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A possibility of the two-photon excitation of an isomeric state in
a nucleus of thorium-229 has been discussed. The fluorescence in-
tensity of the excitation is demonstrated to be identical for the
irradiation of nuclei with either monochromatic light or polychro-
matic radiation consisting of a sequence of short light pulses of
the same intensity. The two-photon excitation of Th3+ ion in an
electromagnetic trap with a focused laser beam with a wavelength
of about 320 nm and power of 100 mW can lead to the absorption
saturation, at which the fluorescence emission with the frequency
of the transition in a nucleus is maximal. In crystals doped with
Th4+ to a concentration of about 1018 cm−3 and irradiated with
a laser radiation 10 W in power, the emission of several photons
per second with a wavelength of about 160 nm becomes possible.

1. Introduction

A permanent interest to works dealing with the creation
of quantum-mechanical frequency standards (atomic
clocks) is stimulated by both the development of funda-
mental science and engineering demands. Modern meth-
ods used for the determination of time unit, a second, are
associated with the cesium atomic frequency standard.
In particular, one second is defined as the duration of
9 192 631 770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the
ground state of a 133Cs atom [1]. The accuracy of the
primary cesium frequency standard based on the cesium

fountain clock was 4× 10−16 [2]. A possibility for atoms
and ions to be cooled down to ultralow temperatures al-
lowed a stability of the order of 10−17 to be obtained
using cold Al+ ions [3]. Atomic standards are of interest
for navigating systems, such as GPS, GLONASS, and
GALILEO, as well as for telecommunication networks.

A promising candidate for the role of reference
quantum-mechanical frequency standard is the isomeric
transition in a 229Th nucleus. This isotope has an ex-
tremely low energy of the isomeric state. According to
the most recent data, it equals 7.8 ± 0.6 eV [4], which
corresponds to a radiation wavelength of about 160 nm.
Progress in the development of the generation of high
laser-radiation harmonics allows the nuclear standard to
be regarded as a real possibility. For instance, in work
[5], radiation with a wavelength of 205 nm was obtained
with the use of the generation of the fourth harmonic of
radiation emitted by a titanium-sapphire laser, which is
close to that required for the implementation of a nuclear
standard. The development of a nuclear standard is also
stimulated by the capability of its application for study-
ing the evolution of the ratio between fundamental con-
stants [6, 7]. It is so because the 229Th-based frequency
standard is supposed to be by several orders of mag-
nitude more sensitive to a possible variation of the hy-
perfine structure constant than the frequency standards
based on the transitions in the electron shell of atoms or
ions. Analogously to their atomic counterparts, nuclear
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clocks, if being realized, could be applied to metrology,
spectroscopy, global navigating systems, and so forth.

It should be noted that, till now, the energy of the
isomeric transition is known only from the analysis of
γ-spectra with energies that considerably exceed the nu-
clear isomeric transition energy. Therefore, it cannot be
considered as ultimately known, until direct measure-
ments of the level have not been carried out. For this
purpose, rather a large number of thorium nuclei must
be excited simultaneously. At the present time, either
thorium ions in traps [8–11] or thorium-doped crystals
transparent in the ultra-violet range [12,13] are proposed
to be used. The advantage of traps consists in the pos-
sibility of a better control over the fields that act on
thorium ions. At the same time, crystals allow a much
larger number of nuclei to be engaged simultaneously
than those in traps.

Instead of using the radiation with a frequency close
to that of the transition in a nucleus, the latter can be
excited with the use of two- or multiphoton processes.
The choice of that or another excitation way depends on
the parameters of available laser radiation sources, such
as the intensity, spectral width, and generation mode
(pulsed or continuous). Owing to the short wavelength
of radiation needed for the excitation of a nucleus, this
radiation can be obtained by generating the radiation
harmonics of pulsed lasers operating in the visible spec-
tral range. At the repetition frequency of an order of
100 MHz and under single-photon excitation conditions,
only one of the spectral components, which is close to
the frequency of the transition in a nucleus, can expect-
edly stimulate a transition between nuclear states. This
means that, if the radiation emitted by picosecond and
femtosecond lasers and characterized by a considerable
number of spectral components is used as the pumping
one, only a small fraction of the emitted intensity can be
used for the nuclear excitation. At the same time, in the
case of two-photon excitation, almost all spectral com-
ponents (grouped in pairs consisting of the frequencies
locating above and below the transition frequency and at
the same distance from it) stimulate the nuclear excita-
tion. On the other hand, the probability of a two-photon
transition is much lower than that of a single-photon one,
and a possibility to develop a frequency standard on the
basis of a two-photon transition is not so evident.

