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The tuning of the spectrum of semiconducting nanowires as a re-
sult of the functionalization by a layer of molecules with a con-
formational transition is investigated. The situation where the
electric charge carrier induces the conformational transition with a
change of the orientation of the intrinsic electric dipole moments of
molecules is expected. The spectrum of a carrier and the parame-
ters of the arising quantum well are determined by the derived self-
consistent system of transcendent equations. The system includes
the Schrödinger equation for a charge carrier, nonlinear equations
for the intrinsic electric-dipole moments, the material equations
de4scribing the interaction of an extra carrier in the nanowire and
molecular electric dipoles. In a semiconductor nanowire, the hole
and electron spectra are symmetric. It is shown that the layer
of adsorbed molecules breaks this symmetry when the molecular
dipoles create the conditions for a localization of carriers of only
one kind, which depends on the charge sign and the orientation of
dipoles. The functionalized nanowires can be used as a semicon-
ductor rectifier.

1. Introduction

The creation of new types of mesoscopic objects and the
prospects of their application in nanoelectronics stim-
ulate a certain interest in studies of the fundamental
properties of such objects. The optical properties and
the conductance of a nanoobject are determined by the
set of quantum energy levels of its charge carriers [1].
The effect of the energy-level structure on the conduc-
tance has been observed for metal nanowires [2] and nan-
otubes [3]. A quantum nanowire can be a conventional
intrinsic semiconductor or a carbon nanotube, where the
mean free path of the charge carriers exceeds 10 µm [4].
It is an important factor for enabling the quantization
along the nanowire axis [5].

The physical properties of a nanowire are changed con-
siderably by a medium that is in contact with it. For ex-
ample, the nanowire conductance is extremely sensitive

to adsorbed layers of NH3 molecules [6] and more com-
plex molecules forming Langmuir—Blodgett films [7].
The potential for creating the chips based on nanotubes
and DNA [8] or surface self-organizing layered organic
structures [9] has been discussed.

Functionalization is a new powerful method for tuning
the quantum energy levels of nanowires and a set of their
physical properties [10]. Novel high-sensitive biosensors
and electronic and optoelectronic devices including nan-
otubes and nanowires are created [11]. The state of
molecules plays an important role. A strong conduc-
tance variation has been found in conformationally con-
strained molecular tunnel junctions [12]. An optically
switchable device due to the conformational transition
in functionalizated carbon nanotubes is created [13].

In this paper, taking the conformational transition in
a molecular layer into account, we calculate the contri-
bution to a shift of the charge-carrier energy levels that
depends on the polarization of molecules. In the case of
a long nanowire surrounded by a thin molecular layer,
the problem of longitudinal quantization is reduced to
solving the spectral problem for a Schrödinger equation.
The calculation of the well parameter and the energy of
the given quantum level of a charge carrier, expressed in
terms of the parameter of interaction of the carrier with
molecules, is reduced to solving a set of two transcen-
dental equations. The analysis indicates that the local-
ization of the charge-carrier motion along a nanowire is
possible.

2. Model of the System

The time-independent Schrödinger equation for an ex-
tra carrier in an intrinsic-semiconductor nanowire can
be written as [1, 14]

− ~2

2mef
Δψ + U(r)ψ = Wψ. (1)
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Here, ψ ≡ ψ(r) is the wave function, mef is the charge
carrier effective mass, Δ is the Laplace operator, W
is the total energy, U(r) is the potential energy, and
r(x, y, z) is the radius vector of the particle. A deep
potential well can be approximated by a well of infi-
nite depth: U(r) ≡ U0(r), where U0(r) = 0 inside the
nanowire, and U0(r) = ∞ outside the nanowire. If the
interaction with the surrounding medium Uint(r) is taken
into account, the potential is given by

U(r) = U0(r) + Ue
int(r). (2)

This interaction can be important if the molecules pos-
sessing an intrinsic dipole moment d are arranged at the
surface of the nanowire. Summing up the contributions
from all the dipoles, we obtain the interaction potential
energy Ue

int = eφ at a point r0 within the functionalizing
layer:

