetric, and its size in one or all directions
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is smaller than the mean free path of electrons? The
answer becomes clear, if one recalls that the imaginary
part of the dielectric permittivity, ε′′(ω), in Eq. (1) is re-
sponsible for dissipation processes. In particular, if the
particle size is larger than the electron mean free path,
we have [7]

ε′′(ω) =
4π
ω
σ(ω), (4)

where σ(ω) is the optical (high-frequency) conductivity.
As was shown in work [5], if the metallic particle shape

is asymmetric, and if its dimension, at least in one direc-
tion, is smaller than the mean free path of electron, the
optical conductivity transforms from a scalar into a ten-
sor. The diagonal components of this tensor determine
the half-widths of plasma resonances. This work aimed
at studying the influence of the light-scattering particle
shape on the scattering processes by taking into account
not only the corresponding dependence of plasma reso-
nance frequencies (it was already done earlier), but also
their half-widths. Since the half-widths determine the
heights of corresponding plasma peaks, the influence of
the particle shape on these half-widths can substantially
modify the frequency dependence of the light scattering
cross-section by asymmetric metallic nanoparticles.

2. Formulation of the Problem

Let us consider the problem, proceeding from the general
case where the metallic particle has an ellipsoidal shape
with three curvature radii (Rx, Ry, Rz). At a certain
stage, which will be indicated below, in order to carry
out analytical calculations to the end, we confine the
consideration to the spheroidal particle shape, i.e. we
adopt that Rx = Ry ≡ R⊥ and Rz = R‖. The choice
of this shape for the particle is beneficial, because the
analytical results obtained here can be applied to a wide
spectrum of nanoparticle shapes (from disk- to rod-like
ones) by a formal deformation of curvature radii. Hence,
let an ellipsoidal metallic nanoparticle be located in the
field of an electromagnetic wave

E(r, t) = E0 e
−i(ω t−k r), (5)

where E0 is the electric field amplitude of the wave, ω
its frequency, k the wave vector, r the coordinate vector,
and t the time. Field (5) induces an internal electric
field in the metallic particle, which is spatially uniform
in the dipole approximation, i.e. at kR � 1, where
R = max(Rx, Ry, Rz), and equals [7]

Ejin e
−iω t =

Ej0 e
−iω t

1 + Lj(ε− 1)
, (6)

where L is the depolarization factor.
The internal field Ein induces a high-frequency cur-

rent in the particle, and the dissipation is related just to
this circumstance. To determine the form of the high-
frequency current and, hence, the optical conductivity
of the metallic nanoparticle, it is necessary to find the
distribution function of electrons over their velocities.
More precisely, it is necessary to find an addend to the
Fermi distribution function, which is associated with the
action of the local field (6).

In the linear approximation, the distribution function
looks like

f(r, υ, t) = f0(ε) + f1(r, υ) e−iω t, (7)

where f0(ε) is the Fermi distribution function of elec-
trons over the energy ε. For f1(r, υ), we obtain the
kinetic equation

(ν − iω) f1(r,υ) + υ
∂f1(r,υ)

∂r
+ eEin υ

∂f0
∂ε

= 0 . (8)

Besides Eq. (8), the function f1(r, υ) must satisfy
boundary conditions that determine the character of the
electron scattering at the surface of a metallic particle.
As such, similarly to what was done in the majority of
works on this topic, we adopt the conditions correspond-
ing to the diffuse character of the scattering, i.e.,

f1(r, υ)|s = 0, at υn < 0, (9)

where υn is the velocity component normal to the sur-
face.

