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A microscopical model of doped fulleride electronic subsystem tak-
ing the triple orbital degeneracy of energy states into account is
considered within the configurational-operator approach. Using
the Green function method, the energy spectrum at the integer
band filling n = 1 corresponding to AC60 compounds is calculated.
A possible correlation-driven metal-insulator transition within the
model is discussed.

1. Introduction

Electrical, optical, and mechanical properties of
fullerenes [1, 2] in the condensed state demonstrate a
considerable physical content of phenomena, which take
place in fullerenes, and show that the use of such materi-
als in electronics has significant perspectives. Fullerene
crystals and films are semiconductors with an energy gap
of 1.2–1.9 eV [3, 4] and have photoconductivity under
visible light irradiation. Fullerene crystals have com-
paratively small binding energy, and the phase tran-
sition connected with the orientational disordering of
fullerene molecules occurs in such crystals at room tem-
perature [5].

The addition of radicals containing platinum-group
metals [6] to fullerenes C60 allows one to obtain fer-
romagnetic materials based on fullerene. In polycrys-
tal C60 doped by an alkali metal, the superconductiv-
ity at temperatures lower than 33 K is observed [7, 8].
The large binding energy is typical of metallocarbohe-
dra M8C12, where M = Ti, V, Hg, Zr. For example, in
Ti8C12, the molecule binding energy per atom is 6.1 eV
[9] (for a C60 molecule, this energy is 7.4–7.6 eV [3]).

Fullerenes in the solid state (fullerites) are molecu-
lar crystals, where the interaction between atoms in C60

molecule is much larger than the interaction between
nearest molecules. In a closely packed structure, each
fullerene molecule has 12 nearest neighbors. Depending

on peculiarities of the molecular interaction, the face-
centered cubic lattice or hexagonal lattice is realized [10].
A phase transition in the C60 crystal occurs at a temper-
ature of 257 K, and this is the first-order transition. At
high temperatures, molecules can freely rotate, whereas
the rotation at low temperatures is stopped, and the in-
teraction anisotropy of neighbor molecules C60 becomes
important. This leads to a small sharp change of the dis-
tance between the nearest molecules. According to the
results of X-ray structure analysis [11], the lattice con-
stant changes from 1.4154±0.0003 nm to 1.4111±0.0003
nm (that is, by 0.43± 0.06 percent).

At low temperatures, when C60-molecules are oriented
in space, the crystal lattice symmetry does not coincide
with the symmetry of a single molecule C60 (icosahedral
symmetry Y ). In a unit cell of the fullerite crystal lat-
tice, there are four C60-molecules. These molecules form
a tetrahedron, in which orientations of all molecules are
the same. Tetrahedra, in turn, form a simple cubic lat-
tice.

Fullerites are semiconductors with an energy gap of
1.5–1.95 eV [3]. The electrical resistivity of polycrystals
C60 [11] monotonically changes with the temperature,
and the energy gap has monotonic dependence on the
pressure: an increase of the energy gap under the pres-
sure higher than 2 × 105 atm indicates the absence of
the metal-insulator transition at p ' 106 atm. In the
temperature region 150–400 K, the relaxation time is
temperature-independent, which indicates that the car-
riers are localized, and the hopping mechanism of re-
combination, which includes the tunneling of electrons
between localized states, is realized.

It has been shown in [7] that the doping of solid
fullerenes C60 by a small amount of an alkali metal leads
to the formation of a material with the metallic type of
conductivity, and this material becomes superconduct-
ing at low temperatures (Tc from 2.5 K for Na2KC60
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to 33 K for RbCs2C60). At changes of the tempera-
ture, concentration of an alkali metal, and parameters
and structure of the lattice, various phases of these com-
pounds have been realized. In particular, at various fill-
ings n (n may change from 0 to 6) of the lowest un-
occupied molecular orbital (LUMO), the metallic, in-
sulating, or superconducting phases have been realized.
Superconductivity in doped fullerenes KxC60 has been
studied theoretically in [12], and strong electron corre-
lations have been shown to play a crucial role in the su-
perconducting state stabilization. Recently, the strong
electron correlation was also proven [13] to be responsi-
ble for the superconductivity of planar carbon systems
of the graphene type.

