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Microstructural changes in systems subjected to the ballistic flux
action have been studied. The formation of a structure disorder
under irradiation has been described using the phase field crystal
method. It is found that, owing to a competition between the regu-
lar and stochastic components of the ballistic flux, spatial patterns
with smeared atomic densities can be formed. The dynamics of
defects during the recrystallization in such systems has been stud-
ied, and the dependence of the variation in the number of defects
on the statistical properties of a ballistic flux has been analyzed.
The spatial patterns formed under the action of such flux during
the recrystallization are found to be stationary and resistant to
low-intensity thermal fluctuations.

1. Introduction

The study of a microstructure of crystalline materials,
conditions under which it transforms, and the character
of transformations is a challenging problem today not
only from the viewpoint of theoretical physics, but also
solid state physics and materials technology in general
[1]. In recent years, the solution of this problem has
become more and more important, because it is asso-
ciated with the determination of the resistance of con-
structional materials used in various domains of human
activity, in particular, in radiation equipment [2]. The
evolution of such systems is governed by thermodynamic
forces, mechanical loads, or radiation influence. The me-
chanical instability of crystalline systems results in the
emergence of defects (point-like, linear, planar, and bulk
ones), which are capable of strongly affecting the be-
havior of such systems under various conditions of their
usage. Therefore, the understanding and the study of
defect structure formation processes and defect dynam-

ics have been invoking a steady scientific interest within
the last several decades.

In recent years, it was found that the adequate
description of microstructural transformations can be
reached by examining the behavior of such systems self-
consistently at various hierarchical levels of the space–
time scale ranging from quantum-mechanical to macro-
scopic ones [3]. A separate application of physical-
theoretic methods at a definite hierarchical level of such
a multiscale scheme does not allow a complete picture of
the self-organization in a crystalline or defect structure
to be constructed. For instance, ab initio methods allow
the behavior of a system to be described at lengths of
the order of 10−9 m and time intervals of about 10−14 s.
The dynamics of atoms and point defects analyzed us-
ing the molecular dynamics methods is confined to inter-
vals of 10−9–10−8 m in space and 10−13–10−8 s in time.
It is worth noting that the number of atoms that can
be traced while simulating such processes numerically is
limited to a finite value; namely, the efficiency of ab ini-
tio approaches is limited by a consideration of 106 and
molecular dynamics one of 109 atoms. The application
of analytical approaches together with numerical tech-
niques (Monte-Carlo kinetic simulation) in microstruc-
tural researches is used successfully enough at diffusion
scales, where the examined system can be considered in
the thermodynamic limit under certain boundary condi-
tions. Among the most widespread approaches of this
type, the phase field method, which is based on the
Ginzburg–Landau theory, is distinguished [4].

However, among the mentioned approaches, we may
address the so-called hybrid approaches and methods,
which cover several hierarchical levels. The most popu-
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lar and most used of them for the research of microstruc-
tures in materials is the phase field crystal method,
which allows the crystalline systems of various symme-
tries to be described in the framework of a continuous
field for the atomic density. The basis of the method was
borrowed from hydrodynamics, where it was used for the
description of the formation of Rayleigh–Bénard cells [5].
The physical content of its application to crystalline sys-
tems was substantiated in the theory of solidification [6],
which was developed in the framework of the Ginzburg–
Landau theory in works by Elder, Grant, and others [7].
In the framework of this approach, the crystalline phase
is characterized by a periodically distributed field of
atomic density ρ(r), which corresponds to the minimum
of the free energy functional F [ρ(r)]. Its advantage over
the standard phase field theory consists in the capability
of a long-term modeling of the material evolution on the
microscopic spatial scale. This method is also preferable
as compared with the methods of molecular dynamics
due to the exclusion of fast degrees of freedom, which
allows the dynamics of a system to be studied within
mesoscopic time intervals. This technique works as a
tool for the time coarsening of the molecular dynamics τ
(the averaging over phonons) [8]. In other words, instead
of atomic positions, the corresponding atomic densities
are considered as the probabilities for every i-th atom
to fill the phase volume, i.e. ρ(r, τ) = τ−1

∫ τ
0
dt ρm(t),

where ρm(r, t) =
∑N
i δ(r − ri(t)). Moreover, this ap-

proach allows one to simulate elastic and plastic defor-
mations in crystals, liquid-solid phase transitions [9], de-
fect diffusion [10], microstructural transformations [11],
phase stratification, epitaxial growth, dislocation dy-
namics [12], and structural transitions [13, 14].

It is evident that the application of this method to
studying the microstructural changes in irradiated sub-
stances and the behavior of defects at the recrystalliza-
tion in relevant systems looks rather efficient. Since
the combination of such an approach with the results
of molecular dynamics is good, it becomes possible to
detect the defect redistribution at the recrystallization,
to study the motion of dislocations and grain bound-
aries, as well as the behavior of microcracks. In this
case, it is necessary to introduce the corresponding forces
and fluxes into consideration, which induce the forma-
tion of a structural disorder under irradiation. Taking
advantage of the approaches developed in works [15–17],
the influence of radiation inserting a structural disorder
can be adequately described by introducing a ballistic
(athermic) flux with atomic mixing into consideration.
This flux stimulates an additional (ballistic) diffusion of
atoms with stochastic character [18]. It is well known

that, in nonlinear distributed systems, the nonequilib-
rium fluctuations are capable of invoking a qualitative
reorganization in the system, which is impossible under
equilibrium conditions [19–21], e.g., phase transitions
[22], phase separation [23], and structurization both in
the bulk [24] and on the surface [25, 26]. Therefore, the
issue concerning the influence of statistical properties of
a ballistic flux on the microstructural transformations in
crystalline systems seems to be important. In this case,
the description of the formation of defects at irradiation
and their annealing becomes possible [27–29].

