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The de Broglie–Bohm theory is an interesting approach to quan-
tum mechanics, which has the merit to describe atomic and sub-
atomic processes without ascribing a special role to the observer
and remaining faithful to the principle of causality and the motion
dogma. In this article, a new suggestive interpretation of the de
Broglie–Bohm theory is proposed. It is based on the idea that
the quantum entropy is its ultimate visiting card in the quantum
domain, in a relativistic curved space-time, and in the quantum
gravity domain.

1. Introduction

Quantum mechanics is, perhaps, the fundamental phys-
ical theory of the 20-th century, which has determined
the most profound changes in the image of the world.
In order to explain atomic and subatomic processes,
quantum mechanics – as it has been formulated by its
founders, the representatives of the Copenhagen and
Göttingen schools (Bohr, Heisenberg, Born, etc. . . ) –
threw out two essential classical concepts, the princi-
ple of causality and the dogma of formulation of physics
in terms of motion in space–time (motion dogma). Ac-
cording to the Copenhagen interpretation of quantum
mechanics, it is not possible to provide a causal descrip-
tion of microscopic processes: the wave function car-
ries only the information about possible outcomes of a
measurement process. Whenever a measurement is per-
formed, the wave function ceases to evolve according to
the Schrödinger equation (the evolution law of every iso-
lated microscopic system) and collapses into one of its
eigenstates. The absolute squares of the scalar prod-
ucts of the wave function with its eigenfunctions are the
probabilities (or probability densities) of the occurrence
of these particular eigenvalues in the measurement pro-
cess [1, 2].

The central claim made by the standard quantum the-
ory is that the wave function provides a complete de-
scription of a quantum system: all we can know about a
physical system is contained in its wave function. This
would seem to imply that quantum mechanics is, funda-

mentally, a theory of wave functions. However, accepting
such a proposition faces us with an inescapable problem,
most eloquently formulated by Schrödinger within the
context of his famous cat paradox: namely, the question
of what it actually means for an object to literally ex-
ist in a superposition of eigenstates of the measurement
operator [3].

The Copenhagen interpretation of quantum mechan-
ics can be considered as the “minimal” interpretation of
quantum theory: it provides us only the mathematical
structure and the minimum interpretative propositions
needed to define the relation between the mathematical
structure itself and the experience. Although it functions
perfectly under the point of view of the empirical predic-
tions, it is clearly characterized by inner contradictions
and cannot be considered completely self-consistent. In
synthesis: many authors do not find satisfactory the re-
sort to two different postulates as regards the modality
of evolution of a system whether it is subjected to the ob-
servation or not; that, in virtue of the unlimited validity
of the superposition principle, superpositions of macro-
scopic states such as alive cat – dead cat, according to
the famous Schrödinger’s mental experiment, exist; that
a boundary between the microscopic world (governed by
the superposition principle) and the macroscopic world
(in which we have well-defined perceptions as regards
the properties of physical systems) cannot be defined in
a precise way [4]. The failure of the orthodox quantum
theory to offer any sort of coherent resolution to con-
cerns of this sort is largely the reason for which it has
continually remained so ambiguous and obscure.

On the basis of all these considerations, since the birth
of quantum theory renowned physicists such as Ein-
stein, Planck, Schrödinger, de Broglie did not accept the
acausal interpretation of quantum mechanics proposed
by the Copenhagen and Göttingen schools and tried to
find alternative interpretations. The de Broglie–Bohm
theory (sometimes referred to as Bohmian mechanics
or pilot-wave theory), originally proposed by Louis de
Broglie in 1927 for one-body systems and then extended
by David Bohm in 1952 also to the treatment of many-
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body systems, allows us to accomplish all of the per-
plexities listed above in the simplest way. The essential
insight of the de Broglie–Bohm theory is that quantum
mechanics is, fundamentally, a theory about particles in
motion and, thus, that in addition to the wave function,
the description of a quantum system should also include
its configuration – that is to say, the precise positions of
all the particles of the system at all times. What nat-
urally results from this insight is a deterministic quan-
tum theory of particle trajectories: a theory, predictably
equivalent to quantum mechanics, which allows us to
give a causal completion to quantum mechanics and to
explain the quantum behavior of matter remaining faith-
ful to the principle of causality and the motion dogma,
which not only accommodates, but provides the sim-
plest known explanation for the quantum formalism (in-
cluding the Born rule, the Heisenberg uncertainty rela-
tion, the representation of dynamical variables as Hilbert
space operators, and so on). The de Broglie–Bohm ver-
sion of quantum mechanics reproduces all the empirical
results of quantum theory and, at the same time, has the
merit to describe atomic and subatomic processes with-
out ascribing a crucial role to the observer and to recover
some causality also in the microscopic world that is so
seen as a world, in which quantum particles have precise
trajectories [5–8]. The Bohmian mechanics constitutes,
thus, a quantum theory without observers, i.e., a theory
that is formulated not in terms of what observers see
but in terms of objective events, regardless of whether
or not they are observed. In the Bohmian mechanics,
the role of the wave function is to tell the matter how
to move. According to this theory, all the quantum be-
haviors of matter (which appear enigmatic, mysterious,
and exotic in the standard interpretation) result from a
self-interaction of the particle. Each particle which ex-
erts a quantum force on itself can be expressed in terms
of a quantum potential derived from the particle wave
function.

The purpose of this article is to provide a new sugges-
tive reading of the de Broglie–Bohm theory, in which a
physical quantity appropriately called quantum entropy
can be considered as a fundamental physical entity, the
ultimate grid, the real ultimate “visiting card” of quan-
tum mechanics. The paper is structured in the following
manner. In Section 2, we will review the fundamental
features of the non-relativistic de Broglie-Bohm theory.
In Section 3, we will define the quantum entropy and
will outline the perspectives introduced by the quantum
entropy in the non-relativistic de Broglie–Bohm theory.
In Section 4, we will extend the approach of the quan-
tum entropy in the relativistic de Broglie–Bohm theory

in a curved space-time. In Section 5, we will analyze
the perspectives of the quantum entropy in the Bohmian
quantum gravity.

2. About the Non-Relativistic de Broglie–Bohm
Theory and the Quantum Potential

The de Broglie–Bohm theory is based on two fundamen-
tal starting hypotheses. Before all, the idea that quan-
tum mechanics is not complete and must be completed
by adding supplementary parameters to the formalism,
the so-called hidden variables. The hidden variables of
the model are the positions of all the particles consti-
tuting the physical system into examination. The first
starting hypothesis can be expressed so: the physical
system is prepared in such a way that, at the initial
time t = 0, it is associated with a specific wave function
ψ (x, 0) , which is assumed to be known perfectly and,
moreover, is at a point x (among those compatible with
the wave function into examination) that instead we ig-
nore (it is in this sense that the position is a hidden
variable of this theory).

The second starting hypothesis of the Bohmian me-
chanics is de Broglie’s objective wave-corpuscle dualism.
On the ground of this idea originally proposed by de
Broglie in 1926 at the Solvay Conference, each funda-
mental particle of physics is assumed to be constituted
by a corpuscle and by a wave which surrounds it and
accompanies it during its motion. As regards the non-
relativistic problem, de Broglie suggested that the wave
function of such an object was associated with a set of
identical particles which have different positions and are
distributed in space according to the usual quantum for-
mula, given by |ψ (x)|2. But he recognized a dual role
for the wave function: on one side, it determines the
probable position of the particle (just like in the stan-
dard interpretation); on the other side, it influences the
position by exerting a force on the orbit. According to
de Broglie’s approach, the wave function would act like
a sort of pilot wave which guides the particles in regions,
where such wave function is more intense [9, 10].

