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The standard Cahn–Hilliard model of spinodal decomposition has
an essential fault, because it uses the approximation of equilibrium
vacancies, which is valid only for processes with a characteristic
length larger than the mean free path of vacancies. A procedure for
the consideration of a non-equilibrium redistribution of vacancies
at the spinodal decomposition and its influence on the decomposi-
tion kinetics is proposed. The hierarchy of characteristic times for
the evolution of the morphology and the concentration is analyzed
for a two-dimensional system.

1. Introduction

Initial stages of the spinodal decomposition were ele-
gantly described by Hillert [1] and Cahn and Hilliard
[2]. In this case, the nonlocal interactions correspond-
ing to gradient terms in the equation for the Gibbs
free energy density for inhomogeneous alloys were taken
into account. Since the middle of the 1990s, the three-
dimensional atomic tomography made it possible to ex-
perimentally study the details of an alloy structure in
the course of spinodal decay [3]. This technique enables
both the structure and the distribution of concentrations
to be analyzed simultaneously. In their classical theory,
Cahn and Hilliard (CH) obtained the optimum param-
eters of a lamellar structure, making allowance for the
gradient terms and the elastic energy for an inhomoge-
neous alloy. They used a modified thermodynamics, but
in the framework of the standard kinetic approach, by
applying the Darken approach [4] for the description of
the diffusion redistribution between lamellae.

The basic Darken assumption consists in admitting
a strictly equilibrium concentration of vacancies, ev-
erywhere and at every time. A probable influence of
nonequilibrium defects on the kinetics and the result of

the spinodal decomposition were analyzed much later.
In particular, the spinodal decomposition in a thin film
with a periodic distribution of dislocations over the sur-
faces was studied by Hu and Chen [5]. They developed
a phase field model for simulating the influence of peri-
odically distributed interfacial dislocations on the pro-
cess of spinodal decomposition in a confined film. The
results of work [5] showed that the dislocation-induced
stresses give rise to a directional spinodal decomposition.
A probable influence of nonequilibrium vacancies on the
spinodal decomposition was examined for the first time
in work [6].

After the works by Nazarov, Gurov, and others [7–9],
it became evident that the Darken approximation is valid
only if the mean free path of vacancies (from a source to
a sink) is much shorter than the characteristic diffusion
length of the problem. A more detailed analysis of this
problem was presented by Fischer and Svoboda [10]. In
that work, the vacancy concentration coincides with the
equilibrium one only on the surface of a multicomponent
layer acting as an ideal source and a sink for vacancies (in
works [6,8], the vacancy sources and sinks are considered
as “smeared” over the volume).

The relaxation kinetics of vacancies at the spinodal
decomposition was also taken into account in a recently
proposed approach of self-consistent mean field [11]. In
the case of the mutual diffusion, the characteristic diffu-
sion length is simply the width of a diffusion zone. In the
case of the spinodal decomposition, especially at its ini-
tial stage, the characteristic diffusion length is the period
of a lamellar structure, i.e. its magnitude does not ex-
ceed tens of nanometers. This value is much shorter than
the characteristic mean free path of vacancies in real al-
loys, which, as a rule, is of a micron order. Therefore,
while describing the emergence of a lamellar structure,
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it is necessary to consider a nonequilibrium redistribu-
tion of vacancies between lamellae, which is induced by
the difference between the partial diffusion coefficients
of components.

Really, let the mobility of atoms B be higher than
that of atoms A. Then, when the components are sep-
arated in the course of spinodal decomposition, the ini-
tial diffusion flux of atoms B directed toward the band
of the “future” beta-phase has to be larger than the in-
verse flux of atoms A toward the band of the “future”
alpha-phase. This means that the vacancy flux from
the beta-band into the alpha-one must emerge. Hence,
there must arise the vacancy oversaturation in the “fu-
ture” alpha-phase and the vacancy undersaturation in
the “future” beta-phase. In other words, not only a wave
of basic components, A and B, emerges, but also of va-
cancies. As we will see below, not all redundant vacan-
cies have enough time to migrate to sinks for the charac-
teristic decomposition time, which means that the local
gradients of vacancy concentrations cannot be neglected
in the diffusion equation. According to the general Le
Chatelier–Braun damping principle, the emergence of a
nonequilibrium vacancy distribution must slow down the
decomposition. The specific damping mechanism is as-
sociated in this case with the so-called inverse Kirkendall
effect [12].

