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We investigate the conventional Hamiltonian describing the non-
relativistic quantum electrodynamics and the dynamics of the in-
trinsic states of N two-level atoms (molecules). It is shown that
the Hamiltonian, canonically transformed from the conventional
one and including only field operators at the initial time mo-
ment, does not contain the near fields inversely proportional to
the first and second powers of the distance between any pair of
atoms (molecules) on the quite short time scale and allows certain
collective radiative effects including the radiation trapping, where
atoms or molecules act as a whole.

1. Introduction

Today, in a common scientific practice, the non-
relativistic quantum theory of radiation is a quite de-
veloped and verified experimentally tool of investiga-
tion. Many interesting and new phenomena in the do-
mains of superradiance, photon trapping, coherent spec-
tral line broadening, probe beam gain in a strongly
pumped medium were in order to be explained during
the last several decades. The development of the mod-
ern femtosecond light-pulse experimental techniques re-
quires the appropriate revising of the previously built
theoretical approaches (like in [1]) based on the as-
sumption that the evolutional time scale be much big-
ger than the time of light travel though an atomic sys-
tem.

The way to describe the possible effects is based on the
second quantization of the electromagnetic field coupled
withN quite slowly moving identical atoms or molecules.
The methods and the results presented here differ consid-
erably from those of the earlier investigations. In partic-

ular, instead of the construction of evolution equations
for a combination of the particle creation and annihi-
lation operators in the Heisenberg representation, we
analyze the conventional Hamiltonian (the analysis of
the quantization for an electromagnetic field and the
applicable restrictions can be found in [2]) for the sys-
tem and, after its canonical transformation eliminating
the time dependence of the field creation and annihi-
lation operators, find the certain limits of the trans-
formed Hamiltonian. In this paper, we generalize the
formalism of works [1], [3], and [4] to a spatially de-
generated case of non-zero atomic (or molecular) and
off-diagonal dipole matrix elements. We consider the
non-zero atomic or molecular dipoles in the ground and
excited states, all binary combinations of atomic creation
and annihilation operators (including such as σ+

i σ
+
j and

σiσj , with i 6= j – the notations are provided at the
beginning of the next section), and short time inter-
vals of the evolution of the atomic (molecular) operators.
These intervals are comparable by the order of magni-
tude with the period of a resonant electromagnetic wave
(in the optical region it can reach a few femtoseconds for
atomic or molecular transitions to an electronic excited
state).

As compared with works [1] and [3], where well-
localized atoms were investigated, we explicitly consider
the interaction of atoms or molecules with a quantum
radiation bath and show that the obtained Hamiltonian
including only field operators at the initial time moment
does not contain the near fields inversely proportional
to the first and second powers of the distance between
any pair of atoms (molecules). This Hamiltonian in-
volves also certain radiative effects, including the radia-
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tion trapping, where the atoms or molecules act collec-
tively.

2. Theory

We discuss here the gas system of N atoms or molecules
interacting with a quantized multimode electromagnetic
field. We consider only the atomic (molecular) transi-
tions between two levels b (corresponding to the ground
state) and a (corresponding to the excited state) and
neglect the influence of the translational motion of par-
ticles on the absorption (emission) of electromagnetic
field quanta during some characteristic time. In this
problem, it is the period of electromagnetic waves cor-
responding to the resonant atomic transition. Then, in
the dipole approximation, we describe the dynamics of
the N -atomic intrinsic states along with the state of the
electromagnetic field with the help of the following con-
ventional Hamiltonian (the analysis of the dipole approx-
imation can be found, e.g., in [5] and [6]) with the use
of the second quantization for an electromagnetic field:

Ĥ = ~ωa
N∑
i=1

σ+
i σi + ~ωb

N∑
i=1

σiσ
+
i +

+
1
2

∫
d r
(
ε0|E (r) |2 + µ0|H (r) |2

)
−

−
N∑
i=1

(
℘iabσ

+
i + ℘ibaσi + ℘ibbσiσ

+
i + ℘iaaσ

+
i σi

)
E (ri) , (1)

where σ+
i = |a〉〈b|i and σi = |b〉〈a|i are the creation

and annihilation operators of the excited state for the
i-th particle, i = 1..N ; N is number of particles; a
and b denote the excited and ground states of an atom
(molecule), respectively; ri is the position of the i-th
atom or molecule (below, we consider just atoms for
brevity). The diagonal and off-diagonal dipole matrix
elements are defined by terms