Hence, this work is aimed at studying the character of
microstructural transformations in irradiated crystalline
systems with regard for a ballistic flux with stochastic
properties (noise). To achieve this purpose, we applied
the phase field crystal formalism. We will develop the
general approach for the case of two-dimensional sys-
tems, which can be extended onto three-dimensional sys-
tems in the future. We will demonstrate that, owing to
the stochastic influence, the metastable, but persistent
structures with a symmetry different from that in the ini-
tial crystal can be realized in the system. We will study
the processes of atomic density redistribution under the
action of an athermic flux and elucidate the dynamics of
defects at the recrystallization in the irradiated system.

The work structure is as follows. In the next section,
the basic model of crystalline system is proposed, and
the ballistic flux is introduced. In Section 3, the char-
acter of microstructure changes at irradiation and re-
crystallization is studied with the use of numerical sim-
ulation methods. The results obtained are discussed in
Section 4. The last section contains conclusions.

2. Model

In the framework of the standard phase field crystal
formalism, a periodic system (a crystal) and probable
structural transitions in it are described as changes in
the properties of the atomic density field ρ(r, t). Let
us consider a one-component system with the property∫

drρ(r, t) = ρ0 = const, for which a variation of the free
energy ΔF = F [ρ]−F [ρ0] looks like [12]

ΔF
T

=
∫

dr {ρ(r) ln[ρ(r)/ρ0]−Δρ(r)}−

−1
2

∫
dr1

∫
dr2Δρ(r1)c(2)(r1, r2, ρ0)Δρ(r2),

where Δρ(r) = ρ(r) − ρ0, c(2)(r1, r2, ρ0) is the two-
point correlation function, the first term describes the
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free system, and the second one characterizes the in-
teraction. This expression is valid only if the variation
Δρ(r) is small. However, the error of such an approxi-
mation amounts to a few percent, when the solidification
processes are described. Therefore, under definite weak
conditions, the formula above can be regarded as satis-
factory [12].

The general formalism of the phase field crystal theory
is based on the following two basic assumptions. Pro-
vided that Δρ(r) varies weakly when c(2) changes, the
expansion in a series in the squared wavenumber gives
rise to the expression ρ0c

(2)(q) ' C0 + C2q
2 + C4q

4.
The constants C0 < 0, C2 > 0, and C4 < 0 determine
the properties of a specific crystalline system (material);
namely, these are the isothermal compressibility of the
liquid phase (the dimensionless compression modulus of
liquid state), ∼ 1 − ρ0C0, the compression modulus in
the crystal phase, ∼ ρ0C

2
2/4|C4|, and the lattice con-

stant, a0 ∼
√
|C4|/C2.1 The expansion of the noninter-

acting part in a series in a vicinity of ρ0 allows the free
energy functional for the dimensionless atomic density
field x(r) ∝ Δρ(r)/ρ0 to be expressed in the form [14]

F =
∫

dr
(
f(x) +

1
2
xL(∇2)x

)
, (1)

where the free energy density f(x) and the operator of
spatial interaction L(∇2) are given by the equations

f(x) =
α(T − Tm)

2
x2+

u

4
x4, L(∇2) = β(q20+∇2)2, (2)

which are expressed in terms of the material constants
α, u, and β; Tm is the melting temperature; and q0 is
the wavenumber that determines the lattice parameter.
A relation between the parameters of the theory and the
microscopic parameters of a specific crystalline system
can be found according to the procedure described, e.g.,
in work [14].

Since the atomic density field is a conserved quantity,
its Langevin dynamics is given by the equation

∂tx = M∇2 δF
δx

+ ξ, (3)

where M = const is the atomic mobility, and the white
noise ξ is characterized by standard properties 〈ξ(r, t)〉 =
0 and 〈ξ(r, t)ξ(r′, t′)〉 = 2MT∇2δ(r− r′)δ(t− t′).

1 The lattice parameter a0 = 2π/q0 is determined by the
wavenumber q0 =

√
3C2/8|C4| in the two-dimensional case and

by the wavenumber q0 =
√
C2/|C4| in the three-dimensional

one [12].

For the further consideration, it is expedient to renor-
malize some quantities,

r′ = rq0, x′ = x
√
u/Tmβq40 , ε

′ = αΔT/Tmβq40 ,

t′ = Mβq60t,F0 = β2q8−d0 Tm/u,F ′ = F/F0, (4)

introduce the control parameter ε = θ− 1 into consider-
ation, and renormalize the fluctuation source,

〈ξ(r, t)〉 = 0,

〈ξ(r, t)ξ(r′, t′)〉 =
uθqd−4

0

β2
∇2δ(r− r′)δ(t− t′). (5)

In what follows, the primes will be omitted for conve-
nience. It should be noted that, provided definite condi-
tions in the system (a selected value of the density, x0),
the realization of structures of the hexagonal type (a
periodic distribution of the atomic density) and the so-
called stripes (linear structures) becomes possible. Any-
way, the emergence of spatial structures is probable only
provided that x0 ≤

√
1− θ, i.e. if the free energy den-

sity is bimodal. Otherwise, the system is uniform irre-
spective of the selected density value. In the case of a
two-dimensional system for L = (1 + ∇2)2, the general
solution of the equation of state can be expressed in the
form

x(r, t) = x0 +s(t)(eik1r +c.c.)+h(t)(eik2r +eik3r +c.c.),

where c.c. means complex conjugation; s(t) and h(t) are
amplitudes; and the wave vectors are as follows:

k1 =

(
−
√

3
2
,−1

2

)
;k2 = (0, 1), k3 =

(√
3

2
,−1

2

)
.

