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We consider the cluster decay of 56Ni∗ formed in heavy-ion col-
lisions, by using different parameters proposed by different au-
thors for the Fermi density distribution and the nuclear radius.
Our study reveals that different technical parameters do not alter
significantly the structure of fractional yields. The cluster decay
half-lives of different clusters lie within ±10% for different Fermi
density parameters and nuclear radii and, therefore, justify the
current set of parameters used in the literature for the calculation
of cluster decays.

1. Introduction

In earlier days, nuclei were considered to have a uniform
density and sharp radius. With the passage of time,
the density distribution was found to be more compli-
cated. Several different forms (direct or indirect) exist
in the literature, which can explain these complicated
nuclear density distributions. The first method is the
direct parametrization involving the choice of a suit-
able functional form, where parameters are varied to fit
the experimental data. The two-parameter Fermi den-
sity distribution is an example of such a parametriza-
tion. The second method of indirect parametrization of
a density distribution proceeds via nuclear models. A
nuclear model like the shell model contains certain pa-
rameters, which are determined by other physical con-
siderations, and it is then used to calculate the nuclear
density distribution without further adjustments. The

Fig. 1. Systematics diagram for the two-parameter Fermi density

experimental data can be described accurately with the
two-parameter Fermi density distribution at relatively
low momenta. Among all the density distributions, the
two-parameter Fermi density has been quite successful
in the low, medium, and heavy mass regions. The sys-
tematic study of charge distributions have been carried
out in [1–3]. We use this density distribution here.

Since the nuclear systems obey quantum laws, their
surfaces are not well defined therefore. The nuclear den-
sity remains constant up to a certain distance but fall
more rapidly close to the surface region, where the nu-
cleons are free to move about. The nuclear densities
provide an important information about the structure
of nuclear matter at low energies and other important
information regarding the equation of state at interme-
diate energies [4, 5].

Various methods have been developed for exploring
the nuclear structure and the radius. The scattering of
electrons or electrically charged high-energy particles is
employed as a probe to explore the proton distribution
of the nuclei (i.e., charge radii), whereas neutral nuclear
probes such as neutrons will give the effect of nuclear
forces over the nuclear surface (i.e., interaction radii).
The charge radii are often used to extract the informa-
tion about nuclear radii. The electron scattering experi-
ments show that the charge distribution within a nucleus
either follows the Fermi trapezoidal shape or modified
Gaussian distribution. These studies have shown that
the nuclear charge density does not decrease abruptly,
but has a finite diffuseness.

A model that uses a density distribution such as the
two-parameter Fermi density (as shown in Fig. 1) has to
rely on the information about the nuclear radius (or half
density radii R0), central density ρ0, and surface diffuse-
ness (a). Interestingly, several different experimental, as
well as theoretical, values of these parameters are avail-
able in the literature [6–11]. In addition, several differ-
ent names such as central radii, equivalent sharp radii,
root-mean-square radii, etc. have also been used in the
literature to define different functional forms. The role
of different radii was examined for exotic cluster decay
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half-lives [12], and two different forms of radii were found
to predict half-lives different by five orders of magnitude
within the same theoretical model. Similarly, the use
of different values of surface diffuseness also varies from
author to author. The effect of these model ingredients
on the fusion process at low incident energies have been
studied in [13], where it was found that the effect of dif-
ferent radii is more than marginal, and, therefore, this
parameter should be used with a more fundamental ba-
sis. Unfortunately, no systematic study is still available
for the cluster decay process. In this paper, we plan to
study the role of Fermi density parameters in the cluster
decay of 56Ni∗ formed in heavy-ion collisions. Such a
study is still missing in the literature.