It is worth noting that Eq. (8) does not involve the
action of a vortex electric field associated with the mag-
netic component of an external electromagnetic wave.
This field is responsible for the so-called magnetic ab-
sorption [5]. In the range of plasma resonance frequen-
cies, this mechanism of absorption (or scattering) gives
a relatively small contribution [5, 8]. In the case of an
ellipsoidal nanoparticle, the boundary conditions (9) de-
pend on the angles, and this circumstance creates ad-
ditional difficulties in solving Eq. (8). These difficul-
ties can be avoided, if we pass to a deformed system
of co-ordinates in Eqs. (8) and (9) such that the ellip-
soidal form transforms into the spherical one. The same
deformation should be carried out for the space of ve-
locities. The relations between the deformed (primed)
co-ordinates and undeformed ones look like

x′i = γi xi, υ′i = γi υi; γi =
R

Ri
,

R = (RxRy Rz)1/3. (10)
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For brevity, we used the notation x′i, where i = 1, 2, 3,
instead of x, y, z, and a similar notation for the velocities.
Note that deformation (10) keeps the particle volume
constant. This feature will enable us to distinguish below
between the effects induced by the nanoparticle shape
and its volume.

In the deformed coordinate system, Eq. (8) and the
boundary condition (9) read

(ν−iω) f1(r′,υ′)+υ′
∂f1(r′,υ′)

∂r′
+eEin υ

∂f0
∂ε

= 0, (11)

f1(r′,υ′) |r′=R = 0 at r′ υ′ < 0. (12)

Equation ((11) with the boundary conditions (12) is eas-
ily solved within the method of characteristics [5, 9] to
give the solution

f1(r′,υ) = −eEin υ
∂f0(ε)
∂ε

1− e−(ν−iω) t0(r
′,υ′)

ν − iω
, (13)

where the characteristic t0(r′,υ′) looks like

t0(r′,υ′) =
1
υ′2

{
r′ υ′ +

√
(R2 − r′2)υ′2 + (r′ υ′)2

}
.

(14)

Function (13) can be used to determine the density of a
high-frequency current in the metallic nanoparticle,

I(r, ω) = 2e
( m

2π ~

)3
∫∫∫

υ f1(r,υ) d3υ. (15)

Introducing the tensor of complex conductivity σcαβ(r, ω)
according to the relation

Iα(r, ω) =
3∑

β=1

σcαβ(r, ω)Eβin , (16)

and using formulas (13) and (15), we obtain the following
expression for the components of this tensor:

σcαβ(r, ω) = 2e
( m

2π ~

)3

×

×
∫∫∫

υα

{
−eυβ

∂f0
∂ε

1− e−(ν−iω) t0 (r′,υ′)

ν − iω

}
d3υ . (17)

Here, it is worth emphasizing that, although the field
Ein in ellipsoidal particles does not depend on coordi-
nates in the dipole approximation, the distribution func-
tion f1(r,υ) does owing to the boundary condition (12),

and so do the current density I(r, ω) and the complex
conductivity σcαβ(r, ω). However, the physical meaning
can be attributed, as a rule, to the quantities averaged
over the nanoparticle volume. In particular, in the case
of the monochromatic wave (5), the energy absorbed by
a metallic nanoparticle per unit time is

w =
1
2

Re
∫
dr { I(r′, ω)E∗in } =

=
V

2

3∑
α,β=1

Re〈σcαβ(ω)〉Eαin
(
Eβin

)∗
, (18)

where

〈σcαβ(ω)〉 =
1
V

∫
dr′ σcαβ (r′, ω) (19)

are the components of the complex conductivity tensor
averaged over the nanoparticle volume V .

There exists a well-known relation for the components
of the dielectric permittivity tensor [10],

εαβ(r, ω) = δαβ + i
4π
ω

σcαβ (r, ω) . (20)

The influence of the surface on the conductivity phe-
nomenon is described in Eq. (17) by the characteris-
tic t0(r′,υ′). As is seen from Eq. (14), t0 ∼ R/υF

by the order of magnitude. This means that t−1
0 by

its order of magnitude corresponds to the transit fre-
quency of an electron that moves between the walls,
t−1
0 ∼ υF/R. Therefore, the inequality νt0 � 1 would

mean that the frequency of collisions in the bulk, ν, is
much higher than the frequency of electron collisions
with the surface. In this case, formally putting ν → ∞
and ∂f0/∂ε ∼ −δ(ε− εF) in Eq. (17), we obtain

σαβ(ω) =
1
4π

ω2
p

ν − iω
δαβ . (21)

This formula demonstrates that the conductivity re-
mains a scalar quantity in this case and does not depend
on coordinates. Substituting Eq. (21) into Eq. (20), we
obtain an expression for the dielectric permittivity in
form (1).