In this work, we confine our consideration to a sim-
plified account of vacancy sinks/sources, by assuming
them “smeared” over the lattice, and their finite capacity
is taken into account by introducing the average relax-
ation time of vacancies, τ , or the mean free path, LV . In
Section 2, we follow the basic ideas of the classical deriva-
tion by CH, but supplement the formulation by taking
nonequilibrium vacancies into consideration. In so do-
ing, we determine how the optimum period of a lamellar
structure depends on LV . In Section 3, we go beyond
the scope of the linearity and one-dimensionality approx-
imations and study the spinodal decomposition in a two-
dimensional model for an arbitrary amplitude of concen-
tration waves. We determine the time dependences for
the characteristic heterogeneity length and a deviation
of the concentration from its average value at various
mean free paths of vacancies. We get convinced that the
kinetics of spinodal decomposition is governed by two
different, although interdependent, processes; namely, a
change of the morphology (the topology of isoconcentra-
tion lines) and the very stratification of components at
the given morphology. In this case, the finite capacity
of vacancy sources and sinks really turns out to be an
important factor for both processes (the topological and
concentration ones).

2. Linear Approximation. One-dimensional
Case

In this section, we confine the consideration to the initial
stage of spinodal decomposition, when the amplitudes of
the concentration stratification are much less than 1, so
that the concentration waves can be regarded indepen-
dent and all kinetic coefficients constant. By generalizing
the known CH equations and taking the local gradients
of vacancy concentrations into account, the component
fluxes in the laboratory coordinate system can be writ-
ten down in the form [6]

ΩIB = −(cAD∗B + cBD
∗
A)
cAcB
kT
∇µef+

+
cAcB (D∗B −D∗A)

cV
∇cV , (1)

ΩIV = (D∗B −D∗A)
cAcB
kT
∇µef −

(cBD∗B + cAD
∗
A)

cV
∇cV ,

(2)

where IB and IV are the flux densities of atoms B and
vacancies, respectively, times the atomic volume (the di-
mensionality of those products is that of speed); cB ,
cA, and cV are the atomic fractions of atoms B, A,
and vacancies, respectively, with cB + cA + cV = 1;
k is the Boltzmann constant; T is the temperature;
µef = ∂g

∂c − 2K∇2cB is the chemical potential, which
takes the nonlocal interactions in inhomogeneous alloys
into account; K is the coefficient of the squared con-
centration gradient in the expression for the Gibbs po-
tential density of an inhomogeneous alloy; and D∗B and
D∗A are the intrinsic diffusion coefficients of atoms B and
A, respectively. Equations (1) and (2) contain the cross
terms, which describe the mutual influence of component
B and vacancy fluxes. In particular, the second term in
Eq. (1) describes the influence of nonequilibrium vacan-
cies on the flux of B-atoms. This influence is governed by
the difference between the intrinsic diffusion coefficients
of components. The first term in Eq. (2) describes, on
the contrary, the influence of the component mobility
difference on the vacancy flux. Accordingly, the vari-
ations of B-component and vacancy concentrations in
time are described by a continuity equation, which takes
into account that the number of main-component atoms
remains constant, whereas vacancies can disappear and
emerge,

∂cB
∂t

= −div (IB) , (3)
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∂cV
∂t

= −div (IV )−
cV − ceqV
τV

. (4)

One should bear in mind that Eq. (4) is written down
in the relaxation approximation, i.e. the vacancy sources
and sinks are considered to be “smeared” over the lattice.