It should be noted that the two-photon excitation, in
contrast to the single-photon one, is insensitive, to an
accuracy of the squared Doppler effect, to the atomic
velocity, if counter-propagating waves are used, i.e. the
excitation by a standing wave is executed [14]. Really,
if an atom that moves with the velocity v along the z-

axis is excited by a standing wave with the frequency
ω, it is subjected to the action of two monochromatic
waves with the frequencies ω ± kv, where k = 2πω/c,
in the accompanying reference frame. Absorption of two
photons from the counter-propagating waves results in
an increase of the atomic energy by the quantity ~(ω +
kv) + ~(ω − kv) = 2~ω, which is independent of the
atomic velocity.

An interesting method of isomeric transition excita-
tion with the use of two photons was proposed in work
[9]. The cited authors suggested to populate an interme-
diate level in the electron shell of Th+ ion, the energy of
which is well-known, with the help of a laser with nar-
row spectral width. The frequency of the second laser
is scanned near the difference between the predicted fre-
quency of the isomeric transition and the frequency of
the first laser. If this procedure gives rise to the excita-
tion of a level in the ionic electron shell with the energy
close to that of the isomeric transition, this energy can
be transferred to the nucleus. In this case, owing to the
variation in the nucleus state, the position of the ionic
intermediate level also changes, so that the first laser
field ceases to interact with it, and the fluorescence at
the first-laser frequency diminishes. At the same time,
the issue concerning the lifetime of the isomeric state in
the single-charged ion is not clear in detail [15]. Note
that the resonance width for such an excitation is deter-
mined by the lifetime of the intermediate level. There-
fore, the method of two-photon nuclear excitation pro-
posed in work [9] does not give any advantages while
developing a frequency standard, in which a long-term
isomeric state of the nucleus is excited through the ex-
citation of the electron shell, in comparison with that,
where the electron transition in an atom or ion is ex-
cited. However, the method of excitation of a nucleus
into the isomeric state, which was proposed in work [9],
can undoubtedly facilitate the registration of the optical
nuclear transition.

This work is devoted to the analysis of the “direct”
two-photon nuclear transition in a thorium nucleus mak-
ing no allowance for any intermediate levels. Such an
excitation can be carried out, generally speaking, in
any thorium ion. We have considered the excitation of
nuclei with either the monochromatic or polychromatic
field created by a light wave or counter-propagating light
waves. In Section 2, the major spectroscopic character-
istics of thorium are described, which are relevant to the
transition from the ground nuclear state into the excited
one. Section 3 contains basic equations. In Section 4,
we will derive the effective Hamiltonian, which forms a
basis for the description of the time evolution of slowly
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changing, in comparison with the laser radiation period,
components of the probability amplitudes for a state of
the nucleus. The two-photon absorption in a monochro-
matic field is discussed in Section 5, and that in the field
created by a sequence of propagating light pulses in Sec-
tion 6. In Section 7, the two-photon excitation in the
field of sequences of counter-propagating light pulses is
considered. In Section 8, the efficiency of the two-photon
excitation is evaluated and discussed. In Conclusions,
the results obtained in this work are summarized.

2. 229Th Isomer

229Th isotope is α-active with a half-life period of
7340 year [16]. In Figure, the available spectroscopic
information concerning the magnetic dipole (M1) tran-
sition between the first excited level Ie = 3/2 and the
ground state level Ig = 5/2 in a 229Th nucleus is sum-
marized.