Let us consider the electronic structure of C60 in de-
tail. In the single-particle approximation with neglect
of electron correlations, the following spectrum has been
calculated [2]: 50 of 60 pz electrons of a neutral molecule
fill all orbitals up to L = 4. The lowest L = 0, 1, 2 or-
bitals correspond to icosahedral states ag, t1u, hg. All
states with greater L undergo the icosahedral-field split-
ting. There are 10 electrons in the partially filled L = 5
state. The icosahedral splitting (L = 5→ hu+ t1u+ t2u)
of this 11-fold degenerate orbital leads to the electronic
configuration shown below. Microscopic calculations
and experimental data show that the completely filled
highest occupied molecular orbital is of hu symmetry,
and LUMO (3-fold degenerate) has t1u symmetry. Un-
der such conditions, the HOMO-LUMO gap appears due
to the icosahedral perturbation in the shell with L = 5;
the energy gap found experimentally is about 1 eV for
molecules in vacuum. The t2g (LUMO+1)-state origi-
nated from L = 6 shell is found approximately to be 1
eV above the t1u LUMO.

Electron-electron correlations in C60 are described by
two main parameters: the intramolecular Coulomb re-
pulsion U and Hund’s coupling JH. In fullerenes, the
competition between the intrasite Coulomb interaction
(Hubbard U) and delocalization processes related to the
translational motion of electrons (which determines the
bandwidth) causes the realization of the insulator or
metallic state [14]. The majority of experimental data
and theoretical calculations indicate that all materials
with ions C−n60 at integer n are Mott–Hubbard insula-
tors, as U is quite large for all doped compounds AxC60.
Fullerides AxC60 doped with alkali metals A attract
much attention of researchers due to the unusual metal-
insulator transition in these compounds. Only A3C60

is metallic, and other phases AC60, A2C60 and A4C60

are insulator ones [15]. This experimental fact con-
tradicts the results of band structure calculations (see,

e.g., [16]), which predict the purely metallic behavior.
It has been noted in [17] that, to explain the metallic
behavior of the Mott–Hubbard system (x = 3 corre-
sponds to the half-filling of the conduction band), one
has to consider a degeneracy of the energy band. On the
base of the Gutzwiller variational approach, the metal-
insulator transition has been proven [17] to exist for all
integer band fillings. It is shown that the critical value
of Coulomb interaction parameter depends essentially on
the band filling and the degeneracy (in the case of half
filling, Uc

2w ' 2.8 for double degeneracy, Uc

2w ' 3.9 for
triple degeneracy). The present study is devoted to the
investigation of the Mott–Hubbard localization in the
electronic subsystem of fullerides with strong electron
correlations within the model involving the orbital de-
generacy of energy levels, strong Coulomb interaction,
and correlated hopping of electrons.

2. Hamiltonian of the Doped Fulleride
Electronic Subsystem

Within the second quantization formalism, the Hamilto-
nian of interacting electron systems can be written [18]
as

H = −µ
∑
iλσ

a+
iλσaiλσ +

∑
ijλσ

′
tija

+
iλσajλσ+

+
1
2

∑
ijkl

∑
αβγδ

∑
σσ′

Jαβγδijkl a
+
iασa

+
jβσ′alδσ′akγσ, (1)

where the first sum with the matrix element

tij =
∫
d3rφ∗λi(r−Ri)×

×
[
− ~2

2m
Δ + V ion(r)

]
φλi(r−Rj) (2)

describes the translational motion (hopping) of elec-
trons in the crystal field V ion(r), and the second sum
is the general expression for pair electron interactions
described by the matrix elements

Jαβγδijkl =
∫ ∫

φ∗α(r−Ri)φβ(r−Rj)×

× e2

|r − r′|
φ∗δ(r−Rl)φγ(r−Rk)drdr′. (3)