Heavy-ion reactions provide a very good tool to probe
the nuclei theoretically. This includes the low-energy fu-
sion process [14], intermediate energy phenomena [15], as
well as the cluster-decay and/or formation of superheavy
nuclei [16,17]. In the last one decade, several theoretical
models have been employed in the literature to estimate
the half-life times of various exotic cluster decays of ra-
dioactive nuclei. These outcomes have also been com-
pared with experimental data. Among all the models
employed, the preformed cluster model (PCM) [18–20]
is widely used to study the exotic cluster decay. In this
model, the clusters/fragments are assumed to be pre-
born well before the penetration of the barrier. This
is in contrast to the unified fission models (UFM) [21–
23], where only the barrier penetration probabilities are
taken into account. In either of these approach, one
needs complete knowledge of nuclear radii and densities
used in the potential.

Let us consider the cluster decay of 56Ni formed as an
excited compound system in heavy-ion reactions. Since
56Ni has negative Q-value (or Qout), it is stable against
both fission and cluster decay processes. However, if it is
is produced in heavy-ion reactions depending on the inci-
dent energy and the angular momentum involved, the ex-
cited compound system could either undergo the fission,
by decaying via cluster emissions, or reveal the resonance
phenomenon. The nucleus 56Ni has a negative Qout

with different values for various exit channels and, hence,
would decay only if it were produced with sufficient com-
pound nucleus excitation energy, E∗CN (= Ecm +Qin), to
compensate for negative Qout, the deformation energy of
the fragments Ed, their total kinetic energy (TKE), and
the total excitation energy (TXE) in the exit channel as

E∗CN =| Qout | +Ed + TKE + TXE (1)

(see Fig. 2, where Ed is neglected because the fragments
are considered to be spherical). Here, Qin adds to the

Fig. 2. Scattering potential V (R) (MeV) for the cluster decay of
56Ni∗ into 16O + 40Ca channel for different Fermi density parame-
ters. The distribution of compound nucleus excitation energy E∗

CN

at both the initial (R = R0) and asymptotic (R→∞) stages and
Q-values are shown. The decay path for both PCM and UFM
models is also displayed

entrance channel kinetic energy Ecm of the incoming nu-
clei in their ground states.

Section 2 gives some details of the Skyrme energy den-
sity model and the preformed cluster model and its sim-
plification to the unified fission model. Our calculations
for the decay half-life times of the 56Ni compound system
and a discussion of the results are presented in Section
3. Finally, the results are summarized in Section 4.

2. Model

2.1. Skyrme energy density model

In the Skyrme Energy Density Model (SEDM) [7], the
nuclear potential is calculated as a difference of the en-
ergy expectation value E of the colliding nuclei at a fi-
nite distance R and at the complete isolation (i.e., at
∞) [7, 24],

VN (R) = E(R)− E(∞), (2)

where E =
∫
H(r)dr, with H(r) as the Skyrme Hamil-

tonian density, which reads

H(ρ, τ,J) =
~2

2m
τ+

1
2
t0[(1+

1
2
x0)ρ2−(x0+

1
2
)(ρ2

n+ρ2
p)]+

+
1
4
(t1 + t2)ρτ +

1
8
(t2 − t1)(ρnτn + ρpτp)+

+
1
16

(t2 − 3t1)ρ∇2ρ+
1
4
t3ρnρpρ+
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+
1
32

(3t1 + t2)(ρn∇2ρn + ρp∇2ρp)−

−1
2
W0(ρ∇ · J + ρn∇ · Jn + ρp∇ · Jp). (3)

Here, J = Jn + Jp is the spin density, which was gener-
alized in [7], for spin-unsaturated nuclei, and τ = τn+τp
is the kinetic energy density calculated with the use of
the Thomas–Fermi approximation [25,26], which reduces
the dependence of the energy density H(ρ, τ,J) to be a
function of the nucleon density ρ and the spin density J
only. Here, the strength of the surface correction factor
is taken to be zero (i.e. λ = 0). The remaining term is
the nucleon density ρ = ρn + ρp and is taken to be the
well-known two-parameter Fermi density. The Coulomb
effects are neglected in the above energy density func-
tional, but they will be added explicitly. In Eq. (3), six
parameters t0, t1, t2, t3, x0, and W0 are fitted by dif-
ferent authors to obtain the best description of the vari-
ous ground-state properties for a large number of nuclei.
These different parametrizations have been labeled as
S, SI, SII, SIII, etc. and are known as Skyrme forces
for light and medium colliding nuclei. Other Skyrme
forces are able to reproduce the data for heavy systems
better. The Skyrme force used for the present study
is SIII with the following parameters: t0 = −1128.75
MeV·fm3, t1 = 395.00 MeV·fm5, t2 = −95.00 MeV·fm5,
t3 = 14000.00 MeV·fm6, x0 = 0.45, and W0 = 120.00
MeV·fm5. It has been shown in previous studies that
SIII force reproduces the fusion barrier much better than
other sets of Skyrme forces for light and medium nuclei.
However, other Skyrme forces such as SKa, SKm are
found to be better for heavier masses. From Eq. (3), one
observes that the Hamiltonian density H(ρ, τ,J) can be
divided into two parts: (i) the spin-independent part
VP (R), and (ii) spin-dependent VJ(R) [7]:

VN (R) =
∫
{H(ρ)− [H1(ρ1) +H2(ρ2)]} dr+

+
∫
{H(ρ,J)− [H1(ρ1,J1) +H2(ρ2,J2)]} dr =

= VP (R) + VJ(R). (4)

We apply the standard Fermi mass density distribution
to the nucleon density:

ρ(R) =
ρ0

1 + exp
{
R−R0
a

} , −∞ ≤ R ≤ ∞. (5)

Here, ρ0, R0, and “a” are respectively, the average cen-
tral density, half-density radius, and surface diffuseness
parameter. The R0 gives a distance, where the density
drops to a half of its maximum value, and the surface
thickness s (= 4.4a) has been defined as a distance, over
which the density drops from 90% to 10% of its maxi-
mum value that is the average central density ρ0. The
systematic two-parameter Fermi density distribution is
shown in Fig. 1. Another quantity, which is equally im-
portant is the r.m.s. radius 〈r2〉m defined as

〈
r2
〉
m

=
∫
r2ρ (r) dr = 4π

∞∫
0

ρ (r) r4d3r. (6)

One can find the half density radius by varying the sur-
face diffuseness “a” and by keeping the r.m.s. radius
〈r2〉m constant or from the normalization condition

R0 =
1
3
[
5
〈
r2
〉
m
− 7π2a2

]
. (7)

The average central density ρ0 is given by [27]

ρ0 =
3A

4πR3
0

[
1 +

π2a2

R2
0

]−1

. (8)

Using Eq. (5), one can find the density of neutron and
proton individually as:

ρn =
N

A
ρ, ρp =

Z

A
ρ. (9)

For the details of the model, the reader is referred to
[7]. In order to see the effect of different Fermi density
parameters on the cluster decay half-lives, we choose the
following different Fermi density parameters proposed by
various authors.
1. H. de Vries et al. [11]: Here, we use the inter-
polated experimental data [28] of L.R.B. Elton and H.
de Vries for the half density radius R0 and the surface
thickness a. Using R0 and a, the central density ρ0 can
be computed using Eq. (7). This set of parameters is
labeled as DV.
2. Ngô–Ngô [6]: In the version of Ngô–Ngô, a simple
analytical expression is used for nuclear densities instead
of Hartree-Fock densities. These densities are taken to
be of the Fermi type and written as

ρn,p(R) =
ρn,p(0)

1 + exp[(R− Cn,p)/0.55]
, (10)

ρn,p(0) are then given by

ρn(0) =
3
4π

N

A

1
r30n

, ρp(0) =
3
4π

Z

A

1
r30p

, (11)
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where C represents the central radius of the distribution,

C = R

[
1− 1

R2

]
, (12)

and

R =
NRn + ZRp

A
. (13)

The sharp radii for a proton and a neutron are given by

Rp = r0p
A1/3, Rn = r0n

A1/3 (14)

with

r0p
= 1.128 fm, r0n

= 1.1375 + 1.875× 10−4A. (15)

This set of parameters is labeled as Ngo.
3. S.A. Moszkowski [8]: The Fermi density parame-
ters include, due to S.A. Moszkowski, the central density
ρ0 = 0.16 nucl./fm3, the surface diffuseness parameter a
equal to 0.50 fm, and radius R0 = 1.15A1/3. This set of
parameters is labeled as SM.
4. E. Wesolowski [9]: The expressions for Fermi den-
sity parameters taken by E. Wesolowski read as follows.
The central density

ρ0 =
[
4
3
πR3

0

{
1 + (πa/R0)

2
}]−1

. (16)

The surface diffuseness parameter a = 0.39 fm, and
the half density radius

R0 = R′

[
1−

(
b

R′

)2

+
1
3

(
b

R′

)6

+ . . .