Each of two levels with the total momentum Ii (Ig =
5/2 and Ie = 3/2) splits into 2Ii + 1 sublevels described
by the magnetic quantum number m = −Ii,−Ii +
1, . . . Ii−1, Ii. If the nucleus is subjected to the action of
a constant magnetic field, those levels have different en-
ergies. In a solid, the nucleus undergoes the influence of
the electric field created by atoms of the environment.
As a result, there arises a quadrupole shift of the nu-
cleus energy, which depends on m. Let the nucleus be
subjected to the action of linearly polarized laser radi-
ation, which can depend on the time; in particular, it
can be a sequence of pulses with period T . Provided
this assumption, it is sufficient to analyze the two-level
model of interaction between the nucleus and the field
to evaluate the efficiency of two-photon excitation.

Among the whole set of transitions between the atomic
or ion states and the nucleus in the ground or excited
state, we consider the transition between the states with
the same orbital moment and spin of electrons in the
ground and excited states. The frequency of this tran-
sition, to an accuracy of corrections associated with the
hyperfine level structure, coincides with that of the tran-
sition between the ground and excited state of a nucleus,
i.e. the reference frequency of optical nuclear frequency
standard. Although the state of electrons remains in-
variable, their presence induces the variation of the to-
tal moment for the system “electron shell + nucleus”,
as well as the g-factor responsible for the Stark shift of
energy levels in the magnetic field. A fourfold-charged
Th4+ ion has a closed electron shell of radon. Figure
illustrates the interaction of this ion with the field. For
Th3+ ion, the ground state is 5F5/2 [11]. As a result,

5/2+ [633]

3/2+ [631]

229Th ground state

229Th isomer

µe = −0.076µN

µg = 0.45µN

Qg =3.15·10−28e·m2

Qe =1.8·10−28e·m2

∆E = 7.8 eV
M1 transition
||µeg|| = 0.65µN

T1/2 = 3300 s

−5/2 −3/2 −1/2 1/2 3/2 5/2m =

−3/2 −1/2 1/2 3/2m =

−
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Ground and first excited states of 229Th nucleus. The levels are
classified according to the Nilsson model [17]. The radiation life-
time of a free nucleus T1/2 = 55 min (the rate of spontaneous
radiation emission γ = 0.00021 s−1) and the reduced matrix ele-

ment of the transition ‖µeg‖ =
√

4π
3
B(M1)(2Ie + 1) = 0.65µN ,

where B(M1) is the reduced probability of decay, were calculated
on the basis of data taken from work [18]. The magnetic moments
of levels in terms of nuclear magneton units and the quadrupole
moment in the ground state, Qg = 3.15×10−28 e ·m2, were taken
from works [19, 20]. The estimate Qe = 1.8× 10−28 e ·m2 for the
quadrupole momentum in the excited state was taken from work
[21]. The arrows indicate probable transitions between magnetic
sublevels in the field of linearly polarized laser radiation. The
Clebsch–Gordan coefficients, which are proportional to the matrix
elements of the magnetic dipole moments of corresponding transi-
tions, are also indicated

there emerges a hyperfine structure of the ground state
with the total moment F = 0, 1, 2, 3, 4, 5 and the excited
state with F = 1, 2, 3, 4. In a magnetic field, each level
of hyperfine structure splits into 2F + 1 sublevels. Ow-
ing to the Zeeman effect, those sublevels are shifted with
respect to their position in the zero field by

ΔE = µBgFmFB, (1)

where B is the magnetic field induction, and µB the Bohr
magneton. The multiplier gF in the case of zero orbital
moment (which is of interest for us) equals

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+

+gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
, (2)
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where I is the nuclear moment, J the angular momentum
of a valence electron, gI = −µi/(µBI) is the nuclear g-
factor, (i = e, g),

gJ = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(ge − 1) (3)

is the electron g-factor, L the orbital moment of elec-
trons, S the spin, and ge = 2.0023 is the g-factor of a free
electron (in the further calculations, we adopt ge = 2).