In the above formulae, a+
iλσ, aiλσ are the operators of

spin-σ electron creation and annihilation in the orbital
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state λ on the lattice site i, respectively, the indices α, β,
γ, δ, and λ denote orbital states, φλi is the wave-function
in the Wannier (site) representation, other notation is
standard. Hamiltonian (1) is essentially non-diagonal
and hard to be treated mathematically. The problem
can be greatly simplified by neglecting the matrix ele-
ments of the interaction of the third and further orders of
magnitude and restricting oneself to the consideration of
a single orbital per site. In this way, the Hamiltonian of
the Hubbard model and many other backbone models of
the theory of strongly correlated electrons were derived.
However, it has been shown that these models lack the
possibility to describe the electron-hole asymmetry ob-
served in real correlated electron systems. To maintain
such a possibility, we are to consider the structure of en-
ergy levels and to estimate interaction parameters prior
to make simplifications. Following works [19, 20], we de-
rive the Hamiltonian which includes the correlated hop-
ping of electrons (the site-occupation dependence of hop-
ping parameters results from taking the interactions with
second-order matrix elements into account) and a vari-
ety of intrasite interactions caused by the triple orbital
degeneracy of LUMO in doped fullerites. The zero-order
interaction integral includes the on-site Coulomb corre-
lation (characterized by the Hubbard parameter U):

U =
∫ ∫

|φ∗λ(r−Ri)|2
e2

|r − r′|
|φλ(r′ −Ri)|2drdr′. (4)

In an orbitally degenerate system, the on-site (Hund’s
rule) exchange integral

JH =
∫ ∫

φ∗λ(r−Ri)φλ′ (r−Ri)
e2

|r − r′ |
×

×φ∗λ′ (r
′
−Ri)φλ(r

′
−Ri)drdr

′
, (5)

is of principal importance as well. The parameter U for
fullerenes had been estimated within different methods.
The local density approximation (LDA) gives 3.0 eV [21,
22]. Experimental estimation of the electron repulsion
energy [23] gives U ' 2.7 eV.

It is worth to note that, in the solid state, molecules
are placed close enough to provide a substantial screen-
ing of the interaction. The calculation with regard for
the screening effect gives U 2.7 eV [21, 22]. Combin-
ing Auger spectroscopy and photoemission spectroscopy
lead to the value 1.4-1.6 eV [24, 25] for U . We also
note that the energy cost of electron configurations with
spins aligned in parallel is considerably less than that
for the antiparallel alignment. Orbitally degenerate lev-
els are filled according to Hund’s rule. Experimental

methods [24] give 0.2 eV ± 0.1 eV for the singlet-triplet
splitting; whereas its value is close to 0.05 eV according
to [26]. The relevant intersite parameters are the elec-
tron hopping integral and the intersite exchange coupling
J(iλjλ′jλiλ

′
).

The resulting Hamiltonian of the doped fulleride elec-
tronic subsystem reads

H = −µ
∑
iλσ

a+
iλσaiλσ + U

∑
iλ

niλ↑niλ↓+

+
U ′

2

∑
iλσ

niλσniλ′σ̄ +
U ′ − JH

2

∑
iλλ′σ

niλσniλ′σ+

+
∑
ijλσ

′
tij(n)a+

iλσajλσ +
∑
ijλσ

′
t
′

ij

(
a+
iλσajλσniλ̄ + h.c.

)
+

+
∑
ijλσ

′
t
′′

ij

(
a+
iλσajλσniλσ̄ + h.c.

)
, (6)

where niλσ = a+
iλσaiλσ, U

′ = U − 2JH, and the hop-
ping integrals tij(n), t

′

ij , t
′′

ij with regard for three types
of correlated hopping of electrons [28] are introduced.

In a model of triply degenerate band, every site can be
in one of 64 configurations (see Fig. 1). To pass from the
electron operator to the Hubbard operators Xpl of the
transition from state |l〉 to state |p〉, we use the relations

â+
α↑ = X↑00,000 +X200,↓00 +X↑↑0,0↑0 +X↑↓0,0↓0+

+X↑0↑,00↑ +X↑0↓,00↓ +X↑20,020 +X↑02,002+

+X2↓0,↓↓0 +X20↓,↓0↓ +X↑↑↑,0↑↑ +X↑↓↓,0↓↓+

+X2↑0,↓↑0 +X20↑,↓0↑ +X↑↑↓,0↑↓ +X↑↓↑,0↓↑+

+X2↓↓,↓↓↓ +X2↓↑,↓↓↑ +X2↑↓,↓↑↓ +X2↑↑,↓↑↑+

+X220,↓20 +X↑2↑,02↑ +X↑2↓,02↓ +X202,↓02+

+X↑↑2,0↑2 +X↑↓2,0↓2 +X↑22,022 +X22↓,↓2↓+

+X2↓2,↓↓2 +X22↑,↓2↑ +X2↑2,↓↑2 +X222,↓22,

â+
α↓ = X↓00,000 −X200,↑00 +X↓↑0,0↑0 +X↓↓0,0↓0+
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000 00↑ 00↓ 00 ↑ 00 ↓ ↑00 ↓00