Ue
int(r0) = e

∫
dr′n(r′)d(r′)

r0 − r′

ε|r0 − r′|3
. (3)

Here, n(r′) is the volume number density of the
molecules, e is the carrier charge, d(r′) is the mean value
of a dipole moment at the point r′, and ε is the relative
permittivity of the medium. In turn, the strength of
the electric field E(r′) created by a charge carrier de-
termines the potential energy of the interaction between
this carrier and an individual molecular dipole:

Ud
int(r

′) = −d(r′)
∫
dr0

e|ψ(r0)|2(r′ − r0)
ε|r′ − r0|3

. (4)

System (1)–(4) is to be completed with the material
equations

n(r′) = n(E(r′)); d(r′) = d(E(r′)). (5)

2.1. The interaction simplification

The interaction described by (3) and (4) is nonlocal and
depends substantially on the configuration of the system.
The Schrödinger equation (1) with potentials (2)–(4) can
be transformed into a nonlinear integro-differential equa-
tion. Such equations can be solved only by using approx-
imation methods [14]. It is reasonable to assume that the
radii of the nanowire, r, and the functionalizing layer,
R, are much smaller than the nanowire length 2l, i.e.,
r < R � 2l; this condition is satisfied in experiments
(see the photo in [7]). Let us consider a system with
cylindrical geometry. Here, the separation of the coor-
dinate variables is possible under the assumption made:
ψ(r) = ψ(x)ψ⊥(y, z) and W = Wx +W⊥ (here, x is the

coordinate along the wire axis). An enhancement of the
carrier tunneling into the region occupied by functional-
izing molecules may result in a modification of ψ⊥(y, z)
and W⊥. We also assume that any variations in ψ(x)
occur on a length scale on the order of l.

The effect of the charge-carrier field is the strongest, if
the molecules possess an intrinsic electric-dipole moment
d, and the molecular system is soft. We assume that
the molecular system is rigid in the direction over the
nanowire surface. The electric dipole moment in these
molecules exists due to the presence of atomic groups
that break the charge symmetry [9, 15]. The ferroelec-
tric ordering is possible [15], especially, if the moment is
oriented by the nanowire as a substrate.

In the long-nanowire approximation, the integral con-
tributions can be reduced to those of a local nature [16].
Let us express integral (3) in cylindrical coordinates. In
the absence of charge carriers or in the case of a rigid
molecular system, the density and the dipole moment
along a radius in (3)–(5) are constants (n(r′) = n0) and
d = d0. So they can be kept out of the integration sign.
The integration with respect to x (the coordinate along
the nanowire axis) is reduced to the integration within
infinite limits, even for x0 − x′ ≥ 3R. Using [18], we
write the average potential energy of the interaction of
a charge carrier with the dipole subsystem as

Ue0
int = −nsed0

ε0
, (6)

where the thin layer (1-2 molecules) density is ns. It
is the surface density of the molecules, and ε = 1. We
obtain an approximate analytical expression for the po-
tential energy of the interaction between a charge carrier
and an individual molecular dipole. Instead of carrying
out a spatial integration in (4), we calculate the fluxes
[16] and make it unnecessary to specify the shape of the
radial distribution. In other words, we replace the local
value of the radial component of the field strength with
a value calculated for an infinitely long wire taking the
local value of the wave function:

Ud
int(x) = −Ed = − τd

2πε0r′
;

τ(x) = e|ψ(x)|2F⊥; F⊥ =
∫
|ψ(y, z)|2dydz. (7)

Here, τ(x) is the local linear charge density.