In the general case of an ellipsoid-shaped metallic
nanoparticle, the dimensions of which are smaller than
the mean free path of an electron, when the scattering
of electrons by the surface plays a considerable role, the
optical conductivity (17) has a tensor character. As a
result, the complex dielectric permittivity of a nanopar-
ticle also transforms into a tensor. In this case, the rela-
tion between the internal field Ein and the electric field
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of an external electromagnetic wave, E0, must be cor-
rected. Instead of formula (6), the new relation looks
like

Ejin e
−iω t =

Eβ0 e
−iω t

1 + Lβ (εββ(ω)− 1)
(22)

in the coordinate system of principal ellipsoid axes,
where εββ(ω) is the diagonal component of the dielec-
tric permittivity tensor (along the β-axis, εββ(ω) ≡
〈εββ(ω)〉).

3. Polarizability Tensor

The electric dipole moment induced in a metallic
nanoparticle by an electromagnetic wave field is ex-
pressed in terms of the high-frequency current I(r, t) as
follows:

∂

∂t
d (t) =

∫
V

dr I(r′, t). (23)

Applying the Fourier transformation and using Eq. (16),
we obtain

d
α

(ω) =
iV

ω

3∑
β=1

〈σcαβ(ω)〉Eβin . (24)

The polarizability tensor is introduced by the relation

d
β

(ω) =
3∑

β′=1

αββ′(ω) Eβ
′

0 . (25)

Comparing expressions (24) and (25) with each other
and using Eq. (22), we obtain

αββ(ω) =
iV

ω

〈σcββ (ω)〉
1 + Lβ(εββ(ω)− 1)

. (26)

Now, averaging relation (20) over the particle volume
and substituting the result into Eq. (26), we obtain

αββ(ω) =
V

4π
εββ (ω)− 1

1 + Lβ(εββ(ω)− 1)
. (27)

It is evident that, having determined the components of
the complex conductivity tensor from Eq. (17) and using
Eqs. (20) and (27), we can easily obtain the polarizability
tensor of a metallic nanoparticle. According to Eq. (17),
the averaged components of the complex conductivity
tensor look like

〈σcαβ 〉 =
( m

2π~

)3 2e2

ν − iω

∫
d3r′

V
×

×
∫
d3υ υαυβ δ(ε− εF)

{
1− e−(ν−iω) t0(r

′,υ′)
}
. (28)

By applying the formula (see details in works [6, 9])∫
d3r′

V

{
1− e−(ν−iω) t0 (r′,υ′)

}
=

=
3
4

{
4
3
− 2
q

+
4
q3
− 4
q2

(
1 +

1
q

)
e−q
}
≡ 3

4
Ψ(q) ,

where q = 2
υ′ (ν−iω), the components of the conductivity

tensor (28) can be expressed in the form

〈σcαβ(ω) 〉 =
3
2

( m

2π ~

)3 e2

ν − iω
×

×
∫
d3r′

V

∫
d3υδ(ε− εF) υαυβ Ψ(q) . (29)

Formula (29) for the averaged components of the com-
plex conductivity tensor, as well as all the previous
formulas, was derived in the general case of ellipsoid-
shaped nanoparticle with three different curvature radii
(Rx, Ry, Rz). Further calculations of the angular inte-
grals in formula (29) become complicated, because, in
accordance with Eq. (10), the magnitude of deformed
velocity vector, υ′, in the expression q = q(υ′) is angle-
dependent. This dependence looks much simpler in
the case of ellipsoid-of-revolution geometry where Rx =
Ry = R⊥ and Rz = R‖. In this case (see formula (10)),

υ′ = R

{
sin2 θ

R2
⊥

+
cos2 θ
R2
‖

}1/2

υ , (30)

where θ is the angle between the vector υ and the el-
lipsoid rotation axis. Further calculations of the quan-
tity 〈σcαβ(ω)〉 by formula (29) do not make difficulty (see
work [5]).