Bohm’s version of quantum mechanics is practically
the de Broglie pilot-wave theory carried to its logical
conclusion. In his classic works in 1952, Bohm succeeded
in developing a mathematical treatment of de Broglie’s
objective wave-particle dualism and thus was the first to
realize that this theory provided a foundation for non-
relativistic quantum mechanics. He showed that if one
interprets each individual physical system as that com-
posed by a corpuscle and a wave guiding it, by writ-
ing its wave function in polar form and decomposing the
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Schrödinger equation, the movement of the corpuscle un-
der the guide of the wave happens in agreement with a
law of motion, which assumes the following form

∂S

∂t
+
|∇S|2

2m
− ~2

2m
∇2R

R
+ V = 0 (1)

(where R is the amplitude, and S is the phase of the wave
function, ~ is Planck’s reduced constant, m is the mass
of the particle and V is the classical potential). This
equation is equal to the classical equation of Hamilton–
Jacobi except for the appearance of the additional term

Q = − ~2

2m
∇2R

R
(2)

having the dimension of an energy and containing
Planck’s constant and, therefore, the appropriately de-
fined the quantum potential [11]. Taking into account
that the quantity −∂S∂t is the total energy of the particle
and that |∇S|

2

2m is its kinetic energy, Eq. (1) can also be
written in the convenient form

|∇S|2

2m
− ~2

2m
∇2R

R
+ V = −∂S

∂t
, (3)

which can be seen as a real energy conservation law in
quantum mechanics. From Eq. (3), one can deduce
immediately that, without the quantum potential (2),
the total energy of the system would not be conserved:
this means that the quantum potential plays an essential
role in the quantum formalism.

The equation of motion (1) of a particle can also be
expressed in the equivalent form

m
d2x
dt2

= −∇(V +Q), (4)

where x = x (t) is the trajectory of the particle associ-
ated with its wave function. Equation (4) has just the
form of Newton’s second law of classical mechanics, in
which the particle is subjected to a quantum force (de-
rived from the quantum potential) in addition to a classi-
cal force (derived from a classical potential). Therefore,
we can say that, according to the de Broglie–Bohm the-
ory, each subatomic particle is completely described by
its wave function, which evolves according to the usual
Schrödinger equation

i~
∂ψ

∂t
= Hψ (5)

and its configuration and follows a precise trajectory
x = x (t) in space-time that is originated by the ac-
tion of a classical potential and a quantum potential

(and that evolves according to Eq. (1) or the equivalent
equation (4)). Moreover, it is important to underline
that, in the Bohmian mechanics, the decomposition of
the Schrödinger equation (5) leads, besides to the quan-
tum Hamilton–Jacobi equation (1), also to a continuity
equation for the probability density ρ (x, t) = R2 (x, t) =
|ψ (x, t)|2:

−∂ρ
∂t

= ∇ ·
(
ρ
∇S
m

)
. (6)

Equation (6) says that, in the de Broglie–Bohm theory,
all individual trajectories demonstrate the collective be-
havior like a liquid flux [12], perhaps, a superconductive
one.

The treatment provided by relations (1)–(4) and
(6) can be extended in a simple way to many-body
systems. If we consider a wave function ψ =
R (x1, ...,xN , t) eiS(x1,...,xN ,t)/~, defined on the configu-
ration space R3N of a system of N particles, the move-
ment of this system under the action of the wave ψ hap-
pens in agreement to the law of motion

∂S

∂t
+

N∑
i=1

|∇iS|2

2mi
+Q+ V = 0, (7)

where

Q =
N∑
i=1

− ~2

2mi

∇2
iR

R
(8)

is the many-body quantum potential. Equation (7) can
also be written in the convenient form
N∑
i=1

|∇iS|2

2mi
+Q+ V = −∂S

∂t
, (9)

which can be considered as a real energy conservation
law in quantum mechanics for a many-body system. The
equation of motion of the i-th particle, in the limit of big
separations, can also be written in the form

mi
∂2xi
∂t2

= − [∇iQ (x1,x2, ...,xn) +∇iVi (xi)] , (10)

which is a quantum Newton law for a many-body system.
Equation (10) shows that the contribution to the total
force acting on the i-th particle coming from the quan-
tum potential, i.e. ∇iQ, is a function of the positions
of all the other particles and, thus, does not decrease in
general, as the distance increases. The continuity equa-
tion for the probability density becomes

−∂ρ
∂t

=
N∑
i=1

∇i ·
(
ρ
∇iS
m

)
. (11)
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In synthesis, the Bohmian mechanics claims that, in our
world, electrons and other elementary particles have pre-
cise positions at every time t and follow precise trajec-
tories that evolve according to Eqs. (1), (3), and (4)
(for a one-body system) or according to Eqs. (7), (9),
and (10) (for a many-body system). This picture turns
out to be in contrast with the standard interpretation
of quantum mechanics, according to which the quantum
particles do not have precise positions, but are regarded
as “delocalized” to the extent, to which the wave function
is spread out. It is also in contrast with another picture
of the Bohmian trajectories, that one often has in mind
when using Bohmian trajectories for numerical purposes,
namely the hydrodynamic picture. According to the lat-
ter, all the Bohmian trajectories associated with a given
wave function (but corresponding to a different initial
position) are on an equal footing, none is more real than
the others, they are all regarded as flow lines in anal-
ogy to the flow lines of a classical fluid. In the Bohmian
mechanics, instead, only one of the Bohmian trajecto-
ries corresponds to reality, and all the other ones are
no more than mathematical curves, representing possi-
ble alternative histories that could have occurred if the
initial configuration of our world had been different, but
did not occur [13].

The most important and relevant element in order to
understand the features of Bohm’s version of quantum
mechanics is certainly the quantum potential. In virtue
of the features of the quantum potential, the basic equa-
tions (1) and (4) (or the equivalent equations (7) and
(10) for a many-body system) of the non-relativistic de
Broglie–Bohm theory do not imply a classical treatment
of quantum processes [14]. The quantum potential does
not have the usual properties expected from a classical
potential. On the basis of its definition (2) (or the anal-
ogous relation (8) for a many-body system), the quan-
tum potential depends on how the amplitude of the wave
function varies in space. The presence of the Laplace op-
erator indicates that the action of this potential is like-
space, namely creates a non-local instantaneous action
onto the particle under consideration. The appearance
of the amplitude of the wave function in the denomina-
tor also explains why the quantum potential can produce
strong long-range effects that do not necessarily fall off
with increase in the distance and so the typical proper-
ties of entangled wave functions. Thus, even though the
wave function spreads out, the effects of the quantum
potential need not necessarily decrease (as the equation
of motion (10) of the many-body systems shows clearly,
the total force acting on the i-th particle coming from
the quantum potential, i.e. ∇iQ, does not necessarily

fall off with increase in the distance; indeed, the forces
between two particles of a many-body system may be-
come stronger, even if |ψ| may decrease in this limit).
This is just the type of behavior required to explain the
EPR paradox.

If we examine the expression of the quantum potential
in the double-slit experiment, we find that it depends on
the width of the slits, their distance apart, and the mo-
mentum of the particle. This means that the quantum
potential has a contextual nature, namely brings a global
information on the process and its environment; and it
has an active information in the sense that it modifies
the behavior of the particle. In a double-slit experiment,
if one of the two slits is closed, the quantum potential
changes, and this information arrives instantaneously to
the particle, which behaves as a consequence.

The fact that the quantum potential produces an ac-
tive information, a global information on the environ-
ment means that it cannot be seen as an external entity
in space but as an entity, which contains a spatial in-
formation, i.e. as an entity, which represents space. It
is thus possible to interpret the quantum potential (2)
(or the analogous one (8) for a many-body system) as
a geometrodynamic entity. The quantum potential has
indeed a geometric nature just because has a contextual
nature, contains a global information on the environ-
ment, in which the experiment is performed; and, at the
same time, is a dynamical entity just because its infor-
mation about the process and the environment is active,
by determining the behavior of the particle. In this ge-
ometrodynamic picture, we can say that the quantum
potential indicates and represents the geometric proper-
ties of space, from which the quantum force and, thus,
the behavior of quantum particles, are derived [15]. As
for the double-slit experiment, the fact that quantum po-
tential is linked to the width of the slits, their distance
apart, and the momentum of the particle, by present-
ing a global information on the environment, means just
that it describes the geometric properties of the exper-
imental arrangement (and, therefore, of space), which
determine the quantum force and the behavior of the
particle. Moreover, as we have already underlined above,
the presence of the Laplace operator indicates that the
geometric properties contained in quantum potential de-
termine a non-local instantaneous action onto the parti-
cle. We can say therefore that Bohm’s theory manages
to manifest this essential feature of quantum mechan-
ics, just by means of the geometric properties of space
described and expressed by the quantum potential. In
virtue of the features of the quantum potential, namely
in virtue of the geometric properties of space, which de-
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termine the quantum forces, Bohm’s theory turns out to
be intrinsically holistic, in which “the whole is more than
the sum of the parts”. It is a merit of the pilot wave the-
ory (and, in particular, of the geometrodynamic nature
of quantum potential) to show, in such direct way, the
non-locality that, according to Bohm, “. . . is the newest
and most fundamental ontological characteristic implied
by quantum theory” [16].