]
(17)

with

R′ =
[
1.2− 0.96

A1/3

(
N − Z
A

)]
A1/3, and b =

π√
3
a. (18)

This set of parameters is labeled as EW.
5. H. Schechter et al. [10]: The value of Fermi density
parameters taken by H. Schechter et al. can be summa-
rized as: the central density ρ0 = 0.212/(1+2.66A−2/3),
the surface diffuseness parameter a is equal to 0.54 fm,
and the radius R0 = 1.04A1/3 in the single folding model
for one of the nucleus. This set of parameters is labeled
as HS.

In the spirit of the proximity force theorem, the spin
independent potential VP (R) for the two spherical nuclei
with radii C1 and C2 and with centers separated by a
distance R = s+ C1 + C2 is given by

VP (R) = 2πRφ(s), (19)

where

φ(s) =
∫
{H(ρ)− [H1(ρ1) +H2(ρ2)]} dZ, (20)

and

R =
C1C2

C1 + C2
, (21)

with Süssmann central radius C given in terms of the
equivalent spherical radius R as

C = R− b

R
. (22)

Here, the surface diffuseness b = 1 fm, and the nuclear
radius R is taken from the literature [6, 29–34].

In the original proximity potential [29], the equivalent
sharp radius used is

R = 1.28A1/3 − 0.76 + 0.8A−1/3 fm. (23)

This radius is labeled as RProx77.
In the present work, we also used the nuclear radius

due to A. Winther labeled as RAW [30]:

R = 1.20A1/3 − 0.09 fm. (24)

The newer version of the proximity potential uses a dif-
ferent formula for the nuclear radius [31]:

R = 1.240A1/3
[
1 + 1.646A−1 − 0.191As

]
fm. (25)

This radius is labeled as RProx00.
Recently, a newer form of above Eq. (25) with slightly

different constants is reported [32]:

R = 1.2332A1/3+2.8961A−2/3−0.18688A1/3As fm. (26)

It is labeled as RRoyer.
For the Ngô–Ngô [6] nuclear radius, we use Eqs. (13)–

(15) and label it as RNgo.
The potential based on the classical analysis of ex-

perimental fusion excitation functions, used the nuclear
radius (labeled as RBass) [33] as:

R = 1.16A1/3 − 1.39A−1/3. (27)

The empirical potential due to Christensen–Winther
(CW) uses the same radius form (Eq. (27)) having dif-
ferent constants (labeled as RCW) [34].

R = 1.233A1/3 − 0.978A−1/3. (28)
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2.2. The preformed cluster model

For the cluster decay calculations, we use the Pre-
formed Cluster Model [18–20]. It is based on the well-
known quantum mechanical fragmentation theory [35–
38] developed for the fission and heavy-ion reactions
and used later on for predicting the exotic cluster de-
cay [39–41]. In this theory, we have two dynamical
collective coordinates of mass and charge asymmetry:
η = (A1−A2)/(A1 +A2) and ηZ = (Z1−Z2)/(Z1 +Z2).
The decay half-life T1/2 and decay constant λ in the de-
coupled η- and R-motions satisfy the relation

λ =
ln 2
T1/2

= P0ν0P, (29)

where the preformation probability P0 is referred to the
η-motion, and the penetrability P to the R-motion. The
quantity ν0 is the assault frequency, with which the clus-
ter hits the barrier. Thus, in contrast to the unified
fission models [21–23], the two fragments in PCM are
considered to be pre-born at a relative separation co-
ordinate R before the penetration of the potential bar-
rier with probability P0. The preformation probability
P0 is given by