(
℘iaa
)∗ = ℘iaa = 〈a|µ̂|a〉i

and
(
℘ibb
)∗ = ℘ibb = 〈b|µ̂|b〉i and

(
℘iab
)∗ = ℘iba = 〈b|µ̂|a〉i,

i = 1..N , respectively, where µ̂ is the dipole operator for
a particle.

In the terms of monochromatic transverse plane waves
in the Heisenberg representation, the electric and mag-
netic field operators E (t, r) and H (t, r) can be written
down as

E (t, r) =
∑
q

êqEqeikqraq (t) + H.c.; (2)

H (t, r) =
1
µ0

∑
q

1
ωq

[kq × êq] Eqeikqraq (t) + H.c.; (3)

where êq is the unit polarization vector perpendicular to
the direction of a wave vector kq for the q-th mode;

Eq =
(

~ωq
2ε0V

)1/2

, (4)

where V is a volume allowed to be “filled-in” by the elec-
tromagnetic field. Introducing the notation aq (t) = aq
and a+

q (t) = a+
q in the Heisenberg representation, where

aq and a+
q are the annihilation and creation operators,

respectively, for the q-th mode. The creation a+
q and

annihilation aq operators for the q-th mode of the elec-
tromagnetic field satisfy the Bose commutation relations
[aq (t) , a+

q′ (t)] = δqq′ .
Taking expressions (2) and (3) into account, we have

the following Hamiltonian in the Heisenberg representa-
tion neglecting the “zero-point” energy:

Ĥ = ~ωa
N∑
i=1

σ+
i σi + ~ωb

N∑
i=1

σiσ
+
i + ~

∑
q

ωqa
+
q aq−

−
N∑
i=1

∑
q

Eq
(
sdi + soi

)
êq
(
eikq riaq + e−ikqria+

q

)
, (5)

where

sdi = ℘ibbσiσ
+
i + ℘iaaσ

+
i σi (6)

and

soi = ℘iabσ
+
i + ℘ibaσi. (7)

Using the evolution equations for the field operators
aq and a+

q (in the Heisenberg representation)

d

dt
aq =

i

~
[Ĥ, aq] = −iωqaq+

i

~
∑
j

Eq
(
sdj + soj

)
êqe
−ikqrj ,

(8)

we derive the equation that has the sense of a canonical
transformation as the consequence of the above canoni-
cal equation of motion:

aq (t) = aq (0) e−iωqt +
i

~
∑
j

Eqe−ikqrj êq×
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×
t∫

0

dt′(sdj
(
t′) + soj(t

′)
)
e−iωq(t−t′). (9)

Substituting (9) in Hamiltonian (5), we finally obtain

Ĥ=~ωa
N∑
i=1

σ+
i σi+~ωb

N∑
i=1

σiσ
+
i +~

∑
q

ωqa
+
q aq−

−
N∑
i=1

∑
q

Eq êq
[
sdi+soi

]
×

×
(
e−i(ωqt−kqri)aq (0) +ei(ωqt−kqri)a+

q (0)
)
−

− i
~

N∑
i=1

N∑
j=1

∑
q

(Eq)2 êq
[
sdi (t) + soi (t)

] {
eikq(ri−rj)êq×

×
t∫

0

dt
′
[
sdj (t

′
) + soj(t

′
)
]
e
−iωq

(
t−t

′)
−

−e−ikq(ri−rj)êq

t∫
0

dt
′
[
sdj (t

′
) + soj(t

′
)
]
eiωq(t−t

′
)
}
. (10)

Next, we search for the limit of continuous modes as V →
∞ in the Hamiltonian above. In this limit, we present
the sum over the electromagnetic modes q through the
integration as