Therefore, in the case s = h, we have the hexagonal
crystalline phase (a periodically distributed atomic den-
sity). This means that every atom moves in a vicinity of
its equilibrium position, all atoms move in a spherically
symmetric region in vicinities of their positions arranged
periodically with the lattice period a = 2π/q0, and the
frequency of stay at every point in a vicinity of the equi-
librium position ri is determined by the quantity x0(ri).
If h = 0, linear structures are realized. This means that,
although the atomic density distribution in the station-
ary case has a periodic structure corresponding to atomic
planes, it is smeared in parallel to those planes, because
atoms can move along them. In the range of uniform
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states, s = h = 0, the atomic density is smeared over the
whole system, so that the latter is actually in the liquid
state. There may arise regions, in which the crystalline
(hexagonal) phase and uniform states coexist; it is also
true for the coexistence region of hexagonal and linear
structures. This problem was studied earlier (see, e.g.,
work [30], where the critical values for the realization
of the described structures in one- and two-dimensional
cases were found). Using the methods of numerical sim-
ulation, the features in the periodic structure formation
were studied for the atomic density distribution in three-
dimensional systems, and a possibility for the fcc, bcc,
and hcp structures (in the two-dimensional case, they
correspond to the domain of hexagonal phase existence)
to emerge in three-dimensional systems was established
[31,32]. Earlier, it was shown [7] that the elastic proper-
ties of the hexagonal phase in the two-dimensional case
are described by the elastic constants C12 = C44 =
C11/3, where C12 = [(3x0 +

√
−15ε− 36x2

0)q
2
0 ]2/75 and

C11 = C12+2C44, with Poisson’s ratio ν = 1/3, the shear
modulus µ = C44, and the Young modulus Y2 = 8C12/3.

The irradiation influence will be taken into account
by introducing the athermic mixing flux in the atomic
system [18],

Je = −(De + ζ(r, t))∇x, De = φ〈R〉2σr, (6)

which has regular and stochastic components. The reg-
ular part characterizes the radiation-induced diffusion.
It depends on the coefficient of ballistic diffusion De

expressed in terms of the irradiation flux φ, the aver-
age hop distance 〈R〉 for a knocked-out atom, and the
scattering cross-section σr. In turn, the quantities σr
and 〈R〉 depend on the energy of bombarding particles.
The stochastic component describes the formation of a
structural disorder and has Gaussian properties. Since
a stochastic mixing in a structured medium (a crystal)
is considered, it is evident that the random component
should be correlated in space. Let its properties be se-
lected as follows:

〈ζ(r, t)〉 = 0,

〈ζ(r, t)ζ(r′, t)〉 =
2Deσ

2

(
√

2πrc)d
e−(r−r′)2/2r2c δ(t− t′). (7)

The presence of De in the expression for the correlator
testifies that the noise ζ arises only if the irradiation
flux does exist. The noise intensity σ2 = 〈(δR)2〉/〈R〉2
is connected with the length dispersion for jumps made
by knocked-out atoms, and rc is the radius of spatial

correlations. Such a construction of the athermic mixing
flux allows one to consider cases that are not reduced to
the conventional diffusion described by the Laplacian in
the evolution equation, but also lead to a generalized
stochastic character of motion with a given dispersion
of jump lengths, 〈(δR)2〉. Therefore, in what follows,
it is expedient to consider the quantities De and σ2 as
two independent parameters of the theory [18]. Hence,
the total evolution equation for the atomic density field
reads

∂tx = ∇2 δF
δx

+ ξ(r, t) +∇ · (De + ζ(r, t))∇x. (8)

The features in the formation of a periodic distribution
of the the atomic density in a system with the athermic
mixing flux described by Eq. (8) were analyzed in work
[33] for various initial values of atomic density. The be-
havior of a nonequilibrium system, for which the times
of the perturbation propagation through the athermic
and usual diffusion fluxes are different, was considered
in work [34]. It was found that, irrespective of the initial
value of x(r, t = 0), the action of a correlated stochas-
tic source ζ(r, t) can transform the system into a state
with linear structures. In other words, the irradiation-
induced emergence of a structural disorder in a corre-
lated medium gives rise to a change of the crystal mi-
crostructure, the appearance of ordered phases separated
by disordered ones, the smearing of the atomic density
over atomic planes, and the density distribution homog-
enization, i.e. the crystal melting. However, the nature
of transitions from hexagonal to linear structures under
the action of an external stochastic source has not been
studied.

Despite that the processes of ordered configura-
tion formation were studied earlier, the microstructural
changes and the formation of defects under the ather-
mic mixing were not analyzed. Therefore, this work is
aimed at elucidating the behavior of the formation of
defects in a crystalline system subjected to the action
of an athermic mixing flux. The main properties of the
defect structure formation are studied in the framework
of the geometrical approach, and the distortions in the
perfect hexagonal structure owing to the formation of
dislocations are determined.

