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The axial stiffness of multiwalled carbon nanotubes (MWCNTs) is
studied as a function of the number of walls and their parameters.
It is demonstrated that the axial stiffness is determined only by
several external shells (usually 3–5 and up to 15 for the extremely
large nanotubes and high elongations) which is in good agreement
with the experimentally observed inverse relation between the ra-
dius and the Young modulus (i.e., stiffness) of MWCNTs. Such
behavior is a consequence of the van der Waals intershell inter-
action. An interpolating formula for the MWCNT’s actual axial
stiffness as a function of the external radius and the elongation of
a tube is obtained.

1. Introduction

The unusual and even sometimes wonderful mechanical
properties of carbon nanotubes and their bundles make
it possible to use them just now for a wide range of
applications. As an example, nanotubes can act as a
reinforcement of different materials (plastics, hydrocar-
bon resins, nanocomposites, etc.), where their extremal
bending flexibility and axial stiffness are of great interest
[1–3].

It is established that single-walled carbon nanotubes
(SWCNTs) can sustain strains larger than 10% of a ten-
sile deformation prior to the fracture [4, 5], and their
deformation is completely reversible (i.e., elastic), while
they are subjected to strains up to 4% and even higher
[6–9]. A lot of works were devoted to the investigation
of elastic properties of SWCNTs and MWCNTs [5, 8–
18]. MWCNTs were thoroughly studied theoretically for
a uniform axial stress distribution at both of their ends
[19], but this is not the only possible loading type. Ap-
parently in most cases of axial tension, only the external

shell of MWCNT is affected by the imposed load, and
its internal shells are involved into the considered pro-
cess only due to the van der Waals intershell interaction
(a simple case of such a situation is the deformation of
capped MWCNTs or MWCNTs with shells of unequal
lengths (see, e.g., Fig. 1)).

It is obvious that, in the case of an uniformly deformed
n-walled CNT, the intershell distances Δri= ri−ri+1 =
(1− νε)d0 remain equal. Here, i numbers nanotube’s
shells begining with the outermost one; ε is the exter-
nal shell specific elongation, and ν is Poisson’s ratio
of graphene. So, MWCNT’s total deformation energy
would be simply the sum of the deformation energies of
its shells plus a negligible (about 1%) contribution of
van der Waals forces i.e. its Young modulus Y ≈

∑
i Yi.

But when the load is imposed only on the external shell,
the distances between other shells are not equal and in-
crease with i (for ε > 0). Due to the strong nonlinear
dependence of the intershell interaction on the intershell
distances, the difference in the deformation energies in
both mentioned cases for certain specific elongations may
be significant and should be studied.

The experimental study showed that the effective
Young modulus of MWCNT is inversely proportional

Fig. 1. Deformation of MWCNT with shells of unequal lengths.
Imposed force is applied only to the external shell
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Fig. 2. Definition of the main geometrical parameters of DWCNT

to its radius (for radii in the interval from 4 nm to 20
nm) [20], and such results contradict the assumption
about the equal deformations of shells. Some theoret-
ical works also indicated the dependence of the effective
Young modulus on the number of wall [18, 21], while the
other ones showed no dependence on the radius even for
SWCNTs [19, 22]. Computer simulations showed that
the inner layers of MWCNT can be effectively deformed
only through the direct application of tensile or shear
forces, but nanotubes with only 2-4 shells were studied
[23].

In this paper, we use the stiffness k = F
εL (where F is

the imposed force, and L is the nanotube length) instead
of the Young modulus Y in order to avoid the uncer-
tain parameter “wall thickness” d used by some authors.
When considering flexural deformations of a nanotube
(within the string approximation) in terms of the Young
modulus, one should work with Y d3, but it is evident
that we can always switch between two pairs of indepen-
dent parameters (e.g., from Y and d to k and γ, where
γ denotes some flexural characteristic).