At the initial stage of spinodal decomposition, the am-
plitude of a concentration wave can be adopted small.
Consequently, Eqs. (3) and (4) can be linearized with re-
gard for a spatial heterogeneity of only those quantities,
which stand under gradients in Eqs. (1) and (2). Since
the variations in the B-component and vacancy concen-
trations are interdependent now, it is natural, unlike the
standard CH approach, to seek the solution of linearized
Eqs. (3) and (4) in the form of two interdependent con-
centration waves,

cB = AB(t) sin(kx), cV − ceqV = AV (t) sin(kx). (5)

Since the mobility of vacancies is much higher than
that of atoms, it is reasonable to assume that the va-
cancy subsystem has enough time to follow slow varia-
tions of the main-component concentration. As a result,
we can use a reduced description by imposing the qua-
sistationarity condition on the vacancy concentration,
∂cV

∂t ≈ 0. The substitution of this condition into Eq. (4)
with regard for Eqs. (5) gives the following relation be-
tween the amplitudes of the vacancy and B-component
concentrations:

AV
∼= ABk

2
(D∗B −D∗A) cAcB

kBT

(
g′′ + 2K

L2
V

(kLV )2
)

(kLV )2 + 1
. (6)

The substitution of Eq. (6) into Eq. (3) in view of
Eqs. (1) and (5) results in a simple differential equation
for the amplitude of a concentration wave of component
B,

dAB

dt
= R(k)AB , (7)

where

R(k) = −k2(g′′ + 2Kk2)
cAcB
kBT

×

×
{
cAD

∗
B + cBD

∗
A −

(D∗B −D∗A)2

cV DV
cAcB

(kLV )2

(kLV )2 + 1

}
.

(8)

Analogously to the standard CH theory, the solution
of Eq. (7) has an exponential form,

AB = exp(R(k)t). (9)

The concentration wave amplitude decreases if R(k) <
0 or grows if R(k) > 0.

However, besides the terms that are standard for the
CH theory and include the second and fourth degrees of
the wave number, the expression for R(k) also contains
a multiplier in the braces (see Eq. (8)). Its presence
changes the position of the R(k)-curve maximum, which
is the most pronounced at very small ratios between the
partial diffusion coefficients. The most amazing differ-
ence of our results from the CH theory is obtained, if
r = D∗A�D∗B = 0. In this case, the maximum of ex-
pression (8) can be found analytically, namely, the wave
number k∗, at which the dependence R(k) attains its
maximum, equals

k∗ =
1
LV

√√
L2

V |g′′|
2K

+ 1− 1. (10)

In particular, if L2
V |g

′′|
2K � 1 (i.e. the free path length

of vacancies is large, and, respectively, their relaxation

is slow), then k∗ ≈ (1�LV )
(

L2
V |g

′′|
2K

)1/4

=
(
|g′′|

2KL2
V

)1/4

.
Recall that, according to the CH theory (in which the
vacancy free path length tends to zero, being practically
shorter than the period of a lamellar structure), the con-
centration wave with a different characteristic wave num-
ber, k∗CH =

(
|g′′|
4K

)1/2

, grows maximally rapidly. Hence,
the ratio between the wave numbers of the concentra-
tion waves that grow most rapidly in those two limiting
cases – absolutely inefficient sinks/sources and, on the
contrary, perfectly efficient sinks/sources of vacancies –
equals

k∗

k∗CH

=
(

8K
L2

V |g′′|

)1/4

. (11)

By introducing the optimum length of a concentration
wave from the CH theory, ratio (11) can be expressed in
the form

λ∗CH

λ∗
=

1
21/4
√
π

√
λ∗CH

LV
. (12)

Taking into account that the order of magnitude of
the typical theoretical values for λ∗CH is no more than
tens of nanometers, and the mean free paths for vacan-
cies amount to hundreds and thousands of nanometers,
Eq. (12) testifies that, if either of the components is to-
tally inertial at the vacancy diffusion, the periods of a
lamellar structure have to be much longer than those
predicted by the CH theory. In fact, the difference is
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not so large. It diminishes very quickly, when the pa-
rameter r = D∗A�D∗B deviates from zero. This can be
seen from the plots of the dependence λ∗(r) depicted
in Fig. l, which were obtained by optimizing expression
(8) at various mean free paths LV . We see that the
transition to the classical CH mode occurs at very small
r-values and does not change any more after that.