0 0

0↑↓ 0↓↑ ↓↑ 0 ↑↓ 0 ↑↓0 ↓↑0 ↑↑↑ ↓↓↓

H
JU 2− H

JU 93 −

200 020 002

U
H
JU 3−

0↑↑ 0↓↓ ↑↑ 0 ↓↓ 0 ↑↑0 ↓↓0

↑↑↓ ↓↓↑ ↑↓↑ ↓↑↓ ↑↓↓ ↓↑↑

H
JU 73 −

02 ↑ 02 ↓ ↑20 ↓20 20↑ 20↓ ↑02 ↓02 02↑ 02↓ 20 ↑ 20 ↓

220 022 202 ↑↑2 ↓↓2 ↑↑ 2 ↓↓ 2 2↑↑ 2↓↓

H
JU 106 −

H
JU 53 −

↑↓2 ↓↑2 ↓↑ 2 ↑↓ 2 2↑↓ 2↓↑

H
JU 126 −

↑22 ↓22 22 ↑ 22 ↓ 22↑ 22↓ 222

H
JU 179 −

H
JU 2413 −

H
JU 136 −

Fig. 1. Possible site configurations in the threefold degenerate model. The first symbol in the state notation corresponds to the α
orbital, the second and third – to the β and γ orbitals, respectively

+X↓0↑,00↑ +X↓0↓,00↓ +X↓20,020 +X↓02,002−

−X2↑0,↑↑0 −X20↑,↑0↑ +X↓↑↑,0↑↑ +X↓↓↓,0↓↓−

−X2↓0,↑↓0 −X20↓,↑0↓ +X↓↑↓,0↑↓ +X↓↓↑,0↓↑−

−X2↑↑,↑↑↑ −X2↑↓,↑↑↓ −X2↓↑,↑↓↑ −X2↓↓,↑↓↓−

−X220,↑20 +X↓2↑,02↑ +X↓2↓,02↓ −X202,↑02+

+X↓↑2,0↑2 +X↓↓2,0↓2 +X↓22,022 −X22↑,↑2↑−

−X2↑2,↑↑2 −X22↓,↑2↓ −X2↓2,↑↓2 −X222,↑22, (7)

which ensure the fulfillment of the anticommutation re-
lations {Xpl

i ;Xkt
j } = δij(δlkX

pt
i + δptX

kl
i ), and the nor-
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malizing condition
∑
iX

p
i = 1, for the number opera-

tors Xp
i = Xpl

i X
lp
i of |p〉-state on site i. Such a repre-

sentation of electronic operators is typical for models of
strongly correlated electron systems such as supercon-
ducting cuprates [29], manganites [30], cobaltites [31],
and optical lattices [32, 33]. Using the root vector nota-
tions introduced in [34] allows us to obtain a much more
compact form of the Hamiltonian in the configurational
representation. In our case, the number of subbands is
relatively small, and we use bulky but simple notations
which make the projection procedure used below more
transparent.

In the configurational representation, the model
Hamiltonian takes the form H = H0 + T . Here, H0

sums the “atomic limit” terms, and the translational part
can decomposed as T =

∑
n,m Tnm, where n,m serve

for numbering the “atomic” states. Terms Tnn of the
Hamiltonian form the energy subbands, and terms Tnm
describe the hybridization of these subbands. Different
hopping integrals correspond to transitions in (or be-
tween) the different subbands. The subbands of higher-
energy processes appear to be narrower due to the cor-
related hopping of electrons. The relative positions and
the overlapping of subbands depends on the relations
between the energy parameters. At the integer values
of electron concentration (n = 1, 2, 3, 4, 5) in the sys-
tem, the metal-insulator transition is possible. In the
partial case of the band filling n = 1, strong Coulomb
correlation, and strong Hund’s coupling (the parameter
U−3JH is much greater than the bandwidth, see estima-
tions in [21,22]), the states with three and more electrons
on the same site are excluded. Then the influence of
the correlated hopping can be described by three differ-
ent hopping integrals. The bare band hopping integral
tij is renormalized with regard for the band narrowing
caused by the concentration-dependent correlated hop-
ping as tij(n) = tij(1 − τ1n). This hopping integral
characterizes the lower Hubbard subband. The parame-
ter τ1 is usually neglected, but it is of basic importance
for a consistent description of correlation effects in nar-
row band systems (see [19, 20] for a detailed discussion).
The hopping integral for the upper Hubbard subband
is t̃ij(n) = tij(n) + 2t′ij , and t̄ij(n) = tij(n) + t′ij de-
scribes a hybridization of the lower and upper Hubbard
subbands. In what follows, only the case n = 1 is consid-
ered; so, we omit the explicit notation of concentration
dependence. Then the Hamiltonian in the X-operator
representation [27] has the form