Finally, it is important to underline that, in the
context of non-relativistic Bohmian mechanics, the
Bohmian path integral can be associated with a Bohmian
trajectory of the particle under consideration (and which
is determined by the combined action of the classical po-
tential and the quantum potential). In this regard, in the
paper “The path integral approach in the frame work of
causal interpretation” Abolhasani and Golshani showed
that the propagation of the wave function in the context
of the de Broglie–Bohm theory for a one-body system,
can be achieved by means of a Bohmian path integral,
which is defined, for two points (x; t) and (x0; t0) with a
finite distance on a Bohmian path, by the relation

ψ(x, t) = exp

 i

~

x,t∫
x0,t0

[
(∇S)2

2m
− (Q+ V )]dt−

−
x,t∫

x0,t0

∇2S

2m
dt

ψ(x0, t0), (12)

where the first exponential function can be obtained by
integrating the quantum Hamilton–Jacobi equation (1)
on the Bohmian path, while the second exponential one
can be obtained by integrating the continuity equation
(6) [17]. Equation (12) shows that the classical action
(described by the Feynman path integral) is replaced by
the quantum action (which is linked with the quantum
potential Q given by Eq. (2)). The Bohmian path inte-
gral given by Eq. (12) can also be extended to the case
of a system of N particles in the following way:

ψ(x1, ...,xN , t)=exp

i~
x,t∫

x0,t0

N∑
i=1

[
(∇iS)2

2mi
−(Q+V )

]
dt−

− =

x,t∫
x0,t0

N∑
i=1

∇2
iS

2mi
dt

ψ(x01, ...,x0N , t0), (13)

where the quantum potential Q is given by Eq. (8).
In particular, Abolhasani and Golshani have determined

ψ(x, t) for a free-wave packet in one dimension in terms
of its Fourier components eikx (for which ∇2S = 0 and
Q=0). In this case, the Bohmian path integral (12) be-
comes

ψ (x, t) =
∫
dke−i

~k2
2m (t−t0)ϕ (k) eikx (14)

(which can be called Fourier-Bohm path integral). Abol-
hasani’s and Golshani’s treatment shows furthermore
that, for the free wave packet in one dimension, the
Feynman path integral can be obtained directly from the
Bohmian path integral (12) on the basis of an “heuris-
tic argument” (as a consequence of the fact that, in this
simple case, the quantum potential vanishes).

3. Quantum Entropy and the “Entropic
Version” of the Non-Relativistic de
Broglie–Bohm Theory

The de Broglie–Bohm theory can receive a new inter-
esting and suggestive reading which is based on the idea
that all the features of the quantum potential follow from
a fundamental physical quantity that can be appropri-
ately called “quantum entropy”. We call this new way
of reading the de Broglie–Bohm theory as the “entropic
version” of the Bohmian mechanics or, more briefly, “en-
tropic Bohmian mechanics”.

The entropic version of the non-relativistic Bohmian
mechanics starts by defining the logarithmic function

SQ = −1
2

ln ρ, (15)

where ρ is the probability density (describing the space-
temporal distribution of an ensemble of particles, namely
the density of particles in the element of volume d3x
around a point x at the time t) associated with the wave
function ψ(x, t) of an individual physical system. As we
know, in the Bohmian mechanics, each individual phys-
ical system is described contemporarily by a wave func-
tion and an ensemble of particles (distinguished by their
initial locations). Now, in the entropic version of the
Bohmian mechanics, we assume that the space-temporal
distribution of the ensemble of particles describing the
individual physical system under consideration generates
a modification of the background space characterized by
the quantity given by Eq. (15). Equation (15) presents
some analogy with the standard definition of entropy
given by the Boltzmann law: it provides, indeed, the
quantum counterpart of a Boltzmann-type law. Since
it shows a relation with the wave function, the quan-
tity given by Eq. (15) can be appropriately defined as
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“quantum entropy”. The quantum entropy (15) can be
interpreted as the physical entity that characterizes, in
the quantum domain, the degree of order and chaos of
the vacuum – a storage of virtual trajectories supplying
the optimal ones for the particle movement – which sup-
ports the density ρ describing the space-temporal distri-
bution of the ensemble of particles associated with the
wave function under consideration. In the recent arti-
cle Bohmian split of the Schrödinger equation onto two
equations describing evolution of real functions, Sbitnev
[18] has shown that, by introducing quantity (15), the
quantum potential can be expressed in the following con-
venient way:

Q = − ~2

2m
(∇SQ)2 +

~2

2m
(
∇2SQ

)
. (16)

In this way, by substituting Eq. (16) into Eq. (3), we
get the following equation of motion for the corpuscle
associated with the wave function ψ(x, t):

|∇S|2

2m
− ~2

2m
(∇SQ)2 + V +

~2

2m
(
∇2SQ

)
= −∂S

∂t
. (17)

Equation (17) provides the energy conservation law, in
which the term − ~2

2m (∇SQ)2 can be interpreted as the
quantum corrector of the kinetic energy |∇S|

2

2m of the par-
ticle, while the term ~2

2m

(
∇2SQ

)
can be interpreted as

the quantum corrector of the potential energy V . On
the ground of Sbitnev’s results, the following reading
of the quantum potential and the energy conservation
law in quantum mechanics becomes permissible. The
quantum potential can be derived from the quantum en-
tropy describing the degree of order and chaos of the
background space (namely, the modification in the back-
ground space) produced by the density of the ensemble
of particles associated with the wave function under con-
sideration. On the basis of Eq. (17), we can say that the
quantum entropy determines two quantum corrections
of the energy of the physical system under consideration
(of the kinetic energy and of the potential energy, respec-
tively). Without these two quantum corrections (linked
just with the quantum entropy), the total energy of the
system would not be conserved.

Moreover, by substituting the quantum entropy given
by Eq. (15) in the continuity equation (6), we obtain
the entropy balance equation

∂SQ
∂t

= − (v · ∇SQ) +
1
2
∇ · v, (18)

where v = ∇S
m is the particle’s speed. In Eq. (18), the

second term on the right-hand side describes the rate of

entropy flow due to the spatial divergence of the speed.
This second term is nonzero in the regions, where the
particle changes the direction of movement. Since – on
the basis of Brillouin’s results – a negative value of SQ
is related to information [19], Eq. (18) can be inter-
preted as a law, which describes the balance of infor-
mation flows. As a consequence, the quantum potential
expressed by Eq. (16), namely as a sum of two quantum
correctors linked with the quantum entropy, can be in-
terpreted as an information channel into the behavior of
the particle under consideration. Moreover, in virtue of
the dependence of the quantum potential on the quan-
tum entropy, it is just the quantum entropy that can
be considered the fundamental element that determines
the fact that the quantum potential acts as an infor-
mation channel into the behavior of the particle under
consideration. The nature of the quantum potential to
act as an information channel into the behavior of quan-
tum particles is defined just by the quantum entropy.
In other words, one can see that, by introducing the
quantum entropy given by Eq. (15), just this quantity
describing the degree of order and chaos of the vacuum
– a storage of virtual trajectories supplying the optimal
ones the particle movement – and supporting the den-
sity ρ (of the particles associated with the wave function
under consideration) is the fundamental element that
produces an active information for the behavior of the
particles at a fundamental level. The geometrodynamic
nature of the quantum potential – namely the fact that
the quantum potential has a geometric nature (a con-
textual nature), contains a global information on the
environment, in which the experiment is performed, and
the fact that, at the same time, it is a dynamical en-
tity, namely its information about the process and the
environment is active – can thus receive a new sugges-
tive interpretation. It is just the quantum entropy as
the fundamental element that produces the geometrody-
namic nature of the quantum potential. The quantum
potential expresses the geometric properties of space,
from which the quantum force and, thus, the behav-
ior of quantum particles follow. The quantum entropy
(15) by indicating the degree of order and chaos of the
vacuum as the background space (namely, a modifica-
tion in the background space) produced by the den-
sity ρ of the ensemble of particles associated with the
wave function under consideration, represents which re-
ally are these geometric properties. The non-local ac-
tion of the quantum potential itself can be seen as a
consequence of the quantum entropy in virtue of the
presence of the Laplace operator of the quantum en-
tropy.
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The extension of the entropic non-relativistic Bohmian
mechanics to many-body systems is straightfor-
ward. If we consider a wave function ψ =
R(x1, ...,xN , t)eiS(x1,...,xN ,t)/~ defined on the configura-
tion space R3N of a system of N particles, the quantum
entropy (15) associated with the action of the wave ψ de-
termines a many-body quantum potential given by the
expression

Q =
N∑
i=1

[ − ~2

2mi
(∇iSQ)2 +

~2

2mi

(
∇2
iSQ.