3. Features of microstructural changes

3.1. Linearized model. Structure factor

Let us consider firstly the system in the framework of a
linearized model in a vicinity of the examined density x0.
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Since x is a conserved quantity, the stability analysis is
carried out for the spherically averaged structure factor
S(k, t), which is the Fourier transform of the two-point
correlation function 〈δx(r, t)δx(r′, t)〉, where δx(r, t) =
x(r, t)− x0. According to the Novikov theorem [35], the
dynamic equation for S(k, t) looks like

dS(k, t)
dt

= −2k2ω(k)S(k, t) + 2θk2+

+
2k2Deσ

2

(2π)d

∫
dqC(|k− q|)S(q, t), (9)

where C(|k−q|) is the Fourier transform of the external
noise correlation function. In this case, the dispersion
law reads

ω(k) = ε̃+De + (1− k2)2−

−Deσ
2C(0)k2 +Deσ

2[∇2C(|r|)]r=0, (10)

where ε̃ ≡ ε + 3x2
0 and [∇2C(|r|)]r=0 < 0, because the

noise correlator has a maximum at the point r = 0. From
the relation obtained, it follows that the external flux
renormalizes the control parameter so that the behavior
of the system is now governed by its effective value

εef = ε̃+De +Deσ
2[∇2C(|r|)]r=0. (11)

It is evident that if εeff < 0, the perturbations of har-
monics in a vicinity of k0 = 1 grow, which results in the
formation of periodic structures. Whence it follows that
the regular component De of the athermic flux brings
about an increase of the effective temperature. If the
particles in the irradiation flux have an energy (momen-
tum) spread, i.e. σ2 6= 0, then, taking into account that
[∇2C(|r|)]r=0 < 0, the stochastic component of the flux
Je violates the stability by reducing the value of effec-
tive control parameter. Hence, the regular and stochas-
tic components of the irradiation flux Je influence op-
positely the dynamics of the system, which agrees with
the results obtained in the framework of the mean-field
theory for deterministic systems [15] and in the analysis
of the behavior of systems with a stochastic irradiation
flux [18]. A detailed analysis of the influence exerted by
the stochastic component of the athermic mixing flux
on the stability of uniform states was carried out in de-
tail in works [33, 34, 36–38]. It was found that, contrary
to intuitive reasonings concerning the noise influence,
the action of a spatially correlated stochastic source in
systems with conserved dynamics gives rise to a spatial
ordering [19, 39–41].

From the dispersion law, we can determine the critical
values of wave numbers, k ∈ (k(−)

c , k
(+)
c ), that confine

the domain of existence for the unstable modes,

(k(±)
c )2 = 1 +

1
2

(
Deσ

2C(0)±

±
{
Deσ

2C(0)(4 +Deσ
2C(0))−

−4(ε̃+De −Deσ
2|∇2C(|r|)|r=0)

}1/2)
. (12)

For such values of wave numbers, the gain factor R(k) =
−k2ω(k) equals zero. The maximum of the function
R(k) is attained at k = km, where

(km)2 =
2
3

+
1
3

(
Deσ

2C(0)±

±
{

1 +Deσ
2C(0)(4 +Deσ

2C(0))−

−3(ε̃+De −Deσ
2|∇2C(|r|)|r=0)

}1/2)
. (13)

At high temperatures and a fixed De-value, the critical
value of σ2 increases, whereas the growth of De stimu-
lates the ordering at a lower noise intensity σ2.

The dynamics of the structure factor obtained as a so-
lution of Eq. (9) is depicted in Fig. 1. The figure demon-
strates that, as the time grows, the position of the main
S(k, t) peak is shifted to the wave number k = k0, which
corresponds to the period of emerging structures. The
peak height increases at that, which testifies that the
ordering in the system becomes stronger.

3.2. Modeling of microstructural
transformations

Let us analyze a variation of the behavior of the system,
when the grown crystal is first subjected to the irradi-
ation within a definite time interval so that the defects
emerge in its crystalline structure and, afterward, to the
annealing. Such a procedure was simulated numerically.
For this purpose, we found a numerical solution for the
Langevin equation (8) on a two-dimensional square mesh
of the dimension L = N`, where N = 256 is the number
of nodes and ` = 1, with periodic boundary conditions.
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Fig. 1. Dynamics of the structure factor averaged over the sphere
in a vicinity of x0 = 0.3 at De = 0.8, θ = 0.7, σ2 = 1.0, and rc = 1

At the stage of crystal growth from the liquid phase, the
initial conditions were selected as follows: 〈x(r, t)〉 = 0.3
and 〈(δx)2〉 = 0.1. All results were obtained at θ = 0.7
and rc = 0.65.

A typical scenario of the formation of a crystal from
the liquid phase is shown in Fig. 2. Crystallites grow
from the crystal phase nuclei distributed over the whole
specimen, until they match one another. After the whole
system becomes filled with the hexagonal phase, the sub-
sequent evolution continues through the motion of grain
boundaries. When the basic structure is formed, the
“atoms” (dark circles) become redistributed in such a
way that the emerging configuration should have the
smallest number of defects by tending to the minimum
energy of the whole object. A characteristic dimension-
less time of crystal growth was t = 2 × 104, which cor-
responded to a transition to the stationary mode and a
reconstruction of the atomic configuration accompanied
by a reduction of the defect number. In what follows,
this object will be subjected to the irradiation with var-
ious De and σ2. The main task at the next stage will be
the study of the defect number dynamics and the fea-
tures of the microstructure reorganization at irradiation
and recrystallization.