For Th4+ ion, J = 0 and gF = gI . For Th3+ ion in
the ground state, gF = 3

7 + 1
2gI for every hyperfine sub-

level. For Th3+ ion with the excited nucleus (I = 3
2 ),

similar calculations give, e.g., gF = 15
28 + 3

8gI for the hy-
perfine sublevel with F = 4. Since gI ∼ µN/µB � 1,
the last term can be neglected. Hence, the g-factor for
Th3+ is by three orders of magnitude larger than that
for Th4+. As one can see from what follows, this cir-
cumstance brings about a substantial increase in the ef-
ficiency of two-photon excitation of the thorium nucleus
in Th3+ ion in comparison with Th4+ one.

3. Model of Nucleus Interaction with the Field

In order to estimate the possibility of the direct two-
photon excitation of a thorium nucleus, let us consider
transitions between thorium states characterized by a
definite quantum number m related to the ground and
excited nucleus states. If ions are in a solid matrix, their
energies corresponding to different m-values are differ-
ent owing to the interaction between the ions and the
environment. However, if ions or atoms are in the trap,
we consider that a magnetic field eliminating the degen-
eration with respect to m is applied to them. Therefore,
to analyze the excitation of a nucleus, we may use the
two-level model.

Let the ground state be designated as |g〉, and the ex-
cited one as |e〉. The magnetic dipole transition between
the states of an atom in the ground and excited states
has the constant dipole moments µgg = −µBggm and
µee = −µBgem, where gg and ge are the g-factors for
the ground and excited, respectively, states. The mag-
netic dipole moment of the transition between the states
|g〉 and |e〉 equals µge. Let the atom be subjected to
the action of a field—monochromatic or created by a se-
quence of light pulses—with a carrier frequency ω such
that the value of 2ω is close to the frequency ω0 of the
transition between the states |g〉 and |e〉. Moreover, let
the transition in the nucleus leave the state of atomic
electrons intact. In addition, we suppose that only the
terms responsible for the change in the nucleus state are

essential in the Hamiltonian describing the interaction
between the atom and the field.

The induction of the magnetic field of laser radiation
with the carrier frequency ω, which affects the atom, is
described by the expression

B(t) = B̃(t)e−iωt + B̃(t)∗eiωt. (4)

The probability amplitudes Cg and Ce to find the nu-
cleus in the state |g〉 or |e〉, respectively, vary according
to the Schrödinger equation

i~
∂

∂t
C = HC, (5)

where C is the column vector with the components Cg

and Ce, and the Hamiltonian H looks like

H =
(
−µggB(t) −µgeB(t)
−µegB(t) ~ω0 − µeeB(t)

)
, (6)

where ~ω0 is the energy difference between the states |g〉
and |e〉.

In the general case of a polychromatic field with a nar-
row, in comparison with ω, spectral width, expression
(4) can be interpreted as rapid oscillations with the op-
tical frequency ω and a slowly varying amplitude. For a
monochromatic field, B̃(t) does not depend on the time.
For instance, for a propagating monochromatic wave,

B̃(t) = 1
2B0e

ikz, (7)

and, for a monochromatic field of two counter-
propagating waves (standing wave),

B̃(t) = B0 cos kz, (8)

where k = ω/c, z is the z-coordinate of the atom, and
B0 is the wave amplitude.

If the atom is subjected to the action of the field
created by a sequence of light pulses with the pulse-
repetition period T , the magnetic field induction at the
atom location point can be written down in the form

B(t) = B0

∞∑

n=−∞
an cos [(ω + nΔ) t− knz + ϕn] , (9)

where kn = (ω + nΔ) /c and Δ = 2π/T . The relative
amplitudes of spectral components, an, are normalized
so that the component with n = 0 has the maximum
amplitude a0 = 1.

Comparing Eqs. (4) and (9), one can see that, for the
field of a sequence of propagating light pulses,

B̃ = 1
2B0

∞∑

n=−∞
an exp (−inΔt+ iknz − iϕn) . (10)
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For the field of the counter-propagating sequences of
pulses

B(t) = B0

∞∑

n=−∞
an cos [(ω + nΔ) t− knz + ϕn] +

+B0

∞∑

n=−∞
an cos [(ω + nΔ) t+ knz + ϕn] , (11)

we have

B̃ = B0

∞∑

n=−∞
an cos knz exp (−inΔt− iϕn) . (12)

Here, the reference point for the z-coordinate is chosen so
that, at the point z = 0, the field of a wave propagating
in the negative direction of the z-axis reproduces the
field of the wave propagating in the positive direction of
the z-axis.