)
] (19)

The equation of motion of the system determined by the
quantum entropy (15) is as follows:

N∑
i=1

|∇iS|2

2mi
−

N∑
i=1

~2

2mi
(∇iSQ)2 +

+V +
N∑
i=1

~2

2mi

(
∇2
iSQ

)
= −∂S

∂t
. (20)

The continuity equation for the probability density be-
comes

∂SQ
∂t

=
N∑
i=1

[ − (vi · ∇iSQ) +
1
2
∇i · vi ] . (21)

In synthesis, in the reading of the Bohmian mechanics
based on the introduction of the quantum entropy given
by Eq. (15), one can say that the quantum entropy
can be indeed interpreted as a sort of the intermediary
entity between the space and the behavior of quantum
particles, and thus between the action of the quantum
potential and the behavior of quantum particles. The
introduction of the quantum entropy given by Eq. (15)
as the fundamental entity that determines the behavior
of quantum particles leads to two equations of motion,
the energy conservation law (Eq. (17) for one-body sys-
tems and Eq. (20) for many-body systems), and the en-
tropy balance equation (Eq. (18) for one-body systems
and Eq. (21) for many-body systems), which introduce a
new suggestive way to interpret the Bohmian mechanics.
As we know, in the usual interpretation of the Bohmian
mechanics, the equations of motion are nonlinear in na-
ture via the dependence of the quantum potential on the
wave function given by Eq. (2) (different initial condi-
tions yield, in fact, different quantum potentials). In-
stead, now, in the entropic version of the Bohmian me-
chanics here proposed, one assumes preliminarily that

the density of particles ρ associated with the wave func-
tion of the physical system under consideration deter-
mines a modification in the background space and, thus,
a certain degree of order and chaos defined by the log-
arithmic function (15). Then we can say that, in this
“non-linear” background, the equations of motion of the
system given now by Eqs. (17) and (18) (or, by Eqs.
(20) and (21) for many-body systems) are “linear”. As
was shown already by Bittner, the introduction of the
quantum entropy (15) allows one to transform a non-
linear model into a linear one [20]. The replacement of
a non-linear model in the wave function with a linear
model in the quantum entropy can be indeed considered
as a relevant merit of the entropic version of the non-
relativistic Bohmian mechanics. By handling with the
quantum entropy SQ, it is possible to obtain some linear
model of the non-relativistic Bohmian mechanics.

Moreover, it is of interest to remark that, in the ap-
proach of the quantum entropy, the de Broglie–Bohm
path integrals can receive a new suggestive re-reading.
By taking the new definition (16) of the quantum poten-
tial into account, Abolhasani’s and Golshani’s Bohmian
path integral can be rewritten in the following conve-
nient form:

ψ(x, t) = exp

 i

~

x,t∫
x0,t0

[
(∇S)2

2m
+

~2

2m
(∇SQ)2

]
dt−

−
x,t∫

x0,t0

(
∇2S

2m
+

~2∇2SQ
2m

+ V

)
dt

ψ(x0, t0). (22)

Equation (22) indicates clearly that the quantum en-
tropy is the central element associated with a Bohmian
path by determining the appropriate corrective terms
into the kinetic energy and the potential energy (and
thus into the Lagrangian) of the particle under consider-
ation. In other words, in the entropic picture of the non-
relativistic Bohmian mechanics, the following re-reading
of the Bohmian path integral formalism becomes permis-
sible: the Bohmian path integral (22) is derived by in-
tegration of the quantum Lagrangian determined by the
kinetic energy, the potential energy, and the quantum
entropy of the particle, namely the quantum entropy de-
scribing the degree of order and chaos of the vacuum
supporting the probability density introduces a modifi-
cation of the Lagrangian and, thus, determines a partic-
ular Bohmian trajectory associated with the Bohmian
path integral (22).
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Another important merit of the entropic non-
relativistic Bohmian mechanics is to lead to a complex-
ified state space as the fundamental background. Let
us consider, for simplicity, a one-body system. As re-
gards the new definition (16) of the quantum poten-
tial in terms of the quantum entropy, by means of an
opportune unification of the quantum Hamilton–Jacobi
equation (17) and the entropy balance equation (18), a
complexified Hamilton–Jacobi equation containing the
complex kinetic and potential terms can be obtained. In
this new approach, the two quantum correction terms
of the kinetic energy and the potential energy both de-
pending on the quantum entropy emerge as the funda-
mental terms that modify the classical Feynman’s path
integral by expanding coordinates and momenta to the
imaginary sector.

In this regard, by multiplying Eq. (18) by −i~ and
substituting this result into Eq. (17), we obtain

|∇S|2

2m
+ i~

1
m

(∇S · ∇SQ)− ~2

2m
(∇SQ)2+

+V − i~1
2
(∇v) +

~2

2m
(∇2SQ) = −∂S

∂t
. (23)

By defining J = S + i~SQ as a complexified action, the
first three terms in (23) can be rewritten as the gradient
of the complexified action squared

|∇S|2

2m
+i~

1
m

(∇S ·∇SQ)− ~2

2m
(∇SQ)2 =

1
2m

(∇J)2. (24)

As regards the other three terms of (23), they could stem
from the expansion of the potential energy extended in
the complex space possessing by a small broadening into
the imaginary sector in Taylor’s series (as regards the
complex extension, see, e.g., [21]):

V (x + iε) ≈ V (x) + i~
(
n ·
( s

2m
∇V (x)

))
−

− ~2

2m

(
s2

2m
∇2V (x)

)
+ ... , (25)

where ε = ~
2msn is a small vector having the dimension

of length, and s is the universal constant, the reverse
velocity [22], s = 4πε0 ~

e2 = 4.57 × 10−7 [s/m], e is the
elementary charge carried by a single electron, and ε0
is the vacuum permittivity. As regards the second term
of Eq. (25), we have a force −∇V (x) multiplied by a
vector ln providing, thus, an elementary work performed
by this force at the shifting by a length l along n. The

force multiplied by the factor ln and divided by the mass
m is the rate of velocity’s variation per unit length, i.e.,
it represents the velocity divergence. So, the second term
of Eq. (25) can be rewritten in the form

s

2m
(n · ∇V (x)) = −1

2
(∇ · v) . (26)

The term
(
s2

2m∇
2V (x)

)
is comparable with SQ, so it

can be made the position

−
(
s2

2m
∇2V (x)

)
= ∇2SQ. (27)

Now, by defining the complexified momentum p′ =
∇J = ∇S + i~∇SQ and the complexified coordinates
x′ = x + iε, Eq. (23) can be rewritten as a complexified
Hamilton–Jacobi equation

−∂J
∂t

=
1

2m
(∇J)2 + V (x′) = H (x′,p′, t) , (28)

where H (x′,p′, t) on the right-hand side is the complex-
ified Hamiltonian. The total derivative of the complex
action gives the equation

dJ

dt
= −H (x′,p′, t) +

N∑
i=1

pi
′ẋ′i = L (x′, ẋ′, t) . (29)

By integrating Eqs. (28) and (29), we obtain the solu-
tions

J = −
t∫

t0

H (x′,p′, τ) dτ + C1, (30)

J = −
t∫

t0

L (x′, ẋ′, τ) dτ + C2, (31)

where C1 and C2 are two integration constants that sat-
isfy the condition

C1 − C2 =

t∫
t0

N∑
i=1

p′iẋ
′
i dt =

∫
L

N∑
i=1

p′i dx
′
i. (32)

In Eq. (32), L is a curve beginning at t0 and terminating
at t.

As it has been shown clearly by Sbitnev in his re-
cent work “Bohmian trajectories and the Path Integral
Paradigm. Complexified Lagrangian Mechanics”, the
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complexified state space described by Eqs. (28), (29),
(30), (31), and (32) (and therefore the quantum entropy)
can be considered as the fundamental stage, which deter-
mines the features of Bohmian trajectories: the Bohmian
trajectories are trajectories submitted to the principle
of least action that expands on the action integral (31)
containing the complexified Lagrangian function derived
from the quantum entropy [23]. The Bohmian trajecto-
ries turn out to be the geodesic trajectories of an incom-
pressible fluid loaded by the complexified Lagrangian
that is determined, in turn, by the quantum potential
expressed by Eq. (16), in other words, by the two quan-
tum corrections determined by the quantum entropy.