Formulas (29), (27), and (20) demonstrate that only
the components

αxx = αyy ≡ α‖, αzz = α⊥ (31)

of the polarizability tensor are different from zero for
a spheroidal metallic nanoparticle. In accordance with
Eq. (21), we obtain

α⊥,‖(ω) =
V

4π
ε⊥,‖(ω)− 1

1 + L⊥,‖(ε⊥,‖(ω)− 1)
. (32)
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For ε⊥,‖(ω), using Eqs. (29) and (20), we obtain

ε⊥,‖(ω) = 1−
ω2
p

ω2
+ i

4π
ω
σ⊥,‖(ω) , (33)

where the notation

σ⊥(ω) = Re 〈σcxx(ω)〉 = Re 〈σcyy(ω)〉;

σ‖(ω) = Re 〈σczz(ω)〉 (34)

was introduced.
We are interested in the light scattering by small par-

ticles in the visible range of frequencies. Therefore, while
deriving expressions (33), (20), and (29), we neglected
small corrections proportional to the ratio between the
frequency of collisions and the light frequency. In the
same approximation, from Eq. (29), we obtain that, for
the size of nanoparticles smaller than the mean free path
of an electron [5],

σ⊥(ω) =
9
16

n e2υF

mω2

{
3π

8R⊥
, for R⊥ � R‖

1
2R‖

, for R⊥ � R‖

}
, (35)

σ‖(ω) =
9
16

n e2υF

mω2

{
π

4R⊥
, for R⊥ � R‖

1
R‖
, for R⊥ � R‖

}
. (36)

In addition, if R⊥ = R‖ = R,

σ⊥(ω) = σ‖(ω) =
3
4

n e2 υF

mω2R
. (37)

Hence, formulas (32), (33), and (35)–(37) completely de-
termine the dependences of the components of the po-
larizability tensor for a particle on its shape. We recall
once more that although the particle is considered to be
spheroidal, the relation between the curvature radii R⊥
and R‖ can be arbitrary (for the fixed particle volume,
see Eq. (10)). Exact expressions for σ⊥,‖(ω) at arbitrary
R⊥ and R‖ are given in works [5, 11].

4. Light Scattering Cross-Section by Metallic
Nanoparticles

The electric component (5) of an electromagnetic wave
induces a dipole moment in a metallic nanoparticle,
which generates, in turn, a scattered wave. In addition
to the electric dipole moment, a magnetic dipole moment
can also be generated, but by a magnetic component of
the wave. The reasons of why the latter moment is not
considered in this work were presented above. Let us

examine the scattered wave at far distances from the
particle (in comparison with the wavelength). In this
region, it can be considered as transverse. The electric
component of the scattered wave will be denoted as E′,
and the magnetic one as H′, with E′ = H ′. The intensity
of radiation emitted by the electric dipole into the solid
angle dΩ at a distance R0 and averaged over the period
looks like [7]

dIs =
c

8π
| [E′ ×H′] |R2

0 dΩ =
c

8π
|H′ |2 R2

0 dΩ , (38)

where c is the light speed. For the emission by the elec-
tric dipole, we have [7]

H′ =
ω2

c2R0
n0 × d(ω), (39)

where n0 is a unit vector, which defines the observation
direction. Therefore, for the scattering cross-section, we
obtain the expression

dΣ = dIs

/ c

8π
|H′|2. (40)

The angular dependence of the light intensity scattered
by a spheroidal particle is also determined by two more
unit vectors, besides the unit vector n introduced above.
Namely, these are p0, a unit vector that describes the po-
larization of the output light flux, and q0, a unit vector
that describes the orientation of the spheroid symmetry
axis (see the Figure). As is seen from Eqs. (31) and (25),
in the coordinate system connected with the principal
spheroid axis, we have

d(ω) = α⊥(ω)E⊥0 + α‖(ω)E‖0, (41)

where

E‖ = (q0E0)q0; E⊥0 = E0 − (q0 E0)q0. (42)

Hence, the dipole moment of a spheroidal particle is
a sum of two mutually perpendicular moments. Using
Eqs. (39) and (41), we obtain

|H′|2 =
ω4

c4R2
0

{
|α⊥(ω)|2

(
n0 ×E⊥0

)2
+

+
∣∣α‖(ω)