1
V

∑
q

{
êq

[
sdi (t) + soi (t)

]}{
êq

[
sdj (t

′) + soj(t
′)
]}

=

=
1
V

∑
k

[
(sdi (t) + soi (t))(s

d
j (t
′) + soj(t

′))−

−
{
k̂(sdi (t) + soi (t))

}{
k̂(sdj (t

′
) + soj(t

′
))
}]
→

→ lim
ωM→∞

(
1

2π c

)3
ωM∫
0

ω2dω

∫
d k̂×

×
∑

α,α′,β,β′

{∣∣℘iαα′

∣∣ ∣∣∣℘jβ β′

∣∣∣ [(℘̂iαα′ ℘̂
j
β β′

)
−

−
(
℘̂iαα′ k̂

)(
℘̂jβ β′ k̂

)]
|α〉〈α′|i(t)|β〉〈β′|j(t′)

}
, (11)

where α, α′, β, and β′ denote a (excited) or b (ground);
the unit vector k̂ = k̂ = kq/kq is parallel to the “direc-
tion of propagation” of the q-th mode, and d k̂ denotes
the infinitesimal space angle. Each q-th mode includes
two orthogonal polarization planes described by two unit
vectors ê1 ⊥ ê2 ⊥ k̂. The maximum frequency ωM is
quite large (physically), but supposed to be in the re-
gion of the dipole approximation for the electromagnetic
field–atom interaction. Therefore, expression (11) in the
described limit becomes

Ĥ=~ωa
N∑
i=1

σ+
i σi+~ωb

N∑
i=1

σiσ
+
i +~

∑
q

ωqa
+
q aq−

−
N∑
i=1

∑
q

Eq êq
[
sdi+soi

]
×

×
(
e−i(ωqt−kqri)aq (0) +ei(ωqt−kqri)a+

q (0)
)
−

− i

2ε0

(
1

2π c

)3 N∑
i=1

N∑
j=1

lim
ωM→∞

t∫
0

dt′
ωM∫
0

ω3dω

∫
dk̂×

×
{
eikq(ri−rj)

∑
α,α′,β,β′

{∣∣℘iαα′

∣∣ ∣∣∣℘jβ β′

∣∣∣ [(℘̂iαα′ ℘̂
j
β β′

)
−

−
(
℘̂iαα′ k̂

)(
℘̂jβ β′ k̂

)]
|α〉〈α′|i (t) |β〉〈β′|j (t′)

}
×

×e−iωq(t−t′)− e−ikq(ri−rj)×

×
∑

α,α′,β,β′

{∣∣℘iαα′

∣∣ ∣∣∣℘jβ β′

∣∣∣ [(℘̂iαα′ ℘̂
j
β β′

)
−

−
(
℘̂iαα′ k̂

)(
℘̂jβ β′ k̂

)]
|α〉〈α′|i (t) |β〉〈β′|j (t′)

}
eiωq(t−t′)

}
.

(12)

As the next step, we calculate the integral over the space
angle. For this, it is enough to find the following integral
for a item under the sum over the indices α, α′, β, and β′.
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To simplify the calculation, the coordinate system for the
integration is defined by three orthonormal vectors: êz is
parallel to the vector rij = ri− rj (OZ axis) connecting
the j-th atom with the i-th one, êx, and êy; dipole matrix
element’s unit vectors are presented as ℘̂iαα′ =

(
℘̂iαα′

)
‖+(

℘̂iαα′

)
⊥, where the

(
℘̂iαα′

)
‖ component is parallel to

the vector rij (or the axis OZ), and
(
℘̂iαα′

)
⊥ lies in the

plane created by two unit vectors êx and êy (both are
perpendicular to rij). Without any loss of generality, we
may assume that

(
℘̂iαα′

)
⊥ · êy = 0 (only x component

is saved for ℘̂iαα′ , that is not true for ℘̂jβ β′) and k̂ =
cosϕ sin θêx + sinϕ sin θêy + cos θêz. We now have(
℘̂iαα′ k̂