First, let us consider the basic scenarios of microstruc-
tural changes in the initial crystalline specimen at its
irradiation. The patterns shown in the first column of
Fig. 3,a illustrate the influence of the regular compo-
nent of the athermic mixing flux (σ2 = 0). One can

t=0 t=20

t=200 t=20000

Fig. 2. Patterns of the evolution of the system at the stage of
crystal growth at θ = 0.7

see that the defects segregated at grain boundaries melt
as the time increases. Accordingly, the most resistant
structures, which correspond to a perfect configuration
with hexagonal symmetry, survive. At the final stage
and for small De-values, there remain crystallites with
a perfect structure imbedded into the disordered phase,
in which the atomic density is smeared over all atomic
positions. This means that, in our model, the passage of
continuous cascades stimulates the melting in those re-
gions, where the energy is higher than that contained in
ideal crystalline ones. The dimensionless time of irradi-
ation was t = 103, which corresponded to the realization
of a stationary structure. In effect, this scenario char-
acterizes, in general, the evolution of extra (radiation-
induced) diffusion processes, when the defects become
mobile. At the same time, the structures with a con-
siderable number of defects are unstable with respect
to such perturbations. From the definition of effective
control parameter (11), it follows that the influence of
the regular component of the athermic mixing flux el-
evates the effective temperature and shifts the system
into the liquid phase region or into the region, where the
crystalline and liquid phases coexist. For large De, the
effective temperature becomes so high that the initial
crystalline system already falls within the region of the
liquid (melt) phase.
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a b c

Fig. 3. Patterns of the evolution of the system at the irradiation and recrystallization stages. The first columns in panels a to c

correspond to the irradiation process with the parameters De = 0.35, σ2 = 0.0 (a); De = 0.475, σ2 = 0.3 (b); and De = 0.55, σ2 = 0.3

(c). The second columns illustrate the evolution of the system at the recrystallization in the corresponding irradiated structures

Now, let our system be subjected to the recrystalliza-
tion (see column 2 in Fig. 3,a). Provided that the last
configuration is selected as the initial one at this stage
and putting De = 0, the corresponding crystallization
processes will proceed from available crystallites. Here,
the wave of atomic perturbations will extend uniformly
along all possible directions in such a manner that atoms,
by arranging themselves to the main crystallite, will pro-
mote the formation of a perfect grain structure. The
number of initial crystallites at the recrystallization can
vary depending on the De-value. Therefore, the total
number of defects that survive at the final stage of this
process can also undergo changes.

More interesting is the stochastic case where the irra-
diation occurs in the presence of athermic flux fluctua-
tions (σ2 6= 0). Here, depending on the ratio between
the regular and stochastic components of this flux, the
structures of two types are possible in the stationary
regime. The regular and stochastic components of the
flux Je compete for a modification of the effective tem-
perature (see Eq. (11)). Therefore, for instance, if the
intensity σ2 is fixed, and the De-value is small, the ex-
ternal noise will counteract the melting of crystalline re-
gions. In this case, the atomic density decreases locally,
but the geometrical structure remains almost invariable.
At elevated De-values (see column 1 in Fig. 3,b), the ac-

tion of noise in the melted regions in a vicinity of the
grain boundaries stimulates the ordering with the for-
mation of linear structures (stripes), in which the atomic
density, although being distributed periodically in accor-
dance with the arrangement of atomic planes, is smeared
in those planes. In other words, atoms wander over
atomic planes in the emerged structure. If the De-value
increases further (see column 1 in Fig. 3,c), the crys-
talline system melts owing to the action of the regular
component of the flux Je. Simultaneously, it gets struc-
turized and forms stripes due to the correlation effects of
the stochastic source. Hence, such a character of the ir-
radiation promotes the knocking-out of atoms from their
positions and makes them wandering over atomic planes.
On the other hand, if the external noise intensity is in-
creased at a fixed De-value, the system turns out in the
domain of existence for stationary structures of the linear
type. Similar effects were observed at the Monte-Carlo
atomic simulation, when crystallites imbedded into the
melted regions coexisted with a configuration with the
atomic density smeared over the atomic planes [42–44].

The stochastic and deterministic cases of the recrystal-
lization in the irradiated system differ from each other.
Really, in the former case, not only the crystallites with
a lower symmetry, but also the structures with a higher
symmetry must be rearranged to match genuine crys-
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talline ones. This process is rather long. However, after
its termination, every linear structure starts to detach
its atoms one-by-one, which expands the region occupied
by crystallites. The scenario of such a recrystallization
is depicted in columns 2 of Figs. 3,b and c. In the case
where the system is mainly in the hexagonal phase (col-
umn 2 in Fig. 3,b), a redistribution of the atomic density
over the crystal configuration takes place firstly in order
to reduce the defect number and to form a perfect crys-
talline structure. Then the detachment of atoms from
linear structures occurs (local cooling of atoms wander-
ing over the planes). In the case shown in column 2
of Fig. 3,c, the linear structures with defects have to
be redistributed in such a way that they should occupy
positions compatible with the atomic plane directions.
After that, the formation of crystallites may take place
depending on the ratio between the system fractions in
the hexagonal and stripe phases.

To make a quantitative analysis of the order-
ing/disordering processes, let us trace the behavior of the
second statistical moment J(t) = N−2〈

∑
r x

2
r〉, which

plays the role of order parameter in systems with con-
served dynamics and which is known as the convective
flux in the theory of structure formation [19]. Gener-
ally speaking, for the systems with conserved and non-
conserved dynamics, it is known that the growth of this
parameter in time testifies that the ordering processes
run in the system. In Fig. 4, the dynamics of the order
parameter at various stages is presented. Stage I cor-
responds to the crystal growing, stage II to irradiation
under various conditions, and stage III to the recrystal-
lization in the system. As one can see, if σ2 = 0 (the

solid curve), the switch-on of the athermic flux results
in a reduction of the order parameter, and if irradiation
is switched off (stage III), the system quickly relaxes
to the stationary value of order parameter, which was
observed at the crystal growing. In the stochastic case
(the dashed curve) and at a fixed De, the order param-
eter falls down to a stationary value that exceeds the
value reached in the deterministic case. This fact tes-
tifies that the external fluctuations support the ordered
state owing to their correlated actions. If the parameter
De increases (the dash-dotted curve) and if the inten-
sity σ2 remains constant, the system melts at the initial
stage of irradiation, whereas noise favors the ordering by
raising the value of 〈x2〉 at late stages. At large De’s, the
correlation properties of the external noise support the
ordering in the system; nevertheless, the system becomes
disordered in the sense that the crystal becomes reorga-
nized into a structure of linear objects. In the course of
crystallization, the restoration of a crystalline configura-
tion in the irradiated system at large De’s proceeds in
such a manner that the order parameter does not reach
its stationary value corresponding to the grown crystal.
Hence, the introduction of additional perturbations into
the initial configuration can promote the emergence of
spatial structures of other types at the recrystallization.
This effect can evidently be associated with a correlated
mixing of the system, when the processes of interaction
induced by noise in the atomic system, the redistribu-
tion of defects, and the variation of their number begin
to play a dominant role.