∣∣2 (n0 ×E‖0
)2

+
(
α⊥(ω)α∗‖(ω) + α∗⊥(ω)α‖(ω)

)
×

×
(
n0 ×E⊥0

) (
n0 ×E‖0

)}
. (43)
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Substituting Eq. (43) into Eq. (38) and applying
Eqs. (40) and (42), we obtain the following expression
for the scattering cross-section:

dΣ =
ω4

c4

{
|α⊥(ω)|2 [n0 × (p0 − (q0p0)q0)]

2 +

+
∣∣α‖(ω)

∣∣2 (n0 × q0)2 (q0 p0)2 + 2Reα⊥(ω)×

×α∗‖(ω) [n0 × (p0 − (q0 p0)q0)] (n0 × q0)(q0 p0)
}
dΩ.

(44)

It is not difficult to verify that, in the case of a spherical
particle (α⊥ = α‖ = α), all terms in Eq. (44), which
contain the unit vector q0, mutually compensate one
another, so that we obtain the well-known expression
for a spherical particle:

dΣ =
ω4

c4
|α(ω) |2 (n0 × p0)2d0 =

ω4

c4
|α(ω) |2 sin2 ν′ d0,

(45)

where ν′ is the angle between the unit vector n0 and the
electric field E0.

In the literature, the concept of specific polarizability
is often used to focus on the role of a particle volume in
the scattering. Therefore, we emphasize that the issue
in this work in accordance with Eq. (32) concerns the
polarizability of the whole particle.

Hence, we have analyzed the simplest case and ob-
tained expression (44)) for the light scattering cross-
section by a spheroidal metallic particle. In order to
avoid any misunderstanding, let us recall once more that
the general expressions for the cross-sections of light ab-
sorption and dispersion written down in terms of diago-
nal elements of the polarizability tensor of an ellipsoidal
metallic particle can be found, e.g., in monograph [1], to-
gether with expressions for the corresponding averaged
quantities derived in the case of the chaotic orientation
of identical ellipsoidal particles. However, in the cited
work, as well as in other works dealing with this problem
(see also review [12]), its authors used an expression for
the dielectric permittivity function, which corresponded
to the Drude–Sommerfeld model, i.e. expression (1). As
was already emphasized above, the Drude–Sommerfeld
model should be somewhat modified, if the nanoparticle
size becomes smaller than the electron mean free path
[11]. The essence of this modification becomes clear, if

Schematic diagram of light scattering (depicted is only a part of
the light flux directed toward a receiver)

we take expressions (32) and (33) into account. In par-
ticular, we obtain

∣∣α⊥,‖(ω)
∣∣2 =

(
V

4π

)2

×

×
ω4
p + (4πσ⊥,‖(ω)ω)2

(ω2 − ω2
⊥,‖)

2 + (4πL⊥,‖σ⊥,‖(ω)ω)2
, (46)

where the frequencies

ω⊥,‖ ≡
√
L⊥,‖ ωp (47)

correspond to plasma resonances in spheroidal metallic
particles. The addend in the numerator can be neglected
in comparison with ω4

p in the visible range of frequen-
cies. Formula (46) demonstrates that the diagonal com-
ponents of the polarizability tensor have sharp peaks at
plasma resonance frequencies. The half-widths of those
peaks are governed by the diagonal elements of the opti-
cal conductivity tensor σ⊥,‖(ω). In particular, according
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to expression (46), the ratio between the heights of those
peaks is

|α⊥(ω)|2ω=ω⊥

/∣∣α‖(ω)
∣∣2
ω=ω‖

≈
{
L‖σ‖(ω‖)ω‖
L⊥σ⊥(ω⊥)ω⊥

}2

. (48)

The dependence of expressions (46) and (48) on the par-
ticle shape is grounded on the same dependences of both
the depolarization coefficients L⊥ and L‖, and the com-
ponents of the optical conductivity tensor σ⊥(ω) and
σ‖(ω). As for the size dependences for the compo-
nents of the optical conductivity tensor of a spheroidal
metallic particle, they are given by formulas (35)–
(37) in various limiting cases. The general expres-
sions for those components are presented in our works
[5, 6, 11].