P0(Ai) =| ψ(η,Ai) |2
√
Bηη(η)

(
4
Ai

)
(i = 1 or 2), (30)

with ψν(η), ν = 0, 1, 2, 3, . . ., as solutions of the station-
ary Schrödinger equation in η at fixed R,[
− ~2

2
√
Bηη

∂

∂η

1√
Bηη

∂

∂η
+ VR(η)

]
ψν(η) = Eνψν(η),

(31)

solved at R = Ra = Rmin at the minimum configuration,
i.e., Ra = Rmin (corresponding to Vmin) with the poten-
tial at this Ra-value as V (Ra = Rmin) = V min (displayed
in Fig. 2).

The temperature effects are also included in this model
through a Boltzmann-like function as

| ψ(η) |2=
∞∑
ν=0

| ψν(η) |2 exp
(
−Eη
T

)
, (32)

where the nuclear temperature T (in MeV) is equaled
approximately to the excitation energy E∗CN:

E∗CN =
1
9
AT 2 − T, (in MeV). (33)

The fragmentation potential (or collective potential en-
ergy) VR(η) in Eq. (31) is calculated within the Strutin-
sky renormalization procedure as

VR(η) = −
2∑
i=1

[
VLDM(Ai, Zi) + δUi exp

(
−T

2

T 2
0

)]
+

+
Z1 · Z2e

2

R
+ VN (R), (34)

where the liquid drop energies (VLDM = B− δU) with B
as the theoretical binding energy of Möller et al. [42], and
the shell correction δU is calculated in the asymmetric
two-center shell model. The additional attraction due
to the nuclear interaction potential VN (R) is calculated
within SEDM potential using different Fermi density pa-
rameters and nuclear radii, as discussed earlier. The
shell corrections are considered to vanish exponentially
for E∗CN ≥ 60 MeV, giving T = 1.5 MeV. The mass pa-
rameter Bηη representing the kinetic energy part of the
Hamiltonian in Eq. (31) is the smooth classical hydro-
dynamical mass by Kröger and Scheid [43].

The WKB action integral was solved for the pene-
trability P [41]. For each η-value, the potential V (R)
is calculated by using SEDM for R ≥ Rd with Rd =
Rmin + ΔR. For R ≤ Rd, it is parametrized simply as a
polynomial of degree two in R:

V (R) =


| Qout | +a1(R−R0) + a2(R−R0)2

for R0 ≤ R ≤ Rd,
VN (R) + Z1 Z2e

2/R
for R ≥ Rd.

(35)

Here, R0 is the parent nucleus radius, and ΔR is chosen
for a smooth matching between the real potential and
the parametrized potential (with second-order polyno-
mial in R). A typical scattering potential calculated by
using Eq. (35) is shown in Fig. 2, where the tunneling
paths and the characteristic quantities are also marked.
Here, we choose the first (inner) turning point Ra at the
minimum configuration, i.e., Ra = Rmin (correspond-
ing to Vmin) with the potential V (Ra = Rmin) = V min

at this Ra-value. The outer turning point Rb gives the
Qeff -value of the reaction, V (Rb) = Qeff . This means
that the penetrability P with the de-excitation proba-
bility Wi = exp(−bEi) taken as 1 can be written as
P = PiPb, where Pi and Pb are calculated, by using the
WKB approximation, as

Pi = exp

−2
~

Ri∫
Ra

{2µ[V (R)− V (Ri)]}1/2dR

 , (36)
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Fig. 3. (a) The fragmentation potential V (η) and (b) the calculated
fission mass distribution yield with different density parameters at
T = 3.0 MeV

and

Pb = exp

−2
~

Rb∫
Ri

{2µ[V (R)−Qeff ]}1/2dR

 . (37)

Here, Ra and Rb are, respectively, the first and second
turning points. This means that the tunneling begins
at R = Ra (= Rmin) and terminates at R = Rb with
V (Rb) = Qeff . The integrals in Eqs. (36) and (37)
are calculated analytically by parameterizing the above-
calculated potential V (R).