2. Axial Stiffness of SWCNTs

Since the investigation of the stiffness (or the Young
modulus) of SWCNTs is not the main objective of this
work, we will describe it briefly, by presenting, without
derivation, only some formulas most important for our
purposes. The continuum approximation for nanotubes
used in this paper is obviously not exact for such nanos-
tructures, but it is computationally simple and, in the
case of small deformations, gives the appropriate value of
stiffness (or Young modulus) without fitting parameters,
as compared with other works. If needed, one can eas-
ily replace it with a more precise model using the same

following expressions for the van der Waals interaction
and stiffness.

In the simplest case, the axial stiffness of a cylindric
shell (such as a nanotube) with surface density m0τ (m0

is the mass of each atom, and τ is their quantity per unit
area) is defined by the expression

k(R,L) = 2πm0τc
2R

L
= α

R

L
, (1)

where R and L are the shell radius and length, c is the
longitudinal sound velocity, and α is the constant param-
eter for graphene-based structures. Certainly, the previ-
ous expression is proper for nanotubes of different radii
only if shell properties are not radius-dependent. In the
case of nanotubes with extremely small radii (R ∼ d0,
where d0 = 0.34 nm is the distance between graphitic
planes conditioned by the van der Waals interaction),
the re-hybridization of atomic orbitals leads to percep-
tible changes of SWCNT’s mechanical properties (the
raising of the effective Young modulus is observed in the
quantum dynamics simulations for SWCNTs with R<6
nm [24, 25]), but such changes may be ignored for tubes
with radii more than one nanometer.

The sound velocity c may be obtained from micro-
scopic models of nanotube (or graphene) as a velocity
of acoustic phonons. Further, we will use the value
c = 18.4 km/s [26], which leads to α≈ 1632 kg·s−2. If
necessary, the expressions for the effective Young modu-
lus and Poisson’s ratio can be also derived by comparing
the equations of motion from both the microscopic and
continuum models.

By (1), one can calculate the idealized Young modulus
of SWCNT as

Y = k
L

S
= α

R

S
= α

R

2πRd
≈ 0.73 TPa,

where S is the effective surface of the nanotube cross
section, and the commonly accepted value of the “wall
thickness” d = d0 is used. On the other hand, the ex-
perimentally measurable effective Young modulus of a
macroscopic bundle of SWCNTs depends not on the ef-
fective surface of its cross section, but on the total cross
section surface of the bundle Sb ≈ Nπ(R+d0/2)2 (where
N is the number of tubes in the bundle, and R is their
radius):

Yb = Nk
L

Sb
= Nα

R

Sb
= α

R

π(R+ d0/2)2

∣∣∣∣
R�d0

≈ α

π

1
R
.

One can see that the effective Young modulus of such a
bundle should be inversely proportional to the average
radius of nanotubes.
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3. Van der Waals Intershell Interaction

The continuum approximation to the van der Waals
intershell interaction in MWCNTs and its applications
were thoroughly studied in [27–30] in good agreement
with the experiments [31] and the results of numerical
simulations [32, 33].

Within the continuum approximation, the van der
Waals intershell interaction energy of double-walled car-
bon nanotubes (DWCNTs) depends only on the radii
(r1, r2) and the lengths (L1, L2) of shells (Fig. 2). In
terms of the hypergeometric functions, it can be ex-
pressed as follows [30] (assuming that L1 ≥ L2):

U0(R1, L1, R2, L2) =
3
2
π3τ2R1R2L2×

×

(
21
32
γ12

Φ
(

11
2 , R1, R2

)
(R1 +R2)11

− γ6

Φ
(

5
2 , R1, R2

)
(R1 +R2)5

)
, (2)

where γ6 = 2.43 × 10−24 J·nm6 and γ12 = 3.859 ×
10−27 J ·nm12 are the attractive and repulsive constants
of the Lennard-Jones potential [27], τ is the surface den-
sity of carbon atoms, and

Φ (J,R1, R2) :=2F1

(
1
2
, J, 1,

4R1R2

(R1+R2)2

)
=

=
(R1+R2)2J

2π

π∫
−π

dθ

(R2
1+R2

2 −2R1R2 cos θ)J
.