3. Kinetics of Spinodal Decomposition in a
Two-Dimensional Alloy. Nonlinearity Effects

Let us consider the kinetics of spinodal decomposition in
a two-dimensional alloy at every stage of the process, by
putting no restrictions concerning the linearity. Equa-
tions (1) and (2) for the fluxes remain invariable. The
redistributions of atoms and vacancies are determined
by the continuity equations

∂cB
∂t

= − ∂

∂x
(IB)− ∂

∂y
(IB), (13)

∂cV
∂t

= −div(IV )−
cV − ceqV

τ
. (14)

The account of a finite capacity of sources and sinks of
vacancies is carried out on a coarsened spatial scale (in
the relaxation approximation). Remaining in the frame-
work of the assumption concerning the quasistationarity
of vacancies, but going beyond the linearity approxima-
tion, and taking the two-dimensional geometry of the
problem into account, we obtain the following differen-
tial equation for the vacancy distribution at any fixed
distribution of the basic component:

∇2(cV − ceqV )− 1
L2

V

(cV − ceqV ) =
1
DV

div(ψ), (15)

where

div(ψ) =
∂

∂x

{
(D∗B −D∗A)

cAcB
kBT

∂

∂x
×

×
(
∂g

∂cB
− 2K

[
∂2cB
∂x2

+
∂2cB
∂y2

])}
+

+
∂

∂y

{
(D∗B −D∗A)

cAcB
kBT

∂

∂y
×

×
(
∂g

∂cB
− 2K

[
∂2cB
∂x2

+
∂2cB
∂y2

+
])}

. (16)

Fig. 1. Dependences of the optimum period in a lamellar structure
on the ratio between the diffusion coefficients of labeled compo-
nent atoms at K = 10−37 J · m2 and various mean free paths of
vacancies: LV = 10−6 (1), 5 × 10−6 (2), and 10−7 m (3)

Certainly, the system of nonlinear equations (13) and
(15) cannot be solved analytically. We obtained a solu-
tion numerically, using the explicit scheme for a finite-
difference analog of Eq. (13) with the same space in-
crement h along both axes and an iteration procedure
for the determination of a vacancy field from Eq. (15).
Specifically, Eq. (15) was written down in the finite-
difference form including the new and previous itera-
tions,

(cnV [i+ 1, j] + cnV [i− 1, j] + cnV [i, j + 1] + cnV [i, j − 1]−

−4cn+1
V [i, j])/(h2)−

cn+1
V [i, j]− ceqV

L2
V

=
1
DV

(div(ψ))n
i,j ,

whence

cn+1 =

(
cnV [i+ 1, j] + cnV [i− 1, j] + cnV [i, j + 1]+

+cnV [i, j − 1]− h2

DV
(div(ψ))n

i,j +
h2

L2
V

ceqV

)/(
4 +

h2

L2
V

)
.

(17)

The iteration procedure is usually terminated, when a
preset accuracy is achieved. This algorithm was applied
to calculate the time evolution of the concentration fields
for both B-component and vacancies.

To characterize a spatial heterogeneity of the system,
we used the characteristic heterogeneity length, which
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Fig. 2. Time dependence of the heterogeneity length at various
relaxation times of vacancies τ = 10−8 (1), 10−7 (2), 5 × 10−7

(3), 10−6 (4), and 5× 10−6 s (5). The values of other parameters
are quoted in the text

was determined as follows:

λ =

√√√√ ∑∑
(cB [i, j]− c̄B)2∑∑[

(cB [i+1,j]−cB [i−1,j])2

4h2 + (cB [i,j+1]−cB [i,j−1])2

4h2

] .
(18)

To characterize the decomposition degree (the degree
of component separation), we used the deviation param-
eter dev, i.e. the root-mean-square deviation from the
average value,

dev =

√∑∑
(cB [i, j]− c̄B)2∑∑

1
. (19)

Evidently, the spinodal decomposition can be talked
about only if the deviation is smaller than the half-width
of the spinodal region.