) (
℘̂jβ β′ k̂

)
=
[(
℘̂jβ β′ êx

)
cos2 ϕ+

+
(
℘̂jβ β′ êy

)
sinϕ cosϕ

] (
℘̂iαα′ êx

)
sin2 θ+

+
(
℘̂iαα′ êx

) (
℘̂jβ β′ êz

)
cosϕ sin θ cos θ+

+
(
℘̂iαα′ êz

) (
℘̂jβ β′ êz

)
cos2 θ +

(
℘̂iαα′ êz

)
×

×
[(
℘̂jβ β′ êx

)
cosϕ+

(
℘̂jβ β′ êy

)
sinϕ

]
cos θ sin θ. (13)

Therefore,∫
d k̂ eikqrij

[(
℘̂iαα′ ℘̂

j
β β′

)
−
(
℘̂iαα′ k̂

)(
℘̂jβ β′ k̂

)]
=

= π

∫
d θ sin θ

{
2
(
℘̂iαα′ ℘̂

j
β β′

)
−
(
℘̂iαα′

)
⊥

(
℘̂jβ β′

)
⊥

+

+
[(
℘̂iαα′

)
⊥

(
℘̂jβ β′

)
⊥
−

−2
(
℘̂iαα′

)
‖

(
℘̂jβ β′

)
‖

]
cos2 θ

}
ei kq rij cos θ =

= 4π

{[(
℘̂iαα′ ℘̂

j
β β′

)
−
(
℘̂iαα′

)
‖

(
℘̂jβ β′

)
‖

] sin (kq rij)
kq rij

+

+
[(
℘̂iαα′ ℘̂

j
β β′

)
− 3

(
℘̂iαα′

)
‖

(
℘̂jβ β′

)
‖

]
×

×

(
cos (kq rij)
(kq rij)

2 − sin (kq rij)
(kq rij)

3

)}
. (14)

Substituting the integral found above in expression (12)
with kq = ω

c , we want to find the integral over the fre-
quency. For this, we use the following expressions (cal-
culated in Appendix):

I0

(rij
c
, t−t′

)
=

ωM∫
0

dω sin
(rij
c
ω
)
e−iω(t−t

′) →

→ − iπ
2

{
δ
(
t′−

(
t−rij

c

))
−δ
(
t′−

(
t+

rij
c

))}
, (15)

I1

(rij
c
, t−t′

)
=

ωM∫
0

dω ω cos
(rij
c
ω
)
e−iω(t−t

′)→0, (16)

and, finally,

I2

(rij
c
, t−t′

)
=

ωM∫
0

dω ω2 sin
(rij
c
ω
)
e−iω(t−t

′)→

→ iπ

2

{
∂2

∂t′2
δ
(
t′−

(
t−rij

c

))
− ∂2

∂ t′2
δ
(
t′−

(
t+
rij
c

))}
.

(17)

Therefore, by integrating the reviewed item in
(12)over the time and taking into account that
I0 (0, t− t′) = I1 (0, t− t′) = I2 (0, t− t′) = 0 for rij =
0, we obtain the Hamiltonian

Ĥ = ~ωa
N∑
i=1

σ+
i (t)σi (t) +

+~ωb
N∑
i=1

σi (t)σ+
i (t) + ~

∑
q

ωqa
+
q (t) aq (t)−

−
N∑
i=1

∑
q

Eq êq
[
sdi (t) + soi (t)

]
×

×
(
e−i(ωqt−kq·ri)aq (0) + ei(ωqt−kq·ri)a+

q (0)
)

+
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+
1

4πε0

N,N∑
i, j; i 6=j

1
|ri (t)− rj

(
t− rij

c

)
|3
×

×
∑

α,α′,β,β′

∣∣℘iαα′

∣∣ ∣∣∣℘jβ β′

∣∣∣ [ (℘̂iαα′ (t) · ℘̂jβ β′

(
t− rij

c

))
−

−3
(
℘̂iαα′

)
‖ (t) ·

(
℘̂jβ β′

)
‖

(
t− rij

c

)]
×

×|α〉〈α′|i (t) |β〉〈β′|j
(
t− rij

c

)
. (18)