For the unstrained graphene (or a nanotube), τ = τ0 =
4

3
√

3 b2
=38.2 nm−2 (b=0.142 nm).

The length and the radius of a nanotube under tension
take the values l=L0(1 + ε) and r=R0(1 − νε), where
ε is the nanotube specific elongation, ν = 0.17 [34–36] is
Poisson’s ratio of graphene, and L0 and R0 are the length
and the radius of the unstrained nanotube. In this case,
the nanotube surface S and the surface density of atoms
change, correspondingly:

Sj = 2πRjLj(1− νεj)(1 + εj),

τj =
τ0

(1 + εj)(1− νεj)
.

The interaction energy (2) in the case of strained shells
(ε1 and ε2, respectively) takes the form

U(R1, L1, ε1, R2, L2, ε2) =
3
2
π3τ1τ2r1r2l2

(
21
32
γ12

Φ( 11
2 , r1, r2)

(r1 + r2)11
− γ6

Φ
(

5
2 , r1, r2

)
(r1 + r2)5

)
=

=
3
2
π3τ2

0

1 + ε1
R1R2L2

(
21
32
γ12

Φ
(

11
2 , R1(1− νε1), R2(1− νε2)

)
(R1(1− νε1) +R2(1− νε2))11

− γ6

Φ
(

5
2 , R1(1− νε1), R2(1− νε2)

)
(R1(1− νε1) +R2(1− νε2))5

)
. (3)

By UW, we denote the van der Waals deformation en-
ergy that is the contribution of the intershell interaction
into the total deformation energy of a DWCNT:

ΔUW(R1, L1, ε1, R2, L2, ε2) :=

:= U(R1, L1, ε1, R2, L2, ε2)− U0(R1, L1, R2, L2). (4)

4. Axial Stiffness of DWCNTs and MWCNTs

The total deformation energy of DWCNT consists of the
deformation energies of both shells and the additional
(to that of the unstrained state) intershell interaction
energy:

E(ε1, ε2, R1, R2, L1, L2) =

=
k1ΔL2

1

2
+
k2ΔL2

2

2
+ ΔUW(R1, L1, ε1, R2, L2, ε2) =

=
α

2
(
R1L1ε

2
1 +R2L2ε

2
2

)
+ ΔUW(R1, L1, ε1, R2, L2, ε2).

(5)

If both DWCNT shells are of equal length (L1 =L2 =L),
its total deformation energy will be linear in L, and the
relative deformation of the inner shell will depend only
on that of the outer shell and the radii of shells.

We assume that the external force acts only on the
outer shell and, as a result, the DWCNT axial stiffness
should be introduced as

kDW(ε1) =
1
L2

1

∂2E

∂ε21

∣∣∣∣
E=minE(...,ε2,...)
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Fig. 3. Dependence between the relative deformations (ε1 and ε2,

correspondingly) of the outer and inner shells of different radii with
unstrained intershell distance d0 for DWCNTs. For very small ε1,

the DWCNT deformation is determined by its actual unstrained
intershell distance, which is not likely to be equal to the energet-
ically optimal distance d0 due to the nanotube’s radius discrete
nature

Obviously, ε2<ε1, when R1ν ε1<d0, and, for a fixed
value of ε1, ε2 will increase strongly with the DWCNT
radius (Fig. 3).

Like that of DWCNT, the total deformation energy of
N -walled MWCNT is determined by the expression

E(ε, R, L,N) =
α

2

N∑
i=1

RiLiε
2
i+

+
N−1∑
i=1

ΔUW(Ri, Li, εi, Ri+1, Li+1, εi+1), (6)

where ε = (ε1, ..., εN ), R = (R1, ..., RN ) and L =
(L1, ..., LN ).

The axial stiffness in this case is defined as

kMW(ε1, R, L,N) =

=
1
L2

1

∂2E(εmin, R, L,N)
∂ε21

∣∣∣∣
E(εmin,...)=minε2,...,εN

E(ε,R,L,N)

,

(7)

where εmin is such a set of deformations of shells that,
under a certain external tension, the MWCNT’s total
deformation energy takes its minimum value.