H = H0 +
∑

λ=α,β,γ

(
H

(λ)
b +H

(λ)
h

)
, (8)

H0 = −µ
∑
iσ

(
Xσ00
i +X0σ0

i +X00σ
i +

+2
(
Xσσ0
i +Xσ0σ

i +X0σσ
i

))
+

+(U − 3JH)
∑
iσ

(
Xσσ0
i +Xσ0σ

i +X0σσ
i

)
,

H
(α)
b =

∑
ijσ

(
tijX

σ00,000
i X000,σ00

j +

+t̃ijX
σσ0,0σ0
i X0σ0,σσ0

j + t̃ijX
σ0σ,00σ
i X00σ,σ0σ

j +

+t̃ijX
σσ0,0σ0
i X00σ,σ0σ

j + t̃ijX
σ0σ,00σ
i X0σ0,σσ0

j

)
,

H
(α)
h =

∑
ijσ

t̄ij

(
Xσ00,000
i X0σ0,σσ0

j +Xσσ0,0σ0
i X000,σ00

j +

+Xσ00,000
i X00σ,σ0σ

j +Xσ0σ,00σ
i X000,σ00

j

)
,

H
(β)
b =

∑
ijσ

(
tijX

0σ0,000
i X000,0σ0

j +

+t̃ijX
σσ0,σ00
i Xσ00,σσ0

j + t̃ijX
0σσ,00σ
i X00σ,0σσ

j −

−t̃ijXσσ0,σ00
i X00σ,0σσ

j − t̃ijX0σσ,00σ
i Xσ00,σσ0

j

)
,

H
(β)
h =

∑
ijσ

t̄ij

(
X0σ0,000
i X00σ,0σσ

j +X0σσ,00σ
i X000,0σ0

j −

−X0σ0,000
i Xσ00,σσ0

j −Xσσ0,σ00
i X000,0σ0

j

)
,

H
(γ)
b =

∑
ijσ

(
tijX

00σ,000
i X000,00σ

j +

+t̃ijX
σ0σ,σ00
i Xσ00,σ0σ

j − t̃ijX0σσ,0σ0
i X0σ0,0σσ

j +

+t̃ijX
σ0σ,σ00
i X0σ0,0σσ

j + t̃ijX
0σσ,0σ0
i Xσ00,σ0σ

j

)
,

H
(γ)
h = −

∑
ijσ

t̄ij

(
X00σ,000
i Xσ00,σ0σ

j +Xσ0σ,σ00
i X000,00σ

j +

+X00σ,000
i X0σ0,0σσ

j +X0σσ,0σ0
i X000,00σ

j

)
.
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The technique of Green functions allows us to calcu-
late the energy spectrum within the model, which corre-
sponds to the electronic subsystem of AxC60 in the case
of the electron concentration n = 1. One can rewrite
the single-particle Green function 〈〈aiλσ|a+

jλσ〉〉 on the
basis of the relation between electronic operators and
Hubbard’s X-operators:

apα↑ = X000,↑00
p +X0↑0,↑↑0

p +X00↑,↑0↑
p ≡

≡ X000,↑00
p + Yp, (9)

where the operator Yp describes the transition processes
between doubly occupied Hund’s state and singly occu-
pied state. The processes involving the other types of
doubly occupied states, empty states, and states with
three or more electrons are improbable due to the en-
ergy scaling.