Let us substitute (9) in (18). We obtain the Hamiltonian
in terms of the operators of creation and annihilation
at the time t0 = 0. This yields the following changes:
instead of ~

∑
q ωqa

+
q (t) aq (t) , we have

~
∑
q

ωqa
+
q (0) aq (0) ; (19)

and

i

N∑
i=1

∑
q

a+
q (0)ωqEq e−i(kqri)êq×

×
t∫

0

d t′
[
sdi (t′) + soi (t′)

]
eiωqt

′
+H. c. =

=
N∑
i=1

∑
q

Eq êq
[
sdi (t̄) + soi (t̄)

] {
aq (0) ei(kqri)×

×
[
e−iωq t − 1

]
+ a+

q (0) e−i(kqri)
[
eiωq t − 1

]}
, (20)

where t̄ ∈ [0, t] is an averaged time corresponding to
the integration of a function changing quite slowly with
the time, as compared with a periodic function. The
Hamiltonian includes also the term

1
i

1
2ε0

(
1

2π c

)3 N∑
i=1

N∑
j=1

t∫
0

dt′′
t∫

0

dt′×

× lim
ωM→∞

ωM∫
0

ω3dω

{(
∂

∂ t′
e−iω(t

′′−t′)
)∫

d k̂ eikq(ri−rj)×

×
∑

α,α′,β,β′

∣∣℘iαα′

∣∣ ∣∣∣℘jβ β′

∣∣∣ |α〉〈α′|i (t′) |β〉〈β′|j (t′′)×

×
[(
℘̂iαα′ ℘̂

j
β β′

)
−
(
℘̂iαα′ k̂

)(
℘̂jβ β′ k̂

)]}
. (21)

By introducing the notation

F (t′, t′′) =
N,N∑
i, j; i 6=j

1
|ri (t′)− rj (t′′) |3

×

×
∑

α,α′,β,β′

∣∣℘iαα′

∣∣ ∣∣∣℘jβ β′

∣∣∣ [ (℘̂iαα′ (t′) ℘̂jβ β′ (t′′)
)
−

−3
(
℘̂iαα′

)
‖ (t′)

(
℘̂jβ β′

)
‖
(t′′)

]
|α〉〈α′|i (t′) |β〉〈β′|j (t′′) ,

(22)

we can present it, after the integrations over the space
angle and the frequency, for sufficiently short intervals
[0, t] as

1
2

1
4πε0

t∫
0

dt′′
t∫

0

dt′

{
∂

∂ t′

[
δ
(
t′ −

(
t′′ − rij

c

))
−

−δ
(
t′ −

(
t′′ +

rij
c

))]}
F (t′, t′′) =

= −1
2

1
4πε0

t∫
0

dt′′

[
1
2
∂

∂ t′′
F
(
t′′ − rij

c
, t′′
)
−

−1
2
∂

∂ t′′
F
(
t′′+

rij
c
, t′′
)]

= −1
2

1
4πε0

[
1
2
F
(
t− rij

c
, t
)
+

+
1
2
F
(rij
c
, 0
)]
≈ −1

2
1

4πε0
F
(
t− rij

c
, t
)
. (23)

Here, we took into account that the derivatives of the
delta-functions will give non-zero integrals only in the
integration region [0, t; 0, t]. Hence, the “outside” terms
−F

(
− rij

c , 0
)

and −F
(
t+ rij

c , t
)

are zeroed. Moreover,
the symmetry of the quadratic form (22) of the function
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F (t′′, t′′) was used to obtain the total derivative under
the sign of double integral. For the subsequent integra-
tion over the plane [0, t; 0, t], we can apply the relation(
∂

∂ y
F (y, t′′)

)
y=t′′

=
1
2
∂

∂ t′′
F (t′′, t′′) . (24)

Thus, substituting (23 and (19) into Hamiltonian (18)
and taking into account that term (20) cancels the sim-
ilar term in the Hamiltonian for sufficiently short time
intervals [0, t], we obtain the following limit of Hamilto-
nian (11):