2.2. Conformational transition (CT)

The conformational configurations mean that a molecule
has different space configurations of atomic groups. The
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Fig. 1. Potential of a functional group with electric dipole moment
in an organic molecule with a conformational transition according
to (9). a) initial potential, Wc is the energy difference between
the conformational configurations of the molecule; b) the confor-
mation potential in the critical external electric field that gives the
same energies to the conformational configurations; c) the confor-
mation potential in the external electric field which changes the
conformational configuration

conformational transition changes the space configura-
tion of the molecule. The conformational configurations
may have the same values of energy as in the molecules
of NH3 and trimetylenesulfide [19] or different ones as
in cis- and trans-states. The conformational configura-
tions have different energies in an asymmetric molecule
in general. A number of examples of the conformational
transition in vitamins B6 (pyridoxine), D3, and others
can be found in [20].

Let us denote the following variables: the energy dif-
ference between the conformational configurations of an
asymmetric molecule Wc, the electric dipole moments
of a functionalizing molecule in the initial more stable
conformation d0 and in the unstable conformation d1.
Then, at CT, the electric dipole moment changing is

Δd = d1 − d0. (8)

This is possible if the external electric field intensity ex-
ceeds the critical value Ec, which satisfies the relation

−EcΔd +Wc = 0; Ec =
Wc

Δdr
. (9)

Here, dr is the radial projection of the electric dipole
moment. The conformational transition is possible only
for one mutual orientation of the vectors E and Δd, as
is shown in Fig. 1. Another mutual orientation of the
vectors increases the stability of the initial conformation.

The initial molecular conformation changes a carrier
potential according to relation (6) in comparison with
that for a pure nanowire. After the conformational tran-
sition in functionalizing molecules, the carrier decreases
its energy additionally by the value

ΔU ≡ ΔUe
int = −nseΔdr

ε0
. (10)

The substitution of relation (9) into (7) can lead to the
critical values of linear charge density τc and wave func-
tion density |ψc|2 in a nanowire:

τc =
2πWcε0r

′

Δdr
; |ψc|2 =

τc
eF⊥

=
2πWcε0r

′

F⊥eΔdr
. (11)

A carrier with the opposite sign of charge does not create
the conformational transition. We consider independent
conformational transitions in different molecules as the
order-disorder phase transition in the external electric
field of a carrier.

2.3. Schrödinger equation and conformational
transition

In view of relations (6), (7), and (10), Eq. (1) can
be rewritten to describe the one-dimensional motion of
charge carriers in a nanowire as follows:

− ~2

2mef

∂2ψ(x)
∂x2

+ U(x)ψ(x) = Wxψ(x). (12)

Without the conformational transition, the potential
reads

U(x) =
{
∞; |x| > l;
0; |x| ≤ l, (13)

where the zero level is chosen for the energy U0 + Ue0
int.

For this potential, the problem is reduced to the well-
known quantization in a rectangle box of infinite depth
[14,17]. After the conformational transition, we describe
the appropriate carrier as an electron in the potential
well of infinite depth with width 2l and a symmetri-
cally included potential well of finite depth ΔU (10) with
width 2a (a < l). Then the carrier potential along the
nanowire is

U(x) =

 ∞; |x| > l;
0; a ≤ |x| ≤ l;
−ΔU ; |x| ≤ a.

(14)

Here, the zero energy level is chosen as in (13), where a is
a half of the conformational transition region (domain)
length along the nanowire. We consider a symmetric (see
the discussion below) and enough deep quantum well for
the final configuration of the conformational transition
domain. So the basic quantum level of the carrier is
inside the conformational domain well (lower than the
well height).

According to [17], let us introduce the wave num-
bers k0 corresponding to the conformational domain well

712 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 7



CARRIERS SPECTRA OF FUNCTIONALIZED SEMICONDUCTING NANOWIRES

depth, k corresponding to the basic energy level height,
and κ corresponding to the basic energy level depth:

ΔU =
~2

2mef
k2
0; Wx =

~2

2mef
k2; κ2 = k2

0 − k2. (15)

The wave function of the basic state is symmetric (even)
and exponential outside the conformational domain well.
So, according to [17], it can be written in the form

ψ(x) =

 A cos kx; 0 ≤ |x| ≤ a;

A cos ka
sinhκ(l − x)
sinhκ(l − a)

; a ≤ |x| ≤ l. (16)