The depolarization coefficients have very simple forms
in the case of an ellipsoid of revolution [7], namely,

Lx = Ly ≡ L⊥ =
1
2
(1− L‖), (49)

Lz≡ L‖ =


1−e2p
2e3p

(
ln 1+ep

1−ep
− 2ep

)
, R⊥ < R‖

1+e2p
e3p

(ep − arctan ep) , R⊥ > R‖

 , (50)

where

e2p ≡ |1−R2
⊥/R

2
‖ | .

One can easily see that expression (37) for the high-
frequency conductivity in the spherical case (R⊥ = R‖ =
R) can be obtained from Eq. (1), if one takes Eq. (4) and
substitution (3) into account. Recall that this substitu-
tion is widely used in the literature, if the nanoparticle
size is smaller than the mean free path of an electron.
However, an attempt to use substitution (3) with an in-
termediate R-value between the minimum and the max-
imum of nanoparticle dimensions does not bring about
a desirable result in the asymmetric case (R⊥ 6= R‖).
As one can see from Eqs. (48) and (35)–(37), the use of
this approximation and the actual components of the
conductivity tensor (35) and (36) gives rise to a dif-
ference by several times between the heights of plasma
peaks. For instance, in the case of an oblate spheroid
(R⊥ � R‖), the corresponding results differ by a fac-
tor of four. Hence, the calculation of the nanoparti-
cle shape influence on the half-widths of plasma reso-
nances in the framework of the light scattering problem
is essentially important, being not reducible to small
corrections to the results known for a spherical parti-
cle.

Above, we have shortly analyzed the influence of the
nanoparticle shape on the processes of light scattering
taking the expression for

∣∣α⊥,‖(ω)
∣∣2, which enters into

formula (44) for the scattering cross-section, as an ex-
ample. Besides

∣∣α⊥,‖(ω)
∣∣2, this formula also includes

the expression Re(α⊥(ω)α∗‖(ω)), which also depends on
the particle shape. However, its sensitivity to the shape
of a scattering particle is a little lower, so we will not
dwell on it.

5. Conclusion

In this work, an analytical expression was obtained for
the cross-section of light scattering by a metallic par-
ticle of spheroidal shape. The expression involves not
only the influence of the particle shape on the plasma
resonance frequencies (which has already been taken
into consideration earlier), but also the influence of this
shape on the half-widths of the plasma resonances. If
the nanoparticle dimensions are smaller than the mean
free path of an electron, the electron conductivity of
an asymmetric particle becomes a tensor quantity, and
the diagonal elements of this tensor together with the
depolarization coefficients determine the half-widths of
the plasma resonances. In their turn, the plasma res-
onances and their half-widths govern the intensity of
light scattering in the frequency range close to the res-
onances. It was shown that the results obtained for
the cross-section of light scattering by an anisotropic
metallic nanoparticle considering and not considering
the influence of the nanoparticle shape on the half-
widths of the plasma resonances can differ by several
times.
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ЗАЛЕЖНIСТЬ ПЕРЕРIЗУ РОЗСIЯННЯ СВIТЛА
МЕТАЛЕВИМИ НАНОЧАСТИНКАМИ ВIД ЇХ ФОРМИ

П.М. Томчук

Р е з ю м е

Розвинуто теорiю розсiяння свiтла елiпсоїдальними метале-
вими наночастинками, розмiри яких меншi за довжину вiль-
ного пробiгу електрона у частинцi, а також значно меншi
за довжину електромагнiтної хвилi. Враховано вплив фор-
ми наночастинки як на частоти плазмових резонансiв, так
i на їх пiвширини. У задачi розсiяння свiтла вперше вра-
ховано тензорний характер оптичної провiдностi, що наяв-
ний у випадку таких розмiрiв елiпсоподiбних металевих на-
ночастинок. За допомогою отриманого виразу для попе-
речника розсiяння проiлюстровано iстотний вплив форми
частинки на частотнi i поляризацiйнi залежностi розсiяного
свiтла.
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