In the complexified state space defined by Eqs. (28)–
(31) and (32), a solution of the Schrödinger equation can
be written as

ψ (x′,p′, t) = exp
(
i

~
J

)
= exp

(
i

~
S − SQ

)
. (33)

By substituting the action integral (30) into Eq. (33),
we obtain

ψ (x′,p′, t) =
1
Z1

exp

− i~
t∫

t0

H (x′,p′, τ) dτ

 , (34)

where Z1 = exp
(
− i

~C1

)
. The probability density be-

comes

ρ = exp (−2SQ) . (35)

In this complexified state space, Hamilton’s principle
δJ = 0 states that the motion of an arbitrary mechani-
cal system occurs in such a way that the definite integral
(31) becomes stationary for arbitrary possible variations
of the configuration of the system, provided the initial
and final configurations of the system are prescribed.
This principle can also be reformulated with respect to
the wave function expressed in terms of the complexified
action (31)

ψ (x′,p′, t) =
1
Z2

exp

− i~
t∫

t0

L (x′, ẋ′, τ) dτ

 , (36)

where Z2 = exp
(
− i

~C2

)
. In this case, the principle

states: this exponent becomes stationary for arbitrary
possible variations of the configuration of the system,
provided the initial and final configurations of the sys-
tem are prescribed. Obviously, this results from the sta-
tionarity of integral (31) stated above.

Moreover, the two Bohmian quantum corrections de-
termined by the quantum entropy emerge as indispens-
able terms that modify the Feynman’s path integral
by expanding the coordinates and the momenta to the
imaginary sector. As shown by Grosche [24], Feynman’s
path integral can be written mathematically in the fol-
lowing way in the complexified state space:

K (x′, t;x′0, t0) =

=
∫ ∫

...

∫
D [x′ (τ)] exp

 i

~

t∫
t0

L (x′, ẋ′, τ) dτ

. (37)

Here, the path-integral symbol indicates the multiple in-
tegral∫ ∫

...

∫
D[x′(τ)]⇔

⇔
(

2πi~δt
m

)−M/2
x′∫

x′
o

dx′1

x′∫
x′
o

dx′2 · ··
x′∫

x′
o

dx′M . (38)

The fundamental principle of quantum mechanics,
namely the principle of superposition, underlies the path
integral (37). Whereas the evolution of a classical object
is described by a unique trajectory satisfying the prin-
ciple of least action, the path integral tests all possible
virtual classical trajectories, among which there is the
unique trajectory satisfying the least action principle.
Other trajectories cancel each other by their interfer-
ence.

On the basis of Sbitnev’s results [23], the interpreta-
tion of Feynman’s path integral approach based on Eqs.
(37) and (38) seems simple and natural in the complex-
ified state space characterized by the complexified mo-
menta p′ = ∇J = ∇S+ i~∇SQ and by the complexified
coordinates x′ = x + iε: the key of reading is provided
by the two Bohmian quantum correctors linked with
the quantum entropy. The path integral computation
stems directly from the decomposition of the Schrödinger
equation into the modified quantum Hamilton–Jacobi
equation plus the entropy balance equation. The two
Bohmian quantum correctors linked with the quantum
entropy (15) and resulted from this decomposition allow
the expanding of the state space to the imaginary sector.
The imaginary terms emergent in this computations sup-
press the wilder contributions to the path integral. Thus,
we have a non-trivial N -dimensional manifold embedded
in the 2N -dimensional complex state space, where its
real part is the conventional coordinate state space.
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4. Entropic Version of the Relativistic de
Broglie–Bohm Theory in a Curved
Space-Time

The next important step is to develop an entropic version
of the relativistic de Broglie–Bohm theory in a curved
space-time and to show the perspectives introduced by
the quantum entropy in this field. In this regard, we will
consider the interesting Bohmian approach to the Klein–
Gordon equation developed by F. Shojai and A. Shojai in
[25], [26]. In this model, the quantum Hamilton–Jacobi
equation which can be derived by the decomposition of
the wave function in its polar form ψ = |ψ| exp

(
iS
~
)

has
the form

∂µS∂
µS = m2c2 expQ, (39)

which is Poincarè-invariant and has the correct non-
relativistic limit. Here, the quantum potential is defined
as

Q =
~2

m2c2

(
∇2 − 1

c2
∂2

∂t2

)
|ψ|

|ψ|
. (40)

The continuity equation is

∂µ (ρ∂µS) = 0, (41)

where ρ is the density of particles in the element of vol-
ume d3x around a point x at the time t associated with
the wave function ψ (x, t) of the individual physical sys-
tem under consideration. Just like in the non-relativistic
problem, we start by defining the quantum entropy

SQ = −1
2

ln ρ. (42)

In the entropic version of the Bohmian relativistic quan-
tum mechanics, the space-temporal distribution of the
ensemble of particles describing the individual physi-
cal system under consideration is assumed to generate
a modification and, thus, a degree of order and chaos
of the background space characterized by the quantity
given by Eq. (42). This modification of the background
space described by the quantum entropy (42) determines
a quantum potential given by the relation

Q = − ~2

m2c2
(∂µSQ)2 +

~2

m2c2

((
∇2 − 1

c2
∂2

∂t2

)
SQ

)
.

(43)

So, the quantum Hamilton–Jacobi equation (39) be-
comes

∂µS∂
µS = m2c2 exp

[
− ~2

m2c2
(∂µSQ)2 +

+
~2

m2c2

((
∇2 − 1

c2
∂2

∂t2

)
SQ

)]
, (44)

while the continuity equation (41) becomes

1
c

∂SQ
∂t

= − (pµ∂µSQ) +
1
2
∂µp

µ. (45)

Equation (44) and Eq. (45) can be considered as the
fundamental equations of motion in the entropic view
of the Bohmian Klein–Gordon relativistic quantum me-
chanics. Since, on the basis of the relativistic quantum
Hamilton–Jacobi equation (39), the quantum potential
turns out to be essentially the mass square, and since
Eq. (39) emerges in the entropic picture as a direct
consequence of the more fundamental equation (44) (be-
cause the quantum potential is determined by the quan-
tum entropy), we may say within our approach that the
mass square in Eq. (39) is determined by the quan-
tum entropy. Therefore, the very interesting perspective
emerges that, in the entropic approach to the relativistic
de Broglie–Bohm theory, the quantum mass defined by
the relation

M2 = m2 expQ (46)

is generated by the quantum entropy, by the degree of or-
der and chaos of the vacuum, and by the modification of
the background space caused by the density of particles
associated with the wave function under consideration.

Moreover, F. Shojai and A. Shojai [26] have shown
that, as regards Bohm’s version of the Klein–Gordon
equation, by changing the ordinary differentiation ∂µ
with the covariant derivative ∇µ and by changing the
Lorentz metric with the curved metric gµν in Eqs. (39),
(40), and (41), it is possible to combine the de Broglie–
Bohm quantum theory of motion and the theory of grav-
ity and to interpret the quantum potential as the confor-
mal degree of freedom of the space–time metric. In other
words, in F. Shojai’s and A. Shojai’s model, the effects of
the gravity on the geometry and the quantum effects on
the geometry of space-time are highly coupled. The ge-
ometric properties which are expressed by the quantum
potential and determine the behavior of a zero-spin par-
ticle are linked with the curved space-time: the particles
determine the curvature of space-time, and, at the same
time, the space-time metric is linked with the quantum
potential, which influences the behavior of the particles.
Now, by starting from the quantum entropy (42), an
entropic version of the relativistic de Broglie–Bohm the-
ory in a curved space-time can be suggested, in which it
is possible to explain why and in what sense the quan-
tum potential is the conformal degree of freedom of the
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space-time metric, why and in what sense the effects of
gravity on the geometry and the quantum effects on the
geometry of space-time are highly coupled: the key to
the explanation of these results lies just in the quantum
entropy, in the modification of the background space de-
termined by the density of particles associated with the
wave function under consideration.