As follows from the simulation results, the character of
ordering in the irradiated system substantially depends
on the irradiation conditions. Accordingly, the type of
defects and their number at the recrystallization can
change. It should be noted that the 〈x2〉-value, which is
proportional to the area under the structure factor, is an
integrated characteristic and cannot serve as an indica-
tor of microstructural changes in the crystal. Therefore,
we will study the geometry of obtained structures by
calculating the number of defects, their evolution, and
the characteristics of disordered configurations. In the
framework of the formalism used below, we distinguish
two types of defects, point-like defects (stacking faults)
in a crystalline system with the hexagonal symmetry and
linear defects (dislocations) in a system of linear struc-
tures.

In the case where the system recrystallizes into the
hexagonal phase, let us determine the stacking faults
following the algorithm developed for studying the two-
dimensional systems, which were simulated with the use
of molecular dynamics methods [45]. In the framework of
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Fig. 5. Patterns illustrating the structure imperfection in the irradiated system at its recrystallization from the initial configuration
shown to the left. The upper row corresponds to the irradiation at various De and a fixed intensity σ2; the lower one to the irradiation
at various σ2 and a fixed De

this approach, real atoms, which the molecular dynamics
deals with, are replaced by virtual “atoms” of the phase
field crystal method. At the same time, the hexagonal
symmetry is studied similarly. The major steps of this
method are as follows. The local crystalline order can
be described in terms of the orientation of hexagons,
the vertices of which correspond to the maxima of the
atomic density x(r, t). Then the orientation angle for the
j-th atom, αj ∈ [0, π/3], is determined from the relation
Ψj =

∑
k∈nn(j) exp[6iθjk] = |Ψj |e6iαj . Two atoms are

neighbors, if |rj − rk| < 1.25ν, where ν is the position
of the first peak of the two-particle correlation function,
and θi is the angle between the corresponding vector
rj − rk and the x-axis. The disorder degree for the j-th
atom is determined by the formula

Dj = 2
∑

k∈nn(j)

[1− cos 6(αi − αk)].

The quantity Dj is usually plotted in color, which al-
lows the imperfection of a crystal structure geometry to
be estimated visually. In our case, we plotted it on the
gray scale: white circles correspond to the perfect geom-
etry of the hexagonal phase, and black ones mark the
most defect structures, when the number of the nearest
neighbors for the j-th atom substantially differs from
six. The black circles form grain boundaries. A typi-

cal pattern that illustrates a local disorder after the re-
crystallization is shown in Fig. 5. Here, circles stand
for atoms (points with the maximum atomic density),
and their colors correspond to the value of local disorder
parameter for every atom. The pattern for the initial
crystal is depicted to the left. The indicated parame-
ters inform about irradiation conditions. The upper row,
which corresponds to the case σ2 = 0 and various De-
values, makes it evident that the more melted was the
initial crystal at the final stage of recrystallization, and
the larger grains are obtained, which agrees well with
the results of recrystallization theory. In the stochastic
irradiation case with De = 0.3, the growth of noise in a
definite interval can stimulate the segregation of defects
at grain boundaries.

This procedure was used to calculate the number of
defects, the latter being interpreted as atoms participat-
ing in the formation of stacking faults such as vacancies,
interstitial atoms, and dislocation cores. The dynamics
of the relative defect number Ndef/Natom, where Natom

is the total number of atoms (peaks in the atomic den-
sity), calculated for the recrystallization in the irradi-
ated system with σ2 = 0 is plotted in Fig. 6,a. One can
see that, as the time grows, the number of defects falls
down to a certain stationary value. Such a scenario is
typical, when the recrystallization after the passage of
cascades is simulated with the use of molecular dynam-
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ics methods [46, 47]. From Fig. 6,a, one can see that the
number of defects remains constant at small De-values,
when the specimen is not changed practically under the
weak action of radiation. However, when De increases,
a considerable amount of defects (approximately 75%
of the number of atoms) emerges. Their number falls
down firstly following the power law t−δ with δ ≈ 0.2,
then – within diffusion time intervals – logarithmically
slowly. In Fig. 6,b, the dependence of the number of de-
fects that survived after the recrystallization (in the sta-
tionary case) on the intensity De is exhibited, and some
patterns of the imperfect geometry in typical structures
are illustrated. From this figure, one can see that, if the
intensity De grows from the zero value, which is charac-
teristic of the non-irradiated system, c number of defects

gradually diminishes. Since the growth of De leads to an
elevation of the effective temperature, such a behavior of
Ndef means a reduction in the number of defects (grain
coarsening) when the heated system recrystallizes. This
is accompanied by a redistribution of atoms and a reduc-
tion of the crystal energy. At the characteristic values
of ballistic mixing intensity, there are two peaks in the
dependence Ndef(De). They actually correspond to the
“phase” transition points for an equilibrium system, the
effective temperature of which equals θeff = θ+De. The
critical De-values lie along the curves in the equilibrium
phase diagram θeff(x0) that bound the domain of exis-
tence of the hexagonal phase. In such a sense, the sta-
tionary dependence Ndef(De) plays the role of effective
geometrical susceptibility for the processes of structure
formation in systems described by the phase field crystal
theory.