Ĥ ≈ ~ωa
N∑
i=1

σ+
i (t)σi (t) + ~ωb

N∑
i=1

σi (t)σ+
i (t) +

+~
∑
q

ωqa
+
q (0) aq (0)−

N∑
i=1

∑
q

Eq êq
[
sdi (t) + soi (t)

]
×

×
(
eikqriaq (0) + e−ikqria+

q (0)
)
+

+
1
2

1
4πε0

N,N∑
i, j; i 6=j

1
|ri (t)− rj (t) |3

×

×
∑

α,α′,β,β′

∣∣℘iαα′

∣∣ ∣∣∣℘jβ β′

∣∣∣ [ (℘̂iαα′ (t) ℘̂jβ β′ (t)
)
−

−3
(
℘̂iαα′

)
‖ (t)

(
℘̂jβ β′

)
‖
(t)
]
|α〉〈α′|i (t) |β〉〈β′|j (t) . (25)

Here, we assumed that the introduced operator F (t′, t′′)
is not changed significantly on the intervals t′, t′′ ∈
[t0, t = t0 + Δt] such that Δt > rij/c for any pair of
atoms (molecules) i and j:

∂

∂ t′
F (t′, t′′) Δt� F (t′, t′′) . (26)

As a result, while summing over the atomic indices i and
j in Hamiltonian (25), we have to consider only such
pairs of atoms, whose coordinates satisfy the condition
Δt > rij/c. Other pairs with rij > cΔt will not con-
tribute in accordance with the obtained expression (15)
for the integral I0

( rij

c , t− t
′) (15).

3. Conclusion

In this paper, we have obtained the model Hamiltonian
for the N -atomic (molecular) system in a continuum
of quantized electromagnetic modes with regard for the
possibility of a two-photon excitation or decay (jumps)
involving a pair of atoms interacting with a dipole-dipole
coupling. For comparison, the earlier theoretical work [3]
described the evolution of two dipole-dipole interacting
atoms in a vacuum with only one atom being initially ex-
cited; work [7] considered two two-level atoms indepen-
dently interacting with local thermal or squeezed reser-
voirs, taking the possibility of their initial simultaneous
excitation into account, but neglecting the dipole-dipole
interaction; works [8] and [9] follow the approximations
of [1] and [4], just adding an additional state correspond-
ing to two simultaneously excited atoms to the model
that differs basically from our description.

The obtained Hamiltonian allows to model the dipole-
dipole interaction between atoms or molecules, includ-
ing the atomic (molecular) interaction with the radia-
tion bath, and to build the microscopic kinetic equations
for density matrix elements of the system in a straight-
forward manner. The more cumbersome approach in-
volving the Green function method (as in [10] - [14])
does not allow one to formulate the kinetic equations in
terms of the density matrix describing the probability
distribution of states of a system.

The Hamiltonian derived in the present paper con-
tains only field operators at the initial time moment and
the atomic (molecular) operators in the Heisenberg rep-
resentation and does not possess the near fields inversely
proportional to the first and second powers of the dis-
tance between any pair of particles. The described “short
time scale” limit of the Hamiltonian has a dependence
inversely proportional to the cube of the distance be-
tween atomic pairs and clarifies the collective character
of certain radiative effects, including the radiation trap-
ping.

APPENDIX

Here, we show how the introduced integrals (15), (16), and (17)
were calculated.

I0
(
τ, t− t′

)
=

ωM∫
0

dω sin (τω) e−iω(t−t′) =

=
1

2

{
−iπ

sin [ωM (τ − (t− t′))]
π (τ − (t− t′))

+ iπ
sin [ωM (τ + (t− t′))]

π (τ + (t− t′))
+

+
1− cos [ωM (τ − (t− t′))]

τ − (t− t′)
+

1− cos [ωM (τ + (t− t′))]
τ + (t− t′)

}
; (27)
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and

I1
(
τ, t− t′

)
=

ωM∫
0

dω ω cos (τω) e−iω(t−t′) =

=
1

2

{
πωM

sin [ωM (τ − (t− t′))]
π (τ − (t− t′))