The assault frequency ν0 in Eq. (29) is given simply
as

ν0 =
v

R0
=

(2E2/µ)1/2

R0
, (38)

where E2 = A1
A Qeff is the kinetic energy of the emitted

cluster with Qeff shared between the two fragments, and
µ = m( A1A2

A1+A2
) is the reduced mass.

The PCM can be simplified to UFM, if the prefor-
mation probability P0 = 1, and the penetration path is
straight to Qeff -value.

3. Results and Discussions

In the following, we see the effect of different Fermi
density parameters and nuclear radii on the cluster-
decay process using the Skyrme energy density formal-
ism within PCM and UFM.

First of all, to see the effect of different Fermi density
parameters on the cluster decay half-lives, we choose the
different Fermi density parameters proposed by various
authors as discussed earlier.

Fig. 4. Variation of log T1/2 (s) using different density parameters
for PCM

Figure 2 shows the characteristic scattering poten-
tial for the cluster decay of 56Ni∗ into the 16O + 40Ca
channel as an illustrative example. In the exit chan-
nel for the compound nucleus to decay, the compound
nucleus excitation energy E∗CN is spent for compensat-
ing the negative Qout, total excitation energy TXE,
and total kinetic energy TKE of two outgoing frag-
ments as the effective Q-value (i.e., TKE= Qeff in the
cluster decay process). In addition, we plot the pen-
etration paths for PCM and UFM using Skyrme force
SIII (without surface correction factor, λ = 0) with
DV Fermi density parameters. For PCM, we begin
the penetration path at Ra = Rmin with the potential
V (Ra = Rmin) = V min at this Ra-value and ends at
R = Rb, corresponding to V (R = Rb) = Qeff . Whereas,
for UFM, we begin at Ra and end at Rb, both corre-
sponding to V (Ra) = V (Rb) = Qeff . We have chosen
only the case of the variable Qeff (as taken in [44]) for
different cluster decay products to satisfy the arbitrar-
ily chosen relation Qeff = 0.4(28− | Qout |) MeV, as it
is more realistic [45]. The scattering potential with the
SM Fermi density parameters is also plotted for compa-
rison.

Figure 3,a and b shows the fragmentation poten-
tial V (η) and the fractional yield at R = Rmin with
V (Rmin) = V min. The fractional yields are calculated
within PCM at T = 3.0 MeV using various Fermi den-
sity parameters for 56Ni∗. From the figure, we observe
that the parameters play a minimal role in the fractional
mass distribution yield. The fine structure is not varied
at all for different sets of Fermi density parameters.

We have also calculated the half-life times (or decay
constants) of 56Ni∗ within PCM and UFM for clusters
≥16O. For 16O, the cluster decay constant varies by ten
times. The variation is much more with SM parame-
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Fig. 5. Percentage variation of log T1/2 for different Fermi density
parameters w.r.t. DV parameters

Fig. 6. Same as in Fig. 2, but for different radii. The decay path
displayed only for PCM

ters. In the case of UFM, the variation is almost con-
stant.

In Fig. 4, we display the cluster decay half-lives
log T1/2 for various Fermi density parameters using
PCM. There is a smooth variation in half-life times for
all the density parameters except for the SM parameter.
The trends in the variation of cluster half-life times (or
decay constants) are similar in both PCM and UFM.
But, in the case of the UFM decay, the constants are
more by ten times. In SM, the decay constants are larger
by 14 times.

In order to quantify the results, we have also calcu-
lated the percentage variation in log T1/2 as

[
log T1/2

]
% =

(log T1/2)i − (log T1/2)DV

(log T1/2)DV
× 100, (39)

Fig. 7. Same as in Fig. 3, but for different radii

where i stands for the half-life times calculated using
different Fermi density parameters. The variation in the
cluster decay half-lives is studied with respect to DV pa-
rameters. In Fig. 5,a and b, we display the percentage
variation in the half-life times within both the PCM and
UFM models as a function of the cluster mass A2, us-
ing Eq. (39). For PCM, this variation lies within ±5%
excluding SM parameters, whereas it lies within ±13%
with regard for SM parameters. In the case of UFM,
the half-lives lie within ±1.5% for all density parame-
ters, except for SM. For SM, the parameters variations
lie within ±9%.