In this way, we obtain the following expression for the
single-electron Green function

〈〈apα↑|a+
p′α↑〉〉 = 〈〈X000,↑00

p |X↑00,000p′ 〉〉+

+〈〈X000,↑00
p |Y +

p′ 〉〉+ 〈〈Yp|X000,↑00
p′ 〉〉+ 〈〈Yp|Y +

p′ 〉〉. (10)

The equation of motion for the Green function
〈〈X000,↑00

p |X↑00,000p′ 〉〉 has the form

(E + µ)〈〈X000,↑00
p |X↑00,000p′ 〉〉 =

= δpp′
X000
p +X↑00p

2π
+ 〈〈[X000,↑00

p ;
∑
λ

H
(λ)
b ]|X↑00,000p′ 〉〉

+〈〈[X000,↑00
p ;

∑
λ

H
(λ)
h ]|X↑00,000p′ 〉〉, (11)

and the equation of motion for the Green function
〈〈Yp|X000,↑00

p′ 〉〉 looks as

(E + µ− U + 3JH)〈〈Yp|X000,↑00
p′ 〉〉 =

= 〈〈[Yp;
∑
λ

H
(λ)
b ]|X↑00,000p′ 〉〉+〈〈Yp;

∑
λ

H
(λ)
h ]|X↑00,000p′ 〉〉.

(12)

To obtain the closed system of equations for the Green
functions 〈〈X000,↑00

p |X↑00,000p′ 〉〉 and 〈〈Yp|X↑00,000p′ 〉〉, we
use the projection procedure similar to that in [28]:

[X000,↑00
p ;

∑
λ

H
(λ)
b ] =

∑
i

εbpiX
000,↑00
i ;

[X000,↑00
p ;

∑
λ

H
(λ)
h ] =

∑
i

εhpiYi;

[Yp;
∑
λ

H
(λ)
b ] =

∑
i

ε̃bpiYi;

[Yp;
∑
λ

H
(λ)
h ] =

∑
i

ε̃hpiX
000,↑00
i . (13)

Performing the Fourier transformation, we obtain the
Green function in the form:

〈〈X000,↑00
i |X↑00,000j 〉〉k =

X000 +X↑00

2π
×

×E + µ− U + 3JH − ε̃b(k)
(E − E1(k))(E − E2(k))

, (14)

where the quasiparticle energy spectrum

E1,2(k) = −µ+
U − 3JH

2
+
εb(k) + ε̃b(k)

2
∓

∓1
2

√
(U − 3JH − εb(k) + ε̃b(k))2 + 4εh(k)ε̃h(k). (15)

In the absence of orbital order, the energy spectrum for
β and γ electrons is the same as that for α electrons.

The non-operator coefficients εb(k), ε̃b(k), εh(k), ε̃h(k)
can be obtained by the anticommutation of Eq.(13) with
the basis operators X000,↑00