In the entropic approach, the equations of motion for
a particle (of spin 0) in a curved background take the
form

1
c

∂SQ
∂t

= − (pµ∇µSQ) +
1
2
∇µpµ, (47)

gµν∇µS∇µS = m2c2 exp
[
− ~2

m2c2
(∇µSQ)2+

+
~2

m2c2

((
∇2 − 1

c2
∂2

∂t2

)
g

SQ,

)]
(48)

and the quantum potential is

Q = − ~2

m2c2
(∇µSQ)2 +

~2

m2c2

((
∇2 − 1

c2
∂2

∂t2

)
g

SQ

)
.

(49)

Utilizing now the fruitful de Broglie’s observation [27]
that the quantum theory of motion for relativistic spin-
less particles is very similar to the classical theory of
motion in a conformally flat space-time, in which the
conformal factor is related to Bohm’s quantum poten-
tial, the quantum Hamilton–Jacobi equation (48) can
be written equivalently as

m2

M2
gµν∇µS∇νS = m2c2, (50)

where

M2 = m2 exp
[
− ~2

m2c2
(∇µSQ)2+

+
~2

m2c2

((
∇2 − 1

c2
∂2

∂t2

)
g

SQ

)]
. (51)

From this relation, it can be concluded that the quan-
tum effects are equivalent to a change of the space-time
metric from gµν to

g̃µν =
M2

m2
gµν , (52)

which is a conformal transformation, which is deter-
mined, indeed, by the quantum entropy (42) and, thus,
by the degree of order and chaos of the vacuum, by a
modification of the background space caused by the den-
sity of particles associated with the wave function under
consideration. In this way, Eq. (50) can be written as

g̃µν∇̃µS∇̃νS = m2c2, (53)

where ∇̃µ represents the covariant differentiation with
respect to the metric g̃µν . Moreover, in this new curved
space-time, the continuity equation takes the form

g̃µν
1
c

∂SQ
∂t

= g̃µν
[
−
(
pµ∇̃µSQ

)
+

1
2
∇µpµ

]
. (54)

The important conclusion we can draw from this treat-
ment is that the presence of the quantum potential is
equivalent to a curved space-time with its metric being
given by (52), where the mass square is just determined
by the quantum entropy. In this way, we have achieved
a geometrization of the quantum aspects of matter in
a picture based on the idea that the density of parti-
cles associated with a given wave function determines a
modification of the background space.

It seems that there is a dual aspect to the role of ge-
ometry in physics. The space-time geometry sometimes
looks like what we call gravity and sometimes looks like
what we understand as quantum behavior. The real key
to the reading of this link lies just in the quantum en-
tropy: the effects of gravity on geometry and the quan-
tum effects on the geometry of space-time are highly
coupled, because they are both determined by the back-
ground space described by the quantum entropy, and
they are both produced by the degree of order and chaos
of the vacuum supporting the density of particles asso-
ciated with the wave function under consideration. The
entropic treatment of the motion of a zero-spin particle
in a curved background introduces, therefore, the inter-
esting perspectives: in fact, on the ground of relations
(50) and (51), we can say that the geometric properties,
which are expressed by the quantum entropy and which
determine the behavior of a zero-spin particle are linked
to the curved space-time. In other words, we can say
that the particles determine the curvature of space-time,
and, at the same time, the space-time metric is linked
with the quantum entropy, which influences the behavior
of the particles. The quantum entropy appears, indeed,
as a real intermediary between gravitational and quan-
tum effects of matter. Quantum entropy itself generates
a curvature, which may have a large influence on the
classical contribution to the curvature of the space-time.
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It can be also interesting to observe that the particle
trajectory can be derived from the guidance formula and
by differentiating Eq. (48) with the use of the above
conformal transformation, which leads to a Newton-type
equation of motion

M
d2xµ

dτ2
+MΓµνκu

νuκ =
(
c2gµν − uµuν

)
∇νM. (55)

Equation (55) reduces to the standard geodesic equa-
tion via the above conformal transformation (52). By
taking Eq. (51) into account, the quantum entropy can
be considered as the fundamental element, which deter-
mines the particle trajectory described by the Newton-
type equation of motion (55).

5. Perspectives of the Quantum Entropy in the
Bohmian Quantum Gravity

In this section, we will introduce an entropic version of
the de Broglie–Bohm theory in the quantum gravity do-
main. In particular in the first part, we will show the
perspectives introduced by the quantum entropy in the
context of the scalar-tensor Bohmian model regarding
quantum gravity. In the second part, we will present
some considerations about the Wheeler–DeWitt equa-
tion.

Before all, we remember that, despite some problems
and weak points (for example, the fact that it is still
an open question among the so-called Bohmian commu-
nity which sense to give – if any – to the wave function
of the Universe), if we consider some recent research,
the Bohmian interpretation of canonical quantum grav-
ity turns out to have several useful aspects and merits
[7, 28–31].

Some of them are the following ones:

– It leads to the time evolution of the dynamical vari-
ables whether the wave function depends on the
time or not. Therefore, in the Bohmian quantum
gravity, we have no time problem.

– Bohm’s theory describes a single system, unlike
the standard interpretation of quantum theory,
which does not tell anything about a single system.
About an ensemble of the system, both interpreta-
tions are equivalent. This is because of the specific
form of Bohm’s equations of motion. They are the
Bohmian version of the Hamilton–Jacobi equation
and the conservation equation of probability den-
sity. These equations can be transformed to the

Schrödinger equation by some canonical transfor-
mation. This aspect is useful in quantum cosmol-
ogy, where the system is the Universe, and an en-
semble of systems does not exist. Therefore, from
the Bohmian point of view, we have no conceptual
problem of the meaning of Universe’s wave func-
tion in quantum cosmology.

– Normalization of the wave function is needed only
for the probabilistic description. Here, there is no
need to normalize the wave function for a single
system.

– The classical limit has a well-defined meaning.
When the quantum potential is less than the clas-
sical potential, and the quantum force is less than
the classical force, we are in the classical domain.

– There is no need to separate the classical observer
and the quantum system in the measurement prob-
lem. In the Bohmian picture of the measurement
process, we have two interacting systems, the sys-
tem and the observer. After the interaction takes
place, the wave function of the system is reduced
in a causal way. It must be noted that the same
statistical results for the standard and Bohmian in-
terpretations do not mean that the two theories are
equivalent. They are different in physical concepts.
The most important difference is that one deals in
the Bohmian interpretation with trajectories. This
can lead to new concepts. For example, one can
evaluate the tunneling time of a particle through
the potential barrier in the non–relativistic quan-
tum mechanics. This is a concept that has no clear
meaning in the standard interpretation [7, 32].

Till now, the Bohmian interpretation of the
Wheeler–De Witt quantum gravity and cosmology
has given some physical results that can be found
in the literature:

– In the Bohmian quantum cosmology, the quantum
force can remove the Big-Bang singularity, because
it can behave as a repulsive force [33, 34].

– The quantum force may be present on large scales,
because the quantum effects of the quantum po-
tential are independent of the scale [35].

– One can find the graceful exit behavior in the
superinflation model in a super string cosmol-
ogy. The evolution begins with the inflation and
smoothly changes to the decelerating expansion,
without any singularity in the transition [36]. For
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a more detailed discussion of the de Broglie–Bohm
interpretation of quantum super string cosmology,
the pre-Big-Bang inflation, and the graceful exit
problem considering various classes of wavepack-
ets, see [37].

– Real time tunneling can occur in the classically
forbidden regions through the quantum potential.
For this effect in a closed de Sitter Universe in 2+1
dimensions, see [38].

– Finally, in a generalized geometric picture of
Bohm’s interpretation, one can unify the quantum
effects and gravity [34, 39–44].

The latest point represents a very important re-
sult that the Bohmian version of quantum gravity can
achieve. In this regard, F. Shojai and A. Shojai de-
veloped a toy model of quantum gravity (providing a
scalar-tensor picture of the model mentioned in Section
4), in which the form of the quantum potential and its
relation to the conformal degree of freedom of the space-
time metric can be derived, by using the equations of
motion. By showing that it is just the quantum gravity
equations of motion that make the quantum potential
the entity expressing the geometric properties, which in-
fluences the behavior of the particles and which is related
to the space-time metric, F. Shojai’s and A. Shojai’s
model suggests a sort of unification of the gravitational
and quantum aspects of matter at a fundamental level
of physical reality.