One of our purposes was to compare the evolution ki-
netics of those two, just introduced parameters – “mor-
phologic” and concentration ones. The calculations were
carried out for the model of regular solid solution com-
plemented with the nonlocal Cahn interaction,

g =
z

2
(
c2AΦAA + c2BΦBB + 2cBcAΦAB

)
+

+kBT (cA ln cA + cB ln cB) + p(cAΩA + cBΩB) + 3kBT,

Fig. 3. Time dependence of the heterogeneity length at various
times of vacancy relaxation τ = 10−7 (1) and 10−8 s (2)

where ΦAA = ΦBB = −3×10−20 J, ΦAB = −1×10−20 J,
T = 800 K, z = 12, ΩA = ΩB = Ω = 2× 10−29 m3, and
K = 6.26×10−36 J ·m2. The selected value for the coeffi-
cient K in the gradient term is considerably larger than
the values determined experimentally by G. Schmitz’s
group [13] for CuPy and AgCu systems. However, it
enabled us to work with a coarser spatial mesh. The
initial concentration was cB0 = 0.5 in this case. The
diffusion coefficients of labeled atoms, provided the va-
cancy diffusion mechanism, are proportional to the va-
cancy concentration; therefore, they were introduced as
the products D∗A,B = cV K

∗
A,B . In this case, the kinetic

coefficients K∗A and K∗B were determined by the formu-
las K∗A = K∗A0 exp(αAcB) and K∗B = K∗B0 exp(αBcB),
where K∗A0 = 10−11 m2/s and K∗B0 = 10−10 m2/s were
taken as constants, and αA = αB = 0.

The typical results of calculations are depicted in
Fig. 2. As is seen, the alloy heterogeneity length grows at
the initial stage more slowly for longer times of vacancy
relaxation, i.e. for longer mean free paths of vacancies,
i.e. for less efficient vacancy sinks/sources. It should
be noted that the whole picture is typical of only early
stages of the process. After long enough annealing times,
every curve approaches an asymptote las, the magnitude
of which depends on the Cahn parameter K, on the ra-
tio between the diffusion coefficients, and, if this ratio is
very small, on the mean free path of vacancies as well. It
turned out that, to a good accuracy, las = 1/k∗, where
k∗ corresponds to the maximum point of R(k) in for-
mula (8) for the one-dimensional geometry. When this
asymptotic length is achieved (see Fig. 3), the deviation
still remains very small (of the order of 10−4), i.e. the
system is very far from the total decomposition.
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a b
Fig. 4. Dependences of (a) separation degree growth indicator and (b) heterogeneity length growth indicator on the time on the
logarithmic scale

Since the researches of the decomposition are always
associated with a search for self-similar solutions at
various stages, it is necessary that the dependences
ln(l) versus ln(t) and ln(dev) versus ln(t) should be
examined. The local tangents of the slope angles
for corresponding plots determine the effective indica-
tors of the growth rate for the heterogeneity length,
nl = d ln l/d ln t, and the component separation de-
gree, ndev = d ln(dev)/d ln t, at various process stages.
As Fig. 4 demonstrates, the indicator nl increases at
first and reaches a maximum at the intermediate stage
of the process, whereas the indicator ndev grows al-
most monotonously (to say nothing of a short process of
regime establishment, when this indicator can turn out
even negative). The maximum of the growth indicator
depends, in particular, on K.

The decomposition kinetics depends also on the inten-
sity of nonlocal interactions. As is seen from Fig. 5, a
reduction of this parameter expectedly gives rise to the
smaller values of heterogeneity length.