In the case of irradiation and a stochastic source, the
competition between the regular and stochastic compo-
nents of the athermic flux results in that, if either De is
small or De is large and σ2 is small, the system trans-
forms, after the recrystallization, into the state with the
hexagonal phase. In this case, the proposed formalism
for the determination of point defects can be applied.
The corresponding time dependence of the defect num-
ber is depicted in Fig. 7, where the behavior of Ndef is
similar to that obtained in the deterministic case. Here,
on the contrary, the number of defects does not dimin-
ish at analogous De-values, e.g., at De = 0.4. This fact
is associated with the maintenance of the initial crys-
talline structure under the irradiation by the noise so
that the number of defects practically is not changed in
this case.
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In the case where the noise intensity is comparable
with the De-value or exceeds it, the system microstruc-
ture changes. Stripes (linear structures) rather than
the hexagonal phase are realized. In this case, the in-
dicated procedure for determination of defects cannot
be applied, because the atomic density is smeared over
the atomic planes. Defects, which can be researched in
this case, include dislocations, disclinations, and grain
boundaries. In our case, we did not observe grain bound-
aries, and disclinations comprised less than 1% of the
total defect number. Therefore, in what follows, we con-
centrated our attention to studying the linear defects.

While studying the dislocations, let us take advan-
tage of the approach developed for the analysis of de-
fects in nematics [48]. Here, the nematic order param-
eter Qαβ = Q0

[
n̂αn̂β − 1

2δαβ
]
, where n̂(r) = ∇x(r)

|∇x(r)|
is the aligning field (the director), is one of the order-
ing criteria. In particular, the quantity cos(2θ), where
n̂ = (cos(θ), sin(θ)), plays the role of order parameter for
two-dimensional systems. This means that there exists a
certain vector order parameter B̂ defined by the expres-
sions B̂x = n̂2

x − n̂2
y and B̂y = 2n̂xn̂y. We will assume

below that all defects are formed from ± 1
2 -disclinations

in the aligning field n̂, which transform into “vortices”
of charge ±1 in the field B̂. For the defect identifica-
tion, let us define the cores of vortices by the formula
A =

∑
α,β(∇αBβ)2. Within the defect region, the pa-

rameter B̂ changes drastically. Therefore, the location of
a defect is determined from the condition that A exceeds
a definite value. We can also express A in the form

A =
∑
α,β

(∇αnβ)2 = (∇αϕ)2,

where ϕ(r, t) = 2θ(r, t) and θ(r) = arctan
(
n̂y(r)
n̂x(r)

)
.

The nematic order parameter Qαβ is completely deter-
mined by the angle ϕ(r) = 2θ(r). Hence, knowing the
derivative ∇ϕ(r) and calculating the indicator quantity
A(r) = |∇ϕ(r)|2, we can reveal such defects as disloca-
tions, disclinations, and grain boundaries.

The procedure is based on the fact that the field ϕ(r)
changes quickly in the defect (dislocation, disclination,
or grain boundary) regions and slowly outside them.
Therefore, defects or some part of the grain boundary
are located at points, where ϕ(r) varies more intensively.
On the contrary, in the region beyond defects, A(r) ≈ 0.
In a vicinity of the defect, this quantity grows drastically.
The described algorithm helps us to find regions, where
the director field changes substantially. Hence, the state
of a system and the presence of grains and defects in it
can be determined at an arbitrary moment.
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The application of the described formalism allowed us
to estimate the number of dislocations and to determine
their motion. In Fig. 8, the variation dynamics for the
dislocation number Ndis, the trajectories of dislocation
cores moving in the two-dimensional space, and typical
stationary linear structures are exhibited. The behav-
ior of the dislocation number parameter testifies that
it slightly increases as the recrystallization begins, ow-
ing to the structure reorganization to the most optimum
one possessing a lower elastic energy. Somewhat later,
when the recrystallization terminates, the dislocations
move and redistribute the accumulated elastic energy
by annihilating with dislocations of the opposite charge.
Within large time intervals, the dislocations slow down,
and their number remains invariable. Hence, a system
with the structure reorganized due to the action of ir-
radiation may remain with a smaller number of defects,
but its structure may not coincide with that in the initial
non-irradiated crystal.

The presented procedure of defect detection allows
one to obtain the stationary dependence of the defect
number on the ballistic diffusion coefficient De in the
stochastic case. The corresponding result is exposed in
Fig. 9. It is evident from the figure that, in this case,
similarly to what took place under the condition σ2 = 0
(see Fig. 6,b), there are two critical values of intensityDe.
However, in contrast to the case of a deterministic sys-
tem, no peaks can be detected now in the defect-number
dependence, because the peaks correspond to the coex-
istence of stripes and the hexagonal phase. However,
it is of importance that the phase of linear objects is
realized in the range of critical De-values. Hence, the
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correlation properties of external noise and its compe-
tition with the regular component of the ballistic flux
substantially affect the changes in the microstructure of
crystalline systems and stimulate a structural transfor-
mation in them with the emergence of a stationary struc-
ture that considerably differs from the structure in the
initial crystal.