Here, we want to develop an entropic version of F.
Shojai’s and A. Shojai’s toy model of quantum gravity.
This approach can be considered a relevant and inter-
esting development in the interpretation of the quantum
entropy, as the ultimate visiting card, also in the quan-
tum gravity domain.

A general relativistic system consisting of gravity and
classical matter can be determined by the action

Ano-quantum =
1
2k

∫
d4x
√
−gR+

+
∫
d4x
√
−g~2

m

(
ρ

~2
∂µS∂

µS − m2

~2
ρ

)
, (56)

where ρ = J0 is the ensemble density of the particles,
k = 8πG, and hereafter we chose the units, in which
c=1. On the other hand, as we have mentioned in Sec-
tion 4, the introduction of quantum effects is equiva-
lent to a change of the space-time metric from gµν to
gµν → gIµν = gµν

expQ , which is a conformal transformation

(that, as we have shown in Section 4, is determined by
the quantum entropy). Therefore, in order to introduce
quantum effects, we make this conformal transformation,
instead of adding the quantum potential term [25].

In this regard, we can write the action with quantum
effects as

A [ḡµν ,Ω, S, ρ, λ] =
1
2k

∫
d4x
√
−ḡ
(
R̄Ω2 − 6∇̄µΩ∇̄µΩ

)
+

+
∫
d4x
√
−ḡ
( ρ
m

Ω2∇̄µS∇̄µS −mρΩ4
)

+

+
∫
d4x
√
−ḡλ

Ω2 −

1 +
~2
(
∇2 − ∂2

∂t2

)√
ρ

m2√ρ

,
(57)

where Ω2 = expQ is the conformal factor, a bar over any
quantity means that it corresponds to the no-quantum
regime, and λ is a Lagrange multiplier introduced in or-
der to identify the conformal factor with its Bohmian
value.

By the variation of the above action with respect to
ḡµν , Ω, ρ, S, and λ, we arrive at the following relations
as our equations of motion:

1. The equation of motion for Ω:

R̄Ω + 6
(
∇̄2 − ∂̄2

∂t2

)
Ω+

+2
k

m
ρΩ
(
∇̄µS∇̄µS − 2m2Ω2

)
+ 2kλΩ = 0; (58)

2. The continuity equation for the particles:

∇̄µ
(
ρΩ2∇̄µS

)
= 0; (59)

3. The equation of motion for the particles:

(
∇̄µS∇̄µS −m2Ω2

)
Ω2√ρ+

~2

2m
×

×

(∇̄2 − ∂̄2

∂t2

)(
λ
√
ρ

)
− λ

(
∇̄2 − ∂̄2

∂t2

)√
ρ

ρ

 = 0; (60)
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4. The modified Einstein equations for ḡµν :

Ω2

[
R̄µν −

1
2
ḡµνR̄

]
−
[
ḡµν

(
∇̄2 − ∂̄2

∂t2

)
− ∇̄µ∇̄ν

]
Ω2−

−6∇̄µΩ∇̄νΩ + 3ḡµν∇̄αΩ∇̄αΩ +
2k
m
ρΩ2∇̄µS∇̄νS−

− k
m
ρΩ2ḡµν∇̄αS∇̄αS + kmρΩ4ḡµν +

k~2

m2
×

×
[
∇̄µ
√
ρ∇̄ν

(
λ
√
ρ

)
+ ∇̄ν

√
ρ∇̄µ

(
λ
√
ρ

)]
−

−k~2

m2
ḡµν∇̄α

[
λ
∇̄α√ρ
√
ρ

]
= 0; (61)

5. The constraint equation:

Ω2 = 1 +
~2

m2

(
∇̄2 − ∂̄2

∂t2

)√
ρ

√
ρ

. (62)

Now in the entropic picture, the conformal factor Ω2 =
expQ is determined by the background space described
by the quantum entropy on the basis of the relation

Ω2 = exp
[
− ~2

m2c2
(∇µSQ)2+

+
~2

m2c2

((
∇2 − 1

c2
∂2

∂t2

)
g

SQ

)]
(63)

and, thus, is produced by the degree of order and chaos
of the vacuum supporting the density of particles asso-
ciated with the wave function under consideration. By
taking Eq. (63) into account, the constraint equation
(62) can be also expressed in the equivalent form

exp

[
− ~2

m2c2
(∇µSQ)2+

~2

m2c2

((
∇2− 1

c2
∂2

∂t2

)
g

SQ

)]
=

=
~2

m2

(
∇̄2 − ∂̄2

∂t2

)√
ρ

√
ρ

, (64)

which shows the direct link between the density of par-
ticles and the quantum entropy in the quantum gravity

domain. The equations of motion (58)–(62), in virtue of
the link between the quantum potential with the quan-
tum entropy, tell us that there are the back-reaction ef-
fects of the quantum factor on the background, which are
due to the quantum entropy. On the basis of the highly
coupled five equations above listed, one can say that,
in the quantum gravity domain, the quantum entropy is
the fundamental entity, the ultimate visiting card, which
introduces the links (and, thus, the back-reaction terms)
between the quantum effects and the background.

Moreover, in F. Shojai’s and A. Shojai’s model, by
combining Eqs. (58) and (59), it is possible to arrive at
a more simple relation instead of (58). If we use the trace
of (61) and use (62), we have, after some mathematical
manipulations,

λ =
~2

m2
∇̄µ
[
λ
∇̄µ√ρ
√
ρ

]
. (65)

If one resolves this equation in perturbative way in terms
of the parameter α = ~2

m2 by writing λ = λ(0) + αλ(1) +
α2λ(2) + ... and √ρ =

√
ρ(0) + α

√
ρ(1) + α2√ρ(2) + ...,

one obtains

λ(0) = λ(1) = λ(2) = ... = 0. (66)

Thus, the perturbative solution of

λ =
~2

m2
∇̄µ
[
λ
∇̄µ√ρ
√
ρ

]
(67)

is λ = 0, which is its trivial solution. In this way, the
equations of quantum gravity become

∇̄µ
(
ρΩ2∇̄µS

)
= 0, (68)

∇̄µS∇̄µS = m2Ω2, (69)

Gµν = −kT (m)
µν − kT (Ω)

µν , (70)

where T (m)
µν is the matter energy-momentum tensor,

kT (Ω)
µν =

[
gµν

(
∇2 − ∂2

∂t2

)
−∇µ∇ν

]
Ω2

Ω2
+

+6
∇µΩ∇νΩ

ω2
− 3gµν

∇αΩ∇αΩ
Ω2

, (71)

and

Ω2 = 1 + α

(
∇2 − ∂2

∂t2

)√
ρ

√
ρ

. (72)
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It can be noted that (69) is a Bohmian-type equation of
motion. If we write it in terms of the physical metric
gµν , it reads

∇µS∇µS = m2c2. (73)

In all equations (68), (69), and (70) of quantum gravity,
the quantum entropy turns out to be the ultimate vis-
iting card, in virtue of the link between the conformal
factor and the quantum entropy.

The next step is to make the conformal factor and
the quantum potential (and, thus, the quantum entropy)
dynamical. In the original F. Shojai’s and A. Shojai’s toy
model, by starting from the most general scalar-tensor
action

A =
∫
d4x

{
φR− ω

φ
∇µφ∇µφ+ 2Λφ+ Lm

}
, (74)

in which ω is a constant independent of the scalar field
φ, Λ is the cosmological constant, and Lm is the matter
Lagrangian (which is assumed to be in the form

Lm =
ρ

m
φa∇µS∇µS −mρφb − Λ (1 +Q)d , (75)

in which a, b, and d are constants), using a perturbative
expansion for the scalar field and the matter distribution
density as

φ = φ0 + αφ1 + ...

√
ρ =
√
ρ0 + α

√
ρ1 + ...