Here, the continuity condition at the point x = a and the
boundary condition ψ(l) = 0 are used for the wave func-
tion. For the first derivation, the continuity condition at
the point x = a gives the equation

tan ka =
κ

k

1
tanhκ(l − a)

. (17)

The wave function amplitude A can be found from the
normalization condition:

1
A2

= a+
1
k

sin ka cos ka+

+
cos2 ka
κ

[
1

tanhκ(l − a)
− κ(l − a)

shκ(l − a)

]
. (18)

3. Self-Consistent System of Equations

Let us write the following self-consistent system of equa-
tions:

κ2 = k2
0 − k2;

tan ka =
κ

k

1
tanhκ(l − a)

;

1
A2

= a+
1
κ

tanhκ(l − a)+

+
cos2 ka
κ

[
2

sh 2κ(l − a)
− κ(l − a)

sh2 κ(l − a)

]
;

A cos ka = ψc.

(19)

The system defines the unknown values of conforma-
tional domain quantum well size a, the energy k2 of
the basic quantum level, the energy depth κ2 of the ba-
sic quantum level, and the amplitude A of the electron
wave function. The material equations give two param-
eters only: the depth of the conformational domain well
k2
0 and the critical value (amplitude) of the carrier wave

function.

The first equation of system (19) determines the wave
number κ through another wave numbers (15). The sec-
ond equation of the system is the the continuity con-
dition at the point x = a for the first derivation (17).
The third equation of the system is the normalization
condition (18) rewritten in a more convenient form for
the investigation of limit cases. Thus, in the limit case
l → ∞, the normalization condition takes the form
1/A2 = a + 1/κ for a quantum well of finite depth [17].
In the limit case l → a, the normalization condition
takes the form 1/A2 = a for a quantum well of infinite
depth. The fourth equation reflects the following fact:
the wave function on the boundary of the conformational
domain takes the critical value ψ(a) = ψc. The last
equation (condition) directly defines the self-consistency
of all sizes and energies of the problem.

The first and last equations of system (19) allow us to
easily exclude the variables A and κ. The rest of the sys-
tem, the second and third equations, can be transformed
to the following self-consistent form:

D tanD =
√
C2 −D2

1
tanh[

√
C2 −D2( L

C − 1)]
;

1 +
1

D tanD
+

1
1 + tan2D

{
D tanD
C2 −D2

−

− 1
D tanD

−
(
L

C
−1
)(

D2 tan2D

C2−D2
− 1
)
− 1

ΦC

}
= 0.

(20)

The simplification is achieved by introducing the dimen-
sionless variables

C = k0a; D = ka (21)

and the dimensionless parameters

L = k0l; Φ =
|ψc|2

k0
. (22)

The physical sense of the variables and the parameters
can be clarified if they are presented in the form

C = k0a = 2π
a

λ0
; D = 2π

a

λ
. (23)

The variable C is the half-length a of the conformational
domain normalized to the wavelength of a carrier with
the energy equal to the depth of the conformational do-
main well ΔU . The variable D is the half-length of the
conformational domain normalized to the wavelength of
a carrier with the basic level energy inside the confor-
mational domain well W . The parameter L is the half-
length l of the nanowire normalized on the wavelength
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Fig. 2. A graphical representation of the system of equations (26).
The dimensionless parameters are L = 2; Φ = 0.2. The surfaces
z = N(C, D), z = M(C, D) and z = 0 are marked as N, M, 0. The
axis C ≡ x, D ≡ y. Letter S marks the solution points

of a carrier with energy equal to the depth of the confor-
mational domain well. Therefore, the variable C directly
gives the half-length a of the conformational domain.
The found half-length a allows us to find k and W from
another variable D. The sense of the parameter Φ is
the critical probability density |ψc|2 multiplied by the
wavelength λ0/2π, i.e., it is the critical probability on
the interval λ0/2π.