+ i
sin [ωM (τ − (t− t′))]

(τ − (t− t′))2
−

−πωM
1− cos [ωM (τ − (t− t′))]

πωM (τ − (t− t′))2
+ ωM

cos [ωM (τ − (t− t′))]
i (τ − (t− t′))

+

+πωM
sin [ωM (τ + (t− t′))]

π (τ + (t− t′))
− i

sin [ωM (τ + (t− t′))]
(τ + (t− t′))2

−

−πωM
1− cos [ωM (τ + (t− t′))]

πωM (τ + (t− t′))2
− ωM

cos [ωM (τ + (t− t′))]
i (τ + (t− t′))

}
;

(28)

and the integral

I2
(
τ, t− t′

)
=

ωM∫
0

dω ω2 sin (τω) e−iω(t−t′) =

1

2i

{
ω2
M

[
eiωM (τ−(t−t′))

i (τ − (t− t′))
+
e−iωM (τ+(t−t′))

i (τ + (t− t′))

]
−

−2ωM

[
eiωM (τ−(t−t′))

(i (τ − (t− t′)))2
−
e−iωM (τ+(t−t′))

(i (τ + (t− t′)))2

]
+

+2

[
eiωM (τ−(t−t′))

(i (τ − (t− t′)))3
+
e−iωM (τ+(t−t′))

(i (τ + (t− t′)))3

]
−

−2

[
1

(i (τ − (t− t′)))3
+

1

(i (τ + (t− t′)))3

]}
. (29)

The last expression can be rewritten in terms corresponding to the
delta-functional sequences, by using the formula

sin [ωM (τ − (t− t′))]
(τ − (t− t′))3

=
1

2

{
d2

dt′2

(
sin [ωM (τ − (t− t′))]

τ − (t− t′)

)
+

+πω2
M

sin [ωM (τ − (t− t′))]
π (τ − (t− t′))

+2ωM
cos [ωM (τ − (t− t′))]

(τ − (t− t′))2

}
; (30)

so that,

I2
(
τ, t− t′

)
=

ωM∫
0

dω ω2 sin (τω) e−iω(t−t′) =

=
1

2i

{
πω2

M

sin [ωM (τ − (t− t′))]
π (τ − (t− t′))

+ 2iωM
sin [ωM (τ − (t− t′))]

(τ − (t− t′))2
−

−
[
π
d2

dt′2

(
sin [ωM (τ − (t− t′))]

π (τ − (t− t′))

)
+πω2

M

sin [ωM (τ − (t− t′))]
π (τ − (t− t′))

+

+2ωM
cos [ωM (τ − (t− t′))]

(τ − (t− t′))2

]
− iω2

M

cos [ωM (τ − (t− t′))]
τ − (t− t′)

+

+2ωM
cos [ωM (τ − (t− t′))]

(τ − (t− t′))2
−

−2iπωM

[
1

τ − (t− t′)
1− cos [ωM (τ − (t− t′))]

πωM (τ − (t− t′))2

]
−

−πω2
M

sin [ωM (τ + (t− t′))]
π (τ + (t− t′))

+ 2iωM
sin [ωM (τ + (t− t′))]

(τ + (t− t′))2
+

+

[
π
d2

dt′2

(
sin [ωM (τ + (t− t′))]

π (τ + (t− t′))

)
+πω2

M

sin [ωM (τ + (t− t′))]
π (τ + (t− t′))

+

+2ωM
cos [ωM (τ + (t− t′))]

(τ + (t− t′))2

]
− iω2

M

cos [ωM (τ + (t− t′))]
τ + (t− t′)

−

−2ωM
cos [ωM (τ + (t− t′))]

(τ + (t− t′))2
−

−2iπωM

[
1

τ + (t− t′)
1− cos [ωM (τ + (t− t′))]

πωM (τ + (t− t′))2

]}
. (31)

As is now obvious, the terms non-integrable over the time,
cos[ωM (τ±(t−t′))]

(τ±(t−t′))2 , cancel one another. In addition, two delta-

functional sequences
sin[ωM (τ±(t−t′))]

π(τ±(t−t′)) , each having its corre-
sponding pair with opposite sign, cancel each other.