Finally, it would be of interest to see how different
forms of nuclear radii would affect, as was discussed ear-
lier, the cluster decay half-lives.

In Fig. 6, we display the characteristic scattering po-
tential for the cluster decay of 56Ni∗ into the 28Si +
28Si channel for the RBass and RRoyer forms of nu-
clear radius. In the exit channel for the compound nu-
cleus to decay, the compound nucleus excitation energy
E∗CN goes in compensating the negative Qout, the to-
tal excitation energy TXE and the total kinetic energy
TKE of the two outgoing fragments as the effective Q-
value. We plot the penetration path for PCM, by using
the Skyrme force SIII (without the surface correction
factor, λ = 0) with the nuclear radius RBass. Here
again, we begin the penetration path at Ra = Rmin

with the potential V (Ra = Rmin) = V min at this Ra-
value and end at R = Rb, corresponding to V (R =
Rb) = Qeff for PCM. The Qeff is same as discussed ear-
lier.

Figure 7,a and b show the fragmentation potentials
V (η) and the fractional yields at R = Rmin with
V (Rmin) = V min. The fractional yields are calculated
within PCM at T = 3.0 MeV for 56Ni∗, by using vari-
ous forms of nuclear radii. From the figure, we observe
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Fig. 8. Same as in Fig. 4, but for different radii

that different radii give approximately a similar behav-
ior. However, small changes in the fractional mass dis-
tribution yields are observed. The fine structure is not
disturbed at all for different radius values.

We have also calculated the half-life times (or decay
constants) of 56Ni∗ within PCM for clusters ≥16O. The
cluster decay constant for the nuclear radius by R. Bass
varies by 102, and the order of magnitude is same for
other radii. In Fig. 8, we display the cluster decay half-
lives log T1/2 for various nuclear radii taken by different
authors, by using PCM. One can observe small variations
in the half-life times.

In order to quantify the results, we have also calcu-
lated the percentage variation in log T1/2 as

[
log T1/2

]
% =

(log T1/2)i − (log T1/2)RRoyer

(log T1/2)RRoyer
× 100, (40)

where i stands for the half-life times calculated using
different forms of nuclear radii. The variation in the
cluster decay half-lives is studied with respect to the
formula for radii RRoyer given by G. Royer. In Fig. 9,
we display the percentage variation in the half-life times
for PCM as a function of the cluster mass A2, by using
Eq. (40). This variation lies within ±7% excluding the
Bass radius, where it lies within ±10%.

4. Summary

We have reported the role of various model ingredients
and radii in the cluster decay constant calculations. Our
studies revealed that the effect of different densities and
nuclear radii on the cluster decay half-life times is about
10%. Our study justifies the use of the current set of

Fig. 9. Percentage variation of log T1/2 for different forms of radii
with PCM only

parameters for the radius, as the effect of different pre-
scriptions is very small.
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РОЛЬ РIЗНИХ СКЛАДОВИХ МОДЕЛI
ДЛЯ ЕКЗОТИЧНОГО КЛАСТЕРНОГО РОЗПАДУ 56Ni∗

Н.К. Дхiман

Р е з ю м е

Розглянуто кластерний розпад ядра 56Ni∗, народженого в зi-
ткненнях важких iонiв. Використано рiзнi параметри рiзних

авторiв для радiуса ядра i Фермi розподiлу щiльностi. Пока-
зано, що рiзниця параметрiв не змiнює iстотно структуру пар-
цiальних виходiв. Перiоди напiврозпаду для рiзних кластерiв
знаходяться в межах ±10% для рiзних параметрiв для Фер-
мi розподiлу щiльностi i радiусiв ядер i тому узгоджуються з
набором параметрiв, використовуваних в лiтературi для роз-
рахунку кластерних розпадiв.
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