With regard for the inequalities a ≤ l and k ≤ k0

and the physical sense of Φ, we obtain the following in-
equalities between the variables and parameters of the
problem:

D ≤ C ≤ L; 0 < Φ < 1. (24)

In this investigation, we do not take the limit cases where
the inequalities became equalities.

4. Solution of the System of Equations

The system of equations (20) is nonlinear and transcen-
dental with two unknown variables. The first equation is
a generalization of the one-variable equation for a finite-
depth quantum well in [17] (there, tanh(x) is absent,
parameter C is fixed, and ka = D is unknown). In [17],
the equation is solved by the graphic method on a plane.
We note that the numerical methods are very unstable
with infinite and discontinuous functions such as tan(x)
or 1/(x− x0), and the minimum smooth interval has to
be pointed out previously.

Here, we use the graphic method. However, it must
operate with for two unknown variables in the 3D space.
The basic idea is to avoid periodic singularities by multi-
plication by sinD, cosD. Let us introduce smooth func-

tions depending on two variables that correspond to Eqs.
(20):

M(C,D) = D sinD tanh
[√

C2 −D2

(
L

C
− 1
)]
−

−
√
C2 −D2 cosD;

N(C,D) = sinD
[
1 +

sinD cosD
D

+

+
(
L

C
− 1− 1

ΦC

)
cos2D

]
(C2 −D2)+

+D sin2D

[
cosD −

(
L

C
− 1
)
D sinD

]
.

(25)

The solution of system (20) corresponds to the point
of triple intersection of graphs 0,M(C,D), N(C,D) or
a pair crossing of the intersection curves on the C,D
plane:{
M(C,D) = 0;
N(C,D) = 0. (26)

We do calculations for the following values of dimen-
sionless parameters: L = 2; Φ = 0.2. We use the stan-
dard graphic program. The direct construction of these
three surfaces is not suitable. The reason is very dif-
ferent vertical scales. Some simplification can be due
to a guide idea [17]: for the basic quantum level, the
variable D changes in the range [0;π/2]. The ranges for
the M(C,D) and N(C,D) functions differ by one order
as minimum. Since we multiple a less value, this pro-
cedure does not change the solution points in (26) (see
Fig. 2).

The next qualitative result can be obtained from the
graphic analysis of the M(C,D) and N(C,D) functions
on the (C,D) plane. The surfaces can have a joint point
on the surface z = 0 on the line in Fig. 2 only. In the
considered region, this line can be described with high
precision as a straight line:

D(C) = D0 + k(C − C0); k :=
D1 −D0

C1 − C0
, (27)

where the coordinates of the points, C0 ' 0.74; D0 '
0.7; C1 ' 1.04; D1 ' 0.91, can be found from the large-
scale graphs. The further substitution of relation (27)
into Eqs. (26) and (20) reduces the problem to that
with one unknown variable:{
M(C) = 0;
N(C) = 0. (28)

Graphically, this means finding of the intersection of
surfaces by the vertical plane (27). This intersection
is shown at Fig. 3,a in a wide range. Standard 2D
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graphic programs give a more precise presentation in
comparison with 3D packages. On the large scale, the
curve crossing is shown in Fig. 3,b. The fitting of
the intersecting vertical plane (27) can be executed by
moving the point D1 =0.9064 which is near the cross-
ing point. The final value of D1 and the correspond-
ing solutions Cc and Dc are obtained at the limit of
the graphic resolution. They are shown in the first
row of Table. The direct substitution of the values
of Cc and Dc in (25) gives M = 1.379 × 10−8 and
N = 9.74× 10−9.

If we know the values of C and D, we can find the
relative values of the physical parameters:

a

l
=
Cc

L
;

k

k0
=
Dc

Cc
;

W

W0
=
k2

k2
0

. (29)

Here, a/l, k/k0, and W/W0 are the relative confor-
mational domain size (width of the arising quantum
well), momentum, and the basic energy level, respec-
tively. The results of calculations are shown in Ta-
ble.