i and Y +
i and the following

replacement of operators by c-numbers (see in this con-
nection [19]). We have

εbk =
1
C1

[
tk(〈X000

p (X000
p′ +X↑00p′ )〉+

+〈X↑00p (X000
p′ +X↑00p′ )〉+ 〈X↓00,↑00p X↑00,↓00p′ 〉+

〈X0↑0,↑00
p X↑00,0↑0p′ 〉+ 〈X0↓0,↑00

p X↑00,0↓0p′ 〉+

+〈X00↑,↑00
p X↑00,00↑p′ 〉+ 〈X00↓,↑00

p X↑00,00↓p′ 〉

−t̃k(〈X↑↑0,000p X000,↑↑0
p′ 〉+ 〈X↑0↑,000p X000,↑0↑

p′ 〉)
]
,

εhk =
1
C2
t̄k

[
〈(X000

p +X↑00p )×
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×(X0↑0
p′ +X00↑

p′ +X↑↑0p′ +X↑0↑p′ )〉+

+〈X0↑0,↑00
p X↑0↑,0↑↑p′ 〉+ 〈X↑↑0,000p′ X000,↑↑0

p 〉−

−〈X0↑0,↑00
p′ X↑00,0↑0p 〉 − 〈X00↑,↑00

p X↑00,00↑p′ 〉+

+〈X↑0↑,000p′ X000,↑0↑
p 〉 − 〈X00↑,↑00

p X↑↑0,0↑↑p′ 〉
]
,

ε̃bk = − tk
C2

[
〈X↑↑0,000p′ X000,↑↑0

p 〉+ 〈X↑0↑,000p′ X000,↑0↑
p 〉

]
+

+
t̃k
C2

[
〈X0↑0

p +X↑↑0p +X00↑
p +X↑0↑p 〉×

×〈X0↑0
p′ +X↑↑0p′ +X00↑

p′ +X↑0↑p′ 〉+

+〈X0↑0,↑00
p X↑00,0↑0p′ 〉+ 〈X0↑↑,↑0↑

p X↑0↑,0↑↑p′ 〉−

−〈X0↑0,↑00
p X↑0↑,0↑↑p′ 〉 − 〈X0↑↑,↑0↑

p X↑00,0↑0p′ 〉+

+〈X00↑,↑00
p X↑00,00↑p′ 〉+ 〈X0↑↑,↑↑0

p X↑↑0,0↑↑p′ 〉+

+〈X00↑,↑00
p X↑↑0,0↑↑p′ 〉+ 〈X0↑↑,↑↑0

p X↑00,00↑p′ 〉
]
,

ε̃hk = − t̄k
C1

[
〈(X000

p′ +X↑00p′ )×

×(X↑↑0p +X↑0↑p +X0↑0
p +X00↑

p )〉+

+〈X0↑↑,↑0↑
p X↑00,0↑0p′ 〉 − 〈X0↑0,↑00

p X↑00,0↑0p′ 〉+

+〈X↑↑0,000p′ X000,↑↑0
p 〉+ 〈X00↑,↑00

p X↑00,00↑p′ 〉−

−〈X↑0↑,000p′ X000,↑0↑
p 〉+ 〈X0↑↑,↑↑0

p X↑00,00↑p′ 〉
]
,

where C1 = 〈X000
p +X↑00p 〉, C2 = 〈X0↑0

p +X00↑
p +X↑↑0p +

X↑0↑p 〉. It is worth to note that, in a partial case of the
band filling n = 1 and the strong Coulomb correlation,

we work with the reduced Hilbert space of electronic
states, so C1 + C2 = 1.

Let us denote the concentration of empty lattice sites
by e and the concentration of sites singly occupied by
electrons with spin σ in the orbital state λ by sλσ. More-
over, the concentrations of Hund’s doublons, Hubbard
doublons, and non-Hund doublons are denoted by dσ, d2,
and d̃, respectively. In the paramagnetic state, sλσ = s
and dσ = d. In the case of strong Hund’s coupling,
the high-energy doublon configurations are excluded,
d2 = d̃ = 0. We can use the completeness condition for
the X-operator set to have constraint e + 6s + 6d = 1,
which, under the condition e = 6d, leads to the relation

s =
1− 12d

6
. (16)

Finally in the paramagnetic case at n = 1, we obtain

εb =
216d2 − 12d+ 1

24d+ 1
tk +

72d2

24d+ 1
t̃k; (17)

εh = t̄k
7d− 12d2

1− 6d
, (18)

ε̃b = tk
36d2

1− 6d
+

t̃k
2(1− 6d)

, (19)

ε̃h = tk
24d+ 1− 216d2

3(24d+ 1)
. (20)

In this way, the energy spectrum depends on the con-
centration of doublons d (through the dependence of
non-operator coefficients). The doublon concentration
is determined by the condition

6d =
1

2N

∑
k

(
Ae(k)

exp(E1(k)
kT + 1)

+
Be(k)

exp(E2(k)
kT + 1)

)
, (21)

where

Ae(k) =
1
2

(
1 +

U − 3JH + ε̃b − εb√
(U − 3JH − εb + ε̃b)2 + 4εhε̃h

)
,

Be(k) = 1−Ae(k). (22)

Using the model rectangular density of states at zero
temperature, we obtain

6d =
1

4w

w∫
−w

Ae(ε)Θ(−E1(ε))
E − E1(ε)

dε+
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Fig. 2. Energy gap versus the correlated hopping parameter τ1.
The values of τ are 0; 0.05; 0.1 (starting from the lower curve).
The Coulomb interaction parameter U−3JH

w
= 2

+
1

4w

w∫
−w

Be(ε)Θ(−E2(ε))
E − E2(ε)

dε, (23)

where Θ(−E(ε)) is the Heaviside theta-function. Solving
this equation numerically, we obtain the doublon concen-
tration as a function of the model parameters. To study
the metal-insulator transition (MIT) [35–37], we apply
the gap criterion

ΔE = E2(−w)− E1(w) = 0. (24)

At the point of MIT, the concentrations of polar states
(holes and doublons) are equal to zero. Thus, for the
non-operators coefficients, we have εb = tk, εh = 0, ε̃b =
t̃k
2 , ε̃h = t̃k