4. Effective Hamiltonian

Let us make the substitutions

Cg(t) = cg(t) exp


 iµgg

~

t∫

0

B(t′) dt′


 ,

Ce(t) = ce(t) exp


−Niωt+

iµee

~

t∫

0

B(t′) dt′


 . (13)

in the Schrödinger equation (5). The variation of the
column vector c with the components cg and ce in time
is described by the Schrödinger equation with the Hamil-
tonian

H =
(

0 −µgeB(t)eiΦ(t)

−µegB(t)e−iΦ(t) ~ω0 − 2~ω

)
, (14)

where

Φ(t) = −2ωt+
µee − µgg

~

t∫
B(t′) dt′. (15)

The lower limit of integration is not indicated, because
the proper choice of the time reference point makes the
value of the primitive at this limit equal to zero.

We consider that the characteristic time τ of field am-
plitude variations (e.g., the pulse duration) considerably

exceeds the reciprocal carrier frequency of the field, so
that the inequality

ωτ � 1 (16)

is valid. Then

Φ(t) = −2ωt+
µee − µgg

i~ω

[
B̃(t)∗eiωt − B̃(t)e−iωt

]
. (17)

In particular, for the field of a monochromatic propagat-
ing wave (τ =∞), we obtain

Φ(t) = −2ωt+B0
µee − µgg

~ω
sin(ωt− kz), (18)

whereas, for the monochromatic field of counter-
propagating waves,

Φ(t) = −2ωt+ 2B0
µee − µgg

~ω
cos kz sinωt. (19)

Let us introduce the following functions slowly varying
in time:

β(t) =
B̃(t)µge

~
, α(t) =

B̃(t) (µee − µgg)
~ω

. (20)

Since |α| � 1, the further calculations will be carried
out to an accuracy of the terms linear in α. Substituting
Eqs. (17) and (20) into Hamiltonian (14), we obtain

H =
~
2

(
0 Ω(t) + Ω̃(t)

Ω(t)∗ + Ω̃(t)∗ 2δ

)
. (21)

Here, in the non-diagonal elements, we separated the
terms Ω̃(t) rapidly varying in time with the frequency
ω and the slowly varying terms Ω(t) and introduced the
two-photon detuning δ = ω0 − 2ω. The fast and slow
components of the Rabi frequency equal

Ω = −2α∗β∗,

Ω̃ = −2β∗e−iωt − 2βe−3iωt. (22)

Hereafter, in order to simplify the notation and if it can-
not lead to misunderstanding, we do not indicate the
time dependence of quantities. In expression (22), we
neglected terms with higher orders of smallness with re-
spect to α � 1. At the same time, it should be noticed
that only the nonzero value of α makes the component
of the Rabi frequency that slowly varies in time different
from zero for the two-photon process considered here.

The solution of the Schrödinger equation is sought as
a sum of two terms, slowly and rapidly varying in time

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 11 1123



V.I. ROMANENKO, Ye.G. UDOVITSKAYA, L.P. YATSENKO et al.

with a characteristic time of the order of 2π/ω, for each
of the probability amplitudes,

cn(t) = σn(t) + σ̃n(t), n = g, e, (23)

where the rapidly varying terms are marked by the tilde
sign. We adopt that the average value of rapidly vary-
ing term over the period 2π/ω vanishes. From the
Schrödinger equation, it follows that

iσ̇g + i ˙̃σg = 1
2Ωσe + 1

2 Ω̃σ̃e + 1
2 Ω̃σe + 1

2Ωσ̃e,

iσ̇e + i ˙̃σe = 1
2Ω∗σg + 1

2 Ω̃∗σ̃g + 1
2 Ω̃∗σg + 1

2Ω∗σ̃g+

+δσe + δσ̃e. (24)