For other values of the dimensionless parameters,
L = 10; Φ = 0.2, the fitting of the intersecting
plane give three solutions. Two of them are shown
in the second and third rows of Table, respectively.
The direct substitution of functions (25) gives M =
2.658 × 10−7, N = 2.635 × 10−8 for the first and
M = −5.38 × 10−9, N = 1.807 × 10−5 for the second
solutions.

It is obvious that the second solution is unstable in
comparison with the first one, because of W2 > W1. The
third formal solution coincides with the special point of
the functions M(C,D) and N(C,D) and is very unsta-
ble.

At small L (enough shallow well), the system of equa-
tions has the only solution for the base quantum state.
At large L (enough deep well), the solution for the base
quantum state become ambiguous. Therefore, on the
line L = 2 ÷ 10; Φ = 0.2 in the parameters’ plane, a
bifurcation of system (25) arises.

Initial parameters L, Φ and the results of the graphic so-
lution Dc, Cc of the self-consistent system of equations.
The conformational domain relative parameters are cal-
culated according to (29)

L Φ Cc Dc a/l k/k0 W/W0

2 0.2 1.0589 0.9193 0.5294 0.8682 0.7538
10 0.2 1.1005 0.7813 0.1100 0.7100 0.5041
10 0.2 0.2001 0.1966 0.0200 0.9826 0.9655

,a

b

Fig. 3. Graphic solution of system (28). The axis C ≡ x. The
horizontal straight line means y = 0, the line curve is y = N(C),
and the box is the curve y = M(C). (a) wide ranges of x, y; (b)
the large-scale view of the curve crossing

5. Discussion and Conclusions

The electric dipole of a molecule and its change Δd can
be estimated as

Δd ∼ d ∼ |er0| ' 6.4× 10−29 ∼ 10−28 C ·m. (30)

where r0 ' 0.4 nm is the size of the dipole which is
approximately equal to interatomic distance. The carrier
energy decreasing in a functionalized nanowire after the
conformational transition can be estimated according to
(10) as

ΔU =
∣∣∣∣−nseΔd

ε0

∣∣∣∣ ∼ (10+1–10−1) eV, (31)

where the surface concentration can be estimated as
ns ' S−1, where S ∼ (102–104)×10−20 m2 is the surface
occupied by one molecule. In the experimental work [13],
the surface concentration of molecules was determined as
one per 100 elementary cells of the nanowire surface, and
ΔU ' 1.5 eV. We take this value for further estimations.

The linear density of charge

τc ∼ e/2l ∼ 10−13 C/m. (32)
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Here, 2l ∼ 1µm is a nanowire length. The last estimation
and relations (11) allow us to evaluate

Wc =
τcΔdr

2πε0r′
∼ 10−3 eV. (33)

If a nanowire is shorter (2l ∼ (10−7–10−8) m), then the
critical conformational energy is higher: Wc ∼ (10−2–
10−1) eV ∼ (100–1000) K. This means that the shorter
the nanowire, the higher energy difference between the
conformation configurations should be overcome by a
carrier electric field.

The longitudinal quantization creates quantum levels,
which have energy distance by several orders less than
that for the transverse quantization. Therefore, a carrier
can tunnel into the nanowire on a level with high num-
ber (high number of nodes of the wave function ψ(x)).
If conditions (9) or (11) are satisfied in several space in-
tervals, the conformational transition may go and create
several additional quantum wells. Since the conforma-
tion transition in different molecules goes independently,
this scenario develops by a chaotic way. Namely, the con-
formational transition in different wells goes by indepen-
dent jumps, and the wave function along the nanowire
fluctuates.

A more probable scenario is the following: first of all, a
carrier goes into the ground quantum state, and then the
conformational transition is realized in one domain. This
scenario develops if the electron-phonon relaxation pro-
cesses (characteristic time τe−ph) for the carrier energy
are faster than the conformational transition relaxation
(characteristic time τCT):

τe−ph < τCT. (34)

Both these scenarios are possible if only the wave func-
tions of a high energy level ψn(x) and the ground state
ψ1(x) exceed the critical value (11):

ψn(x) ≥ ψc; ψ1(x) ≥ ψc. (35)

The wave function of the ground state has only one
maximum. Therefore, the conformational transition de-
velops more or less chaotically from the central point
with maximum electric field to the region with decreas-
ing wave function. The conformational transition range
decreases, when the conformational transition domain
border reaches the points ψ1(x) = ψc. As a result, the
conformational transition domain is formed closely to
the symmetric position along a nanowire as in (14).