3 . The energy gap satisfies the equation

ΔE = U − 3JH − w̃ − w. (25)

Here, w = z|t|(1 − τ1) and w̃ = z|t|(1 − τ1)(1 − 2τ) are
the half-bandwidths of the lower and upper subbands,
respectively, z is the number of nearest neighbors for
a site, |t| is the magnitude of the bare nearest-neighbor
hopping integral, τ1 and τ = t′ij

|tij | are the correlated hop-
ping parameters. From relation (25), we obtain that the
critical value of intrasite Coulomb interaction parame-
ter equals the sum of the half-bandwiths of quasiparticle
subbands.

The analysis of expression (25) allows us to explain the
differences of electrical characteristics (of the insulator
or metallic state) depending on the correlated hopping
strength (see Figs. 2 and 3).

One can see from Fig. 2 that the correlated hopping
influences substantially the electrical characteristics of

Fig. 3. Energy gap versus the Coulomb interaction parameter at
the electron concentration n = 1. The correlated hopping param-
eters are τ1 = 0.05, τ = 0; 0.2; 0.5 (starting from the lower curve)

the narrow band material with three-fold orbital degen-
eracy of the energy levels. Both the filling of the sites
involved into the hopping processes (through the first-
type correlated hopping) and the neighbor sites (through
the second-type correlated hopping) can lead to the ap-
pearance of a gap in the energy spectrum and the sta-
bilization of the insulator state. However, the energy
gap is opened at a relatively large increase of correlated
hopping parameters, which can not be achieved in the
compound by a change of external conditions only. Such
critical increase of the parameters τ1 and τ can be real-
ized at the doping. A distinct picture is observed at a
change of the intrasite Coulomb interaction parameter.
Under an increase of (U −3JH)/w over the critical value
(dependent on the correlated hopping strength), the en-
ergy gap occurs, and the metal-insulator transition takes
place (see Fig. 3). The critical value in the partial case
of the model where the quasiparticle subbands have the
same widths (in the absence of the correlated hopping)
is (U − 3JH)/w = 2, which corresponds to the result of
works [28, 38] based on the non-degenerated Hubbard
model.

3. Conclusions

Within a version of the triply orbitally degenerate model
of the electronic subsystem of a doped fulleride com-
pound considered above, not only the on-site Coulomb
correlations but also additional interactions of basic im-
portance, namely the correlated hopping, can be intro-
duced and analyzed. The use of Hubbard representation
of X-operators appears useful to omit the parts of the
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Hilbert space, which are irrelevant at a particular band
filling. The ground-state metal-insulator transition in
the triply degenerate model of partially-filled doped ful-
leride band takes place at moderate values of the correla-
tion parameter. In this case, this parameter is a combi-
nation of the on-site Coulomb repulsion energy, Hund’s
rule coupling, and electron hopping parameters. The
correlated hopping of electrons leads to a further local-
ization of current carriers. The influence of the corre-
lated hopping is substantial and makes the estimation of
the model parameters from the available spectroscopic
data ambiguous. The problem can be resolved by the
additional spectroscopic experiments with the use of the
external pressure. In this case, the reasonable estimates
could be obtained using the fact that, as distinct from
the on-site parameters, the correlated hopping parame-
ters must be pressure-dependent. The metal-insulator
transition described above can be realized [39, 40] in
doped fulleride compounds under the external pressure.
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МОТТ-ГАББАРДIВСЬКА ЛОКАЛIЗАЦIЯ В МОДЕЛI
ЕЛЕКТРОННОЇ ПIДСИСТЕМИ ЛЕГОВАНОГО
ФУЛЕРИДУ

Ю. Довгоп’ятий, Л. Дiдух, О. Крамар, Ю. Скоренький,
Ю. Дрогобицький

Р е з ю м е

Дослiджено конфiгурацiйне представлення мiкроскопiчної мо-
делi електронної пiдсистеми легованого фулериду з урахува-
нням трикратного орбiтального виродження електронних ста-
нiв. З використанням методу функцiй Грiна розраховано енер-
гетичний спектр моделi при заповненнi зони n = 1, що вiдпо-
вiдає сполукам AC60. Обговорено можливий кореляцiйно iнду-
кований перехiд дiелектрик–метал у рамках даної моделi.
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