The underlined terms rapidly oscillate and vanish after
having been averaged over the oscillation period 2π/ω.
The twice underlined terms consist of products of oscil-
lating multipliers. They can be presented as a sum of a
component that slowly varies in time and an oscillating
component with the averaged value equal to zero. To ex-
clude the rapid motion, let us collect together, into two
groups, rapidly and slowly oscillating terms in Eqs. (24).
The oscillating terms in Eqs. (24) give

i ˙̃σg = 1
2 Ω̃σe,

i ˙̃σe = 1
2 Ω̃∗σg. (25)

Here, we took into account that
∣∣ ˙̃σn(t)

∣∣ ∼ ω |σ̃n(t)|,
ω � (Ω,

∣∣∣Ω̃(t)
∣∣∣ , |δ|), and |σ̃n(t)| � 1. The solution of

Eqs. (24) reads

σ̃g = −
(
β∗

ω
e−iωt +

β

3ω
e−3iωt

)
σe,

σ̃e =
(
β

ω
eiωt +

β∗

3ω
e3iωt

)
σg. (26)

The terms in Eqs. (24) that slowly vary in time bring
about

iσ̇g = 1
2Ωσe +

〈
1
2 Ω̃σ̃e

〉
,

iσ̇e = 1
2Ω∗σg +

〈
1
2 Ω̃∗σ̃g

〉
+ δσe, (27)

where the notation 〈· · · 〉 means the time-averaging over
the interval 2π/ω. After carrying out this averaging, we
obtain

iσ̇g = 1
2Ωσe −

4|β|2
3ω

σg,

iσ̇e = 1
2Ω∗σg +

4|β|2
3ω

σe + δσe. (28)

As a result, we find that the variation of the slow compo-
nents of the probability amplitudes is described by the
Schrödinger equation with the effective Hamiltonian

Heff =
~
2

(
−S Ω
Ω∗ 2δ + S

)
, (29)

where

S =
8|β|2
3ω

=
8|B̃µge|2

3~2ω
,

Ω = −2α∗β∗ = −2
B̃∗2

~2ω
µge(µee − µgg). (30)

As one can see from Eq. (30), the light shift is pro-
portional to the laser radiation intensity. In effect,
this relation was obtained because we have gone be-
yond the rotating wave approximation [23]. The ra-
tio |S/Ω| ∼ |µge/(µee − µgg)| is of the order of 10−3

in the case where the g-factors of the ground and ex-
cited atomic states are determined by the atomic elec-
tron structure, e.g., for a triple-charged thorium ion in
the trap.

5. Two-Photon Interaction of a Nucleus with a
Monochromatic Field

To estimate the rate of nucleus fluorescence under the
influence of monochromatic laser radiation, it is conve-
nient to write down expressions for the Rabi frequency
and the light shift in the case where the nucleus is ex-
cited by the propagating monochromatic wave. From the
expression for the radiation intensity in the SI system,

I =
c

2µ0
B2

0 , (31)

and Eqs. (7) and (30), we obtain

S =
4|µge|2
3~2ωc

µ0I,
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Ω = − µ0I

~2ωc
µge(µee − µgg)e−2ikz. (32)

In the case of monochromatic standing wave, from ex-
pressions (8), (30), and (31), we obtain

S =
16|µge|2
3~2ωc

µ0I cos2 kz,

Ω = −4µ0I

~2ωc
µge(µee − µgg) cos2 kz, (33)

where I is the intensity of either of the counter-
propagating waves.

For an atom or ion moving in the trap, in the case of
a propagating monochromatic wave, the proportionality
of the Rabi frequency to the quantity e−2ikz, in which
z linearly depends on the time, brings about a Doppler
shift of the resonance by the magnitude of 2kv, where v
is the atom velocity. This means that, for narrow reso-
nances to be obtained, it is necessary to cool atoms down
to ultralow temperatures. For two counter-propagating
waves (standing light wave), the multiplier

cos2 kz =
1
2

+
1
4
e2ikz +

1
4
e−2ikz (34)

in expression (33) for the Rabi frequency testifies that
there emerge three resonances, when the atom interacts
with the field; namely, two of them are shifted with re-
spect to the transition frequency by ±2kv, and one res-
onance is located at the transition frequency. Since all