The increase of the deviation growth indicator in time
means that the time dependence of a deviation is far
from the power law. Instead, the logarithm of the devia-
tion depends on the time almost linearly (Fig. 6), i.e. the
deviation grows exponentially in our two-dimensional
nonlinear model, just the same as it was in the linear

Fig. 5. Time dependences of the heterogeneity length at two var-
ious values of nonlocal interaction parameter K = 10−36 (1) and
10−37 J × m2 (2)

one-dimensional model in Section 2. In other words, the
establishment of a relatively stable topological pattern
of isoconcentration lines does not at all mean the end
of the spinodal decomposition: the decomposition con-
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Fig. 6. Time dependences of the logarithm of the concentration
deviation at various vacancy relaxation times τ = 5 × 10−7 (1),
10−6 (2), and 5 × 10−6 s (3). All dependences are well approxi-
mated by straight lines ln(dev) = R(k∗(LV ))t+ const, where the
R(k∗(LV ))-values coincide with those calculated by formula (8),
provided that k∗ = 1/lmax(LV )

tinues against the background of the topological “frame”
that arises during the initial period of the process. This
scenario is verified by the fact that the slopes of all three
curves in Fig. 6 correspond to the values of quantity
R(k∗(LV )) obtained analytically from formula (8) for all
three values of vacancy relaxation time. As was already
said above, to a good accuracy, k∗ = 1/las in this case.

4. Discussion of Results

The results presented above testify in favor of the fol-
lowing scenario for the spinodal decomposition kinetics
in an alloy with a limited efficiency of vacancy sources
and sinks. The initial fluctuation noise of the concen-
trations and the corresponding initial length of hetero-
geneity change rather slowly at the initial stage, with
a value of growth indicator not exceeding a few hun-
dredths. Then, the indicator of the heterogeneity length
growth rate increases and reaches a maximum, the mag-
nitude of which is of the order of nl ≤ 0.25 and weakly
depends on the diffusion coefficient ratio and the mean
free path of vacancies. After that, the growth of l is
slowed down again, the indicator nl approaches zero,
and the heterogeneity length reaches a quasiasymptotic

value, which remains almost constant for a long time, al-
though the standard deviation of the components contin-
ues growing according to the exponential law eRt, where
the parameter R practically coincides with the theoreti-
cal prediction (8) obtained in the framework of our linear
one-dimensional model.

The magnitude of vacancy mean free path substan-
tially affects the component separation kinetics: the
larger the parameter LV is, the more slowly the com-
ponents are separated. However, the morphology of the
system depends very weakly on the sink efficiency at
real ratios between component mobilities. A sharp de-
pendence appears only if either of the components is by
several orders of magnitude more mobile than another
one. In this case, the characteristic period of a lamel-
lar structure is proportional to the square root of the
vacancy mean free path. The topology of the system
changes weakly at this stage, and the amplitude of the
component separation grows.

We did not succeed in tracing the subsequent evolution
of the system in the framework of the presented model,
because a model with a nanometer spatial scale requires
a lot of time for calculations. We may suppose that, at
far stages, the system will develop by following ordinary
coalescence laws, with a large volume fraction of both
phases. The role of vacancy sinks/sources with a finite
capacity in the course of coalescence has been analyzed
rather recently [14].
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РОЛЬ НЕРIВНОВАЖНИХ ВАКАНСIЙ У ПРОЦЕСI
СПIНОДАЛЬНОГО РОЗПАДУ

Н.В. Тютюнник, А.М. Гусак

Р е з ю м е

Загальноприйнята модель Кана–Хiльярда для спiнодального
розпаду має принципову ваду, оскiльки використовує набли-
ження рiвноважних вакансiй, яке справедливе лише для про-
цесiв, характерна довжина яких суттєво бiльша за довжину
вiльного пробiгу вакансiй. Запропоновано схему врахування
нерiвноважного перерозподiлу вакансiй пiд час спiнодального
розпаду i його впливу на кiнетику розпаду. На прикладi дво-
вимiрної системи проаналiзовано iєрархiю характерних часiв
еволюцiї морфологiї та концентрацiї у процесi спiнодального
розпаду.
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