We now are ready to complete the calculation of the integral
over the time in Hamiltonian (12). We present the delta-functional
sequences under the time integral in the “large” (physically) fre-
quency limit (formally ωM →∞) through the corresponding delta-
functions:
sin [ωM (τ ± (t− t′))]

π (τ ± (t− t′))
→ δ

(
t′ − (t± τ)

)
, (32)

1− cos [ωM (τ ± (t− t′))]
πωM (τ ± (t− t′))2

→ δ
(
t′ − (t± τ)

)
, (33)

and
d2

dt′2
sin [ωM (τ ± (t− t′))]

π (τ ± (t− t′))
→

d2

dt′2
δ
(
t′ − (t± τ)

)
. (34)

In addition, we take into account that the integration of the prod-
uct of an odd function and an even function in the sense of princi-
pal value gives zero in our case. As one can see, the sign-changing
functions are odd relative to the point t′ = t − τ in the above
expressions for integrals (27), (28), and (31) with t > τ , where
τ =

rij

c
is the time for light to pass the distance between the two

atoms i and j. Furthermore, if a singular point is outside the re-
gion of integration, the integral value can be disregarded due to the
“very fast” oscillating integrand and the above-limited norm for the
time-dependent atomic operators |α〉〈α′|i (t) and |β〉〈β′|j (t′) with
a quite slowly changing functions f (t′) = f̃

(
℘̂i
αα′ (t′) , rij (t′)

)
during the time interval t. We suppose that the atomic positions
change negligibly for the time interval equal to the minimum pe-
riod 2π

ωmax
. Such situations arise, for example, for the integrals like

the following ones:

lim
ωM→∞

P
t∫

0

d t′
1− cos [ωM (τ ± (t− t′))]

πωM (τ ± (t− t′))3
Φ
(
t′
)
→ 0, (35)

lim
ωM→∞

P
t∫

0

d t′
cos [ωM (τ ± (t− t′))]
πωM (τ ± (t− t′))

Φ
(
t′
)
→ 0, (36)

and

lim
ωM→∞

P
t∫

0

d t′
sin [ωM (τ ± (t− t′))]

(τ ± (t− t′))2
Φ
(
t′
)
→ 0, (37)

where P stands for the principal value of the integral, and the
symbol Φ(t′) is instead of f (t′) |α〉〈α′|i (t) |β〉〈β′|j (t′).
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As a result, we can use the following formulas:

I0
( rij
c
, t− t′

)
→

→ −
iπ

2

{
δ
(
t′−

(
t−
rij

c

))
−δ
(
t′−

(
t+
rij

c

))}
, (38)

I1
( rij
c
, t− t′

)
→ 0, (39)

and, finally,

I2
( rij
c
, t− t′

)
→

→
iπ

2

{
∂2

∂ t′2
δ
(
t′−

(
t−
rij

c

))
−

∂2

∂ t′2
δ
(
t′−

(
t+
rij

c

))}
. (40)
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ОТРИМАННЯ МОДЕЛЬНОГО ГАМIЛЬТОНIАНА
ГРАНИЦI “КОРОТКИХ ЧАСОВИХ IНТЕРВАЛIВ”

А.С. Сiжук, С.М. Єжов

Р е з ю м е

Дослiджено гамiльтонiан, який описує нерелятивiстську систе-
му N частинок (атомiв чи молекул), що взаємодiють iз кванто-
ваним електромагнiтним полем. Показано, що канонiчне пере-
творення такого гамiльтонiана, яке залишає у початковий мо-
мент часу лише оператори поля, для достатньо коротких про-
мiжкiв часу не генерує поля, що обернено пропорцiйне першо-
му i другому ступеню вiдстаней мiж частинками, а також роз-
криває певнi колективнi ефекти, включаючи захоплення еле-
ктромагнiтного поля системою частинок.
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