(and imposing the opportune physical constraints in or-
der to determine the parameters a, b, and d), F. Shojai
and A. Shojai have found the following quantum gravity
equations:

φ = 1 +Q− α

2

(
∇2 − ∂2

∂t2

)
Q, (76)

∇µS∇µS = m2φ− 2Λm
ρ

(1 +Q)
(
Q− Q̃

)
+

+
αΛm
ρ

[(
∇2 − ∂2

∂t2

)
Q− 2∇µQ

∇µ√ρ
√
ρ

]
, (77)

∇µ (ρ∇µS) = 0, (78)

Gµν−Λgµν = − 1
φ
Tµν− 1

φ

[
∇µ∇ν − gµν

(
∇2 − ∂2

∂t2

)]
×

×φ+
ω

φ2
∇µφ∇νφ− 1

2
ω

φ2
gµν∇αφ∇αφ, (79)

where

Q = − ~2

m2c2
(∇µSQ)2 +

~2

m2c2

((
∇2 − 1

c2
∂2

∂t2

)
g

SQ

)
,

Q̃ = α
∇µ
√
ρ∇µ√ρ
√
ρ

,

and

Tµν = − 1√
−g

δ

δgµν

∫
d4x
√
−gLm

is the energy-momentum tensor.
From the entropic viewpoint, this quantum gravity

model suggested by F. Shojai and A. Shojai (and syn-
thesized in Eqs. (76)–(79)) allows us to draw some im-
portant conclusions:

– In this model, Eq. (78) shows that the causal
structure of the space-time gµν is determined by
the gravitational effects of matter and, thus, by the
quantum entropy, which must be considered as the
ultimate entity, which shows that the quantum ef-
fects and the gravitational effects are coupled (also
in the quantum gravity domain). On the basis of
Eq. (76), quantum effects and, thus, the quan-
tum entropy determine directly the scale factor of
space-time.

– The mass field given by the right-hand side of Eq.
(77) consists of two parts. The first part, which is
proportional to α, is a purely quantum effect, while
the second part, which is proportional to αΛ, is a
mixture of the quantum effects and the large-scale
structure introduced via the cosmological constant.

– In this model, the scalar field produces the quan-
tum force, which appears on the right-hand side
and violates the equivalence principle (just like in
the Kaluza–Klein theory, the scalar field – dilaton
– produces the fifth force leading to the violation
of the equivalence principle [45]).

Finally, let us make some considerations about the
perspectives introduced by the quantum entropy on the
Wheeler–DeWitt (WDW) equation, which characterizes
the wave-functional Ψ of the Universe (here, we have
made the position ~ = c = 1):[
(8πG)Gabcdpabpcd+

1
16πG

√
g
(
2Λ−(3)R

)]
Ψ=0. (80)
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In the WDW equation (80), Gabcd = 1
2

√
g(gacgbd +

gadgbc − gabgcd) is the supermetric, pab are the momen-
tum operators related to the 3-metric gab, g = det gij ,
(3)R is the 3-dimensional curvature scalar, Λ is the cos-
mological constant, and G is the gravitational constant.
The WDW equation (80) has the following important
points:

1. The time parameter, which defines the foliation of
the space-time, does not appear in it (we have,
thus, the so-called time-problem in quantum grav-
ity).

2. A different ordering of factors leads to different
results.

3. In practice in order to solve the WDW equation, we
must limit ourselves to a minisuperspace, in which
some of the degrees of freedom are non-frozen, in-
stead of using an infinite-dimensional superspace.

4. This is necessary for the wave-function to be
square-integrable, in order to have a probabilis-
tic interpretation for it. But it is not possible in
all cases, because a precise definition of the inner
product is not known in quantum gravity.

Here, we want to focus our attention on the Bohmian
version of the WDW equation. In the Bohmian ap-
proach, by decomposing the wave functional Ψ in the
polar form Ψ = ReiS/~, one obtains the modified
Hamilton–Jacobi equation

(8πG)Gabcd
δS

δgab

δS

δgcd
− 1

16πG
√
g
(
2Λ− (3)R

)
+QG = 0,

(81)

where

QG = ~2NgGabcd
1
R

δ2R

δgabδgcd
, (82)

and N being the lapse function. The term QG can be de-
fined as “quantum potential for the gravitational field”.
Equation (81) indicates that the only difference between
classical and quantum Universes is the existence of the
quantum potential in the latter. Moreover, it is impor-
tant to mention that, in the Bohmian approach, Ein-
stein’s equations – in absence of source of matter-energy
– take the form

Rµν − 1
2
gµνR = − 1

N

δ
∫
QGd

3x

δgij
(83)

for the dynamical parts and

R0ν − 1
2
g0νR =

QG
2
√
−g

g0ν (84)

for the non-dynamical part. (The reader can find some
interesting developments as regards the Bohmian ap-
proach to the WDW equation, for example, in [34, 39,
46–49].)

Let us define now a “quantum entropy for the gravi-
tational field”

SQ = g ln ρ. (85)

The quantum entropy (85) indicates that a degree of or-
der and chaos can be associated with the gravitational
field characterized by the 3-metric gab. More precisely,
we can say that the density of particles ρ = R2 asso-
ciated with the wave functional Ψ determines a modifi-
cation of the gravitational space described by the quan-
tum entropy for the gravitational field (85). With the
introduction of the quantum entropy (85), the quantum
potential for the gravitational field (82) can be expressed
in the convenient regularized way:

QG = ~2Ng

[
Gabcd

(
δ2

δgabδgcd

)
g

SQ+

+g−q
δgq

δgab

(
δ

δgcd

)
g

SQ

]
. (86)

On the basis of Eq. (86), the quantum entropy for the
gravitational field can be considered as the fundamental
entity, as the ultimate visiting card, which determines
the action of the quantum potential on the gravitational
field. The following interesting perspective is therefore
opened. In the non-relativistic de Broglie–Bohm theory,
the quantum entropy represents the fundamental entity
determining the behavior of subatomic particles. Analo-
gously, in the Bohmian approach to the WDW equation,
the quantum entropy for the gravitational field can be
considered as the ultimate visiting card, which produces
the behavior of the Universe in the presence of a gravita-
tional field. And, in virtue of Eq. (86), we can say that
Einstein’s equations (83) and (84) state that the curva-
ture of space is determined by the quantum entropy for
the gravitational field.

6. Conclusions

In the de Broglie–Bohm theory, the quantum entropy
– describing the degree of order and chaos of the back-
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ground space determined by the density of particles as-
sociated with the wave function under consideration –
turns out to be the fundamental entity, the ultimate vis-
iting card, in the non-relativistic domain, in the rela-
tivistic curved space-time, and in the quantum gravity
domain.

In the non-relativistic domain, it is just the quantum
entropy as the fundamental element that determines the
fact that the quantum potential acts as an active in-
formation channel on the behavior of the particles un-
der consideration. The geometrodynamic nature of the
quantum potential – namely, the fact that the quantum
potential has a geometric nature contains a global infor-
mation on the environment, in which the experiment is
performed, and, at the same time, it is a dynamical en-
tity – is determined by the background space described
by the quantum entropy. The quantum entropy indi-
cates what really are the geometric properties of space,
from which the quantum force and, thus, the behavior
of quantum particles are derived.

In the relativistic domain in a curved space-time, the
quantum potential is the conformal degree of freedom
of the space-time metric. Thus, the effects of gravity
on geometry and the quantum effects on the geometry
of space-time are highly coupled as a consequence of the
quantum entropy, the background space described by the
quantum entropy, and the degree of order and chaos of
the vacuum supporting the density of particles associ-
ated with the wave function under consideration.

In the quantum gravity domain in the context of a
scalar-tensor model suggested by F. Shojai and A. Sho-
jai, the quantum entropy emerges as the fundamental
entity, which produces the links between the quantum
effects and the background and is, indeed, a dynami-
cal factor. In particular, the causal structure and the
scale factor of space-time are determined by the quantum
entropy. Finally, as regards the Bohmian approach to
the Wheeler–DeWitt equation, the perspective is opened
that a quantum entropy for the gravitational field rep-
resents the ultimate visiting card, which determines the
action of the quantum potential on the gravitational field
and, thus, the behavior of the Universe in the presence
of a gravitational field.
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КВАНТОВА ЕНТРОПIЯ В ГРАНИЧНОМУ ВИПАДКУ
ТЕОРIЇ ДЕ БРОЙЛЯ–БОМА

Д. Фiскалеттi

Р е з ю м е

Теорiя де Бройля–Бома є цiкавим напрямком у квантовiй ме-
ханiцi, який описує атомнi i субатомнi процеси, не приписуючи
особливої ролi спостерiгачу i дотримуючись принципу причин-
ностi i постулату руху. У статтi запропоновано нову змiстов-
ну iнтерпретацiю теорiї де Бройля–Бома. Вона ґрунтується на
iдеї, що квантова ентропiя вiдноситься до її граничного ви-
падку в квантовiй областi, в релятивiстському викривленому
просторi-часi i в квантовiй гравiтацiї.
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