4. Discussion

The results of our research demonstrate that the hexag-
onal structure of an initial crystal with stacking faults
can undergo modifications owing to the action of the
athermic flux. In this case, the spatial distribution of
the atomic density may correspond to metastable struc-
tures (mixed structures or stripes), which relax into their
“equilibrium” configurations (the hexagonal phase) after
this flux having been switched off. For the system to
transit from the metastable state into the most energeti-
cally favorable one, which corresponds to the global min-
imum of the free energy functional F [x], thermal fluctu-
ations ξ are needed, which would provide such a transi-
tion. Provided that the intensity of such fluctuations is
sufficiently high, the transition may be realized within a
short time interval. It is this scenario that is observed
at a weak external noise, irrespective of the De inten-
sity value (small or large). However, if the internal noise
intensity ξ is low, the time needed for such a transition
to terminate may grow substantially. This circumstance
is connected with the depth of a local minimum of the
functional F [x] and the character of the interaction be-
tween atoms driven by an external influence. When lin-

ear structures (stripes) are formed, in which the atomic
densities of neighbor atoms overlap, the corresponding
atoms become bound much more strongly in compari-
son with atoms in the hexagonal phase. Therefore, for
the stripe configuration to be able to transform into the
initial hexagonal phase, the system must be heated up
substantially by elevating its temperature θ (and the in-
tensity of internal fluctuations, which is proportional to
θ). In our case, the evolution of the system was ob-
served only after the athermic flux had been switched
off, whereas the temperature did not change. Therefore,
although the linear structures obtained at a weak inter-
nal noise are stationary, they correspond to a metastable
phase (to a local minimum in the free energy functional).
Evidently, if we heat the system by raising θ and then
cool it down to the initial temperature, we should obtain
the initial hexagonal structure of the crystal.

An important issue for the interpretation of the phase
with linear structures is their physical meaning. From
the results of our research, it follows that the atomic den-
sity in them is smeared over the atomic planes separated
by the interatomic distance a. To elucidate the phys-
ical picture of their formation, the three-dimensional
case should be analyzed, in which the bcc structure is
a counterpart of the two-dimensional hexagonal phase.
Then, since the distance between the nearest neighbors
in the bcc structure amounts to a

√
3/2, atoms have

the largest overlapping of their atomic densities in the
[111] direction, whereas they are separated by the dis-
tance a in other directions, so that atomic planes are
formed. Hence, the two-dimensional stripes correspond,
in effect, to the overlapping of atomic densities in the
[111] direction of the three-dimensional system. Actu-
ally, it is associated with the correlation noise contri-
bution Deσ

2C(0)∇2x, which enlarges the radius of the
interaction between atoms. For instance, if we change
to the effective flux Jeff = −∇δFeff [x]/δx, which makes
allowance for both the thermally induced and athermic
fluxes, we can write down the functional of effective free
energy for the whole system in the form

Fef [x] =
∫

dr
(

1
2
xε̂(∇2)x+

x4

4
+
Deσ

2C(0)
2

(∇x)2
)
,

where ε̂(∇2) ≡ εeff + L(∇2), εeff looks like Eq. (11),
and L(∇2) defines the crystalline order. By analogy
with the Cahn–Hillard theory, the effective radius of the
spatial interaction caused by the action of an external
source is characterized by the component proportional
to
√
Deσ2C(0). Hence, the external noise favors the in-

crease of the atom-to-atom interaction radius, thus pro-
moting the overlapping between the atomic densities in
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the [111] direction. In such a case, the hexagonal two-
dimensional structures are a projection of the bcc crystal
cross-section by the (111) plane onto the (000) one – in
our case, it is the (x, y) plane – whereas stripes corre-
spond to c projection of the atomic density smeared in
the [111] direction onto this plane.

5. Conclusions

In the framework of the phase field crystal method,
the simulation of processes leading to microstructural
changes in crystalline systems under irradiation, which
are associated with a contribution of a stochastic ather-
mic mixing flux, has been carried out. It is found that, in
the course of irradiation, the crystalline structure melts
at defects belonging to the grain boundaries. At the
same time, the correlated action of the stochastic com-
ponent of the ballistic flux competes with the regular
component and promotes the retention of the ordered
configuration in the crystal. The study of the recrystal-
lization that takes place after the irradiation has showed
that the excited system transforms into a steady state
characterized by a small number of point-like and lin-
ear defects. It is found that, in the stationary regime,
the noise of an external flux can induce the formation of
periodic atomic density distributions in space, with the
atomic density being smeared over the atomic planes in
the dense packing direction. Such structures, although
being metastable, are stationary owing to the strong in-
teraction between atoms with overlapped densities. The
transition into the initial equilibrium crystalline configu-
ration becomes possible only provided that the temper-
ature of the system is elevated.
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МОДЕЛЮВАННЯ ЗМIНИ МIКРОСТРУКТУРИ
ОПРОМIНЮВАНИХ СИСТЕМ МЕТОДОМ
ФАЗОВОГО ПОЛЯ КРИСТАЛA

Д.О. Харченко, В.О. Харченко, С.В. Кохан, I.О. Лисенко

Р е з ю м е

Проведено дослiдження змiни мiкроструктури систем, пiдда-
них дiї балiстичного потоку, що описує формування структур-
ного безладу при опромiненнi iз використанням методу фазо-
вого поля кристала. Виявлено, що внаслiдок конкуренцiї регу-
лярної та стохастичної компонент балiстичного потоку в си-
стемi можливе формування структур з розмитими атомни-
ми густинами. Проведено дослiдження динамiки дефектiв при
рекристалiзацiї такої системи та встановлено характер змiни
кiлькостi дефектiв залежно вiд статистичних властивостей ба-
лiстичного потоку. Встановлено, що при рекристалiзацiї про-
сторовi структури, сформованi пiд час дiї такого потоку, є ста-
цiонарними i стiйкими до термiчних флуктуацiй малої iнтен-
сивностi.
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