Unlike DWCNT, all but the innermost shells of
MWCNT have the following neighbor, which ham-
pers shell’s deformation as compared with the case of
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Fig. 4. Dependence of the MWCNT stiffness on the tube external
radius R1 and the number of its shells (in brackets) for ε1 = 0.05

and L = 100 nm. The asymptotic value of the number of shells
involved into a deformation is about 15 even for the extremely
large MWCNTs (for tubes with R < 10 nm, only four shells are
actually involved)

DWNCT, so that the relative deformation of inner shells
εi decreases rapidly with i. As a result, the actual ax-
ial stiffness of MWCNT grows with the number of shells
much slower than its “ideal” stiffness kideal =

∑
k(Ri, Li).

Actually for MWCNTs with the external radius R ≤ 10
nm and any number of shells under strain with ε1 . 0.05,
only four external shells contribute to the total stiffness,
and this number grows slowly up to ≈ 10 for the nan-
otubes with R > 25 nm (Fig. 4).

For N -walled MWCNTs with external radii more than
3 nm (assuming that N is greater than the number of
shells actually involved into a deformation), the stiffness
can be fitted by the following expression with an accu-
racy of 1-3 per cents (for 0 < ε1 < 0.1):

k(R,L, ε) =
10−7

L
exp

[
2.3
(
R−d0

d0

)0.267
]
×

×

(
1+ε

[
26.2−44

(
d0

R

)0.276
])

. (8)

5. Discussion

The analysis of the axial stiffness of ideal MWCNTs
based on the van der Waals intershell interaction shows
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that only several external shells of MWCNT contribute
to its total stiffness under a load imposed only on the
external shell. The number of contributing shells is, in
fact, less than 5 for nanotubes with R . 10 nm and never
exceeds 15 even for extremely thick nanotubes (Fig. 4).
As a result, the MWCNT actual stiffness can be several
times lower than its “ideal” stiffness, which is obtained
under the assumption that all shells are loaded evenly.
This fact should be taken into account, while MWCNT-
based towlines, cables, and armoring elements are con-
structed.

Contrary to SWCNTs, which are, at least for small
elongations, subordinated to the Hooke law F =
kεL, k = const, the stiffness of MWCNTs depends
linearly, even for rather weak loads, on the tube elon-
gation (k ∼ ε) as a result of the load-induced gradual
involvement of inner shells.

All calculations presented here in support of our as-
sertion should be performed for the particular values of
Poisson’s ratio and sound velocity, which are (in the case
of ideal lattice) uniquely determined only by the lattice
structure and interatomic force constants. However up
to now, there is a large scatter of the values of Poisson’s
ratio obtained by different authors (ν = 0.14− 0.19 [35],
ν = 0.17−0.22 [36], ν = 0.19 [3,37], ν = 0.19−0.22 [38],
ν = 0.20−0.23 [39], ν = 0.25−0.27 [40], ν = 0.27−0.28
[19]). In most cases, ν ∈ 0.16 − 0.3. Here, we used the
value ν = 0.17, which is the mean value of Poisson’s ratio
for finite graphene sheets of various sizes [36] and chiral
SWCNTs [36]. It is also close to the corresponding mag-
nitude along the basal plane in graphite, ν = 0.16 [34].

In view of the existing scattering of data, we have
looked how the calculated MWCNT stiffness depends
on the used values of Poisson’s ratio and sound veloc-
ity. It is clear that, as Poisson’s ratio increases, the
strain transmission from the outermost shell into the
depth of the tube raises, which leads to higher values
of nanotube stiffness. However even for ν = 0.3 (which
exceeds most of its theoretical and experimental esti-
mates for SWCNTs), it appears that only 12 − 15 ex-
ternal shells contribute to k even for MWCNTs with
R ≥ 25 nm (with more than five dozens of shells) at
subcritical strains (ε & 0.05). In other words, despite
the fact that the actual stiffness of MWCNTs grows al-
most linearly with Poisson’s ratio of shells, getting closer
to the “ideal” stiffness value, the latter remains, never-
theless, many times higher. (The values of axial stiffness
for varying values of Poisson’s ratio can be found with
an accuracy of several per cents by the interpolating for-
mula k(ν) ≈ k(ν0)

(
1 + 17

20
ν−ν0
ν0

)
).