Above, we considered a nanowire rather than a quan-
tum dot (QD). We need to add the electrostatic energy

e2/2C to the previously found energy levels. Here, C is
the electric capacity. The nanowire reveals its quantum
levels by means of optic spectra or tunneling in contacts.
At a long tunneling time of one kind of carrier, the sys-
tem has enough time to transit to the state with confor-
mational domain. This domain can be considered as a
trap for the corresponding carrier. In this case, the be-
haviors of different carriers differ, and the system must
show the rectifier property. The system shows the asym-
metric current-voltage characteristic and can be used as
a rectifier.

Thus, in the present work, the energy spectrum of un-
compensated charge carriers in a functionalized nanowire
is investigated. The interaction of a charge carrier
with conformation degree of freedom in a functionalizing
molecular system is considered. The physical mechanism
responsible for this interaction is pointed out: the inter-
action of molecular dipole moments with the electric field
of a charge carrier.

The self-consistent system of equations is derived for
the well width and the spectrum parameters. The sys-
tem including four nonlinear transcendent equations is
reduced to two equations and is solved by the graphic
method. With this purpose, the 3D plots are ana-
lyzed qualitatively, and the intersections are found by
excluding one variable and reducing the problem to 2D
one.

Thus, it is shown that if the well that arises at the
conformational transition is enough deep, then the self-
consistent system of equations has an ambiguous solu-
tion. Nevertheless, there is the physical criterion of se-
lection of the stable solution, namely, by the energy min-
imum of the system.

The charge-carrier energy spectrum depends on the
rigidity of a functionalizing molecular system. At the
conformational transition, the rigidity depends on the
mutual orientation of the electric field strength of an
uncompensated charge carrier and the electric dipole
moments of molecules. The conformational transition
in the electric field and a modification of the energy
spectrum are possible for one sign of the carrier charge.
The carrier with another sign of charge feels a ho-
mogeneous change of the potential along the nanowire
only. Thus, a functionalized nanowire can be used
as a semiconductor rectifier. The processes considered
should be taken into account in the design of chips
based on nanowires and layered organic surface struc-
tures [8, 9].
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СПЕКТРИ НОСIЇВ В НАПIВПРОВIДНИКОВИХ
НАНОДРОТАХ I КОНФОРМАЦIЙНИЙ
ПЕРЕХIД У МОЛЕКУЛАХ

В.О. Ликах, Є.С. Сиркiн

Р е з ю м е

Дослiджено перебудову спектра полупровiдникових нанодро-
тiв в результатi функцiоналiзацiї шаром молекул з конформа-
цiйним переходом. Носiй електричного заряду викликає кон-
формацiйний перехiд зi змiною напрямку власних електричних
дипольних моментiв молекул. Спектр носiя i параметри кван-
тової ями, що виникає, визначаються з отриманої самоузгодже-
ної системи трансцендентних рiвнянь. Система включає рiв-
няння Шредiнгера для носiя заряду, нелiнiйнi рiвняння для
власних електричних дипольних моментiв, матерiальнi рiвня-
ння для взаємодiї додаткового заряду в нанодротi i електри-
чних диполiв молекул. У напiвпровiдниковому нанодротi дiр-
ковi й електроннi спектри є симетричними. Показано, що шар
адсорбованих молекул порушує цю симетрiю, диполi молекул
створюють умови для локалiзацiї тiльки одного виду носiїв в
залежностi вiд знака заряду та орiєнтацiї диполiв. Функцiона-
лiзованi нанодроти можуть використовуватися як напiвпровiд-
никовий випрямляч.
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