The sound velocity actually depends on the quality of
shell’s lattice and is connected with the stiffness of each
shell and the “ideal” stiffness of a MWCNT by the re-
lation k ∼ c2. It appears that the sound velocity and
the MWCNT actual stiffness are linearly dependent in
the interval c = 17000−23000 km/s as a consequence of
the weakening of inner shells strains due to the preferred
accumulation of the van der Waals interaction energy in
subsurface shells. So, if c=18.4 km/s used here is under-
estimated, the number of shells actually contributing to
the MWCNT stiffness would be even smaller than that
indicated above.

Note that the stiffness of perfect MWCNTs is percep-
tibly higher than that of MWCNTs with a rather low
defect concentration [41], but their ratios to the corre-
sponding “ideal” values are in the opposite relation (i.e.,
the actual and “ideal” rigidities would be most close in
values in the case of pretty defect MWCNTs).

It should be noted also that some of MWCNT’s inner
shells can be segmented. In accordance to our analy-
sis, such situations do not affect substantially the ax-
ial stiffness in all cases where the cumulative length of
a “broken” shell is close to the length of its neighbors,
and the gaps between parts of that shell are about the
range of van der Waals interaction (∼ 1 nm). In other
words, the elastic properties of MWCNTs are resistant
to the fracture and a minor damage of some of its inner
shells.

In the case where the i-th shell (i > 1) appears to
be sufficiently shorter than the neighboring shells, the
MWCNT can be considered as consistent of two parts
placed in series with different numbers of walls and, as
a result, different rigidities (the first part of the length
L1−Li is the (i−1)-walled MWCNT and the second part
of the length Li is the n-walled MWCNT). The effective
stiffness for such a series is k = 2k1k2

k1+k2
, where k1 and k2

are determined by (7).
It is worth mentioning that it follows from the above

analysis that the described effect of stiffness saturation
does not depend on the temperature due to the very
small value of SWCNT radial thermal expansion co-
efficient (∼ 10−6 K−1 at T ∼ 300 K) [42, 43] and
the weak temperature dependence of sound velocities
(∼ 10−5 K−1 at T ∼ 300 K) [42].

Summing up, we can say that, for applications where
the highest possible axial stiffness of a single MWCNT
or nanotube bundle is needed, the thin 4-5-walled
MWCNTs (R . 2 nm) are quite sufficient.
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AXIAL STIFFNESS OF MULTIWALLED CARBON NANOTUBES

ЗАЛЕЖНIСТЬ ПОЗДОВЖНЬОЇ
ЖОРСТКОСТI БАГАТОСТIНКОВИХ
ВУГЛЕЦЕВИХ НАНОТРУБОК ВIД КIЛЬКОСТI СТIНОК

В. Завальнюк

Р е з ю м е

Вивчено залежнiсть поздовжньої жорсткостi багатостiнкових
вуглецевих нанотрубок в залежностi вiд числа стiнок та їх
геометричних параметрiв. Показано, що результуюча жорс-

ткiсть всiєї нанотрубки визначається лише декiлькома зовнi-
шнiми стiнками (як правило, 3–5 та досягаючи 15 в разi сильно
деформованих нанотрубок великого радiуса), що добре спiв-
вiдноситься з експериментальними значеннями модуля Юнга
для багатостiнкових нанотрубок. Подiбна поведiнка є наслiд-
ком мiжстiнкової ван-дер-ваальсiвської взаємодiї. Також наво-
диться проста iнтерполяцiйна формула, що пов’язує граничну
поздовжню жорсткiсть iдеальної багатостiнкової нанотрубки
при конкретному вiдносному подовженнi з її зовнiшнiм дiаме-
тром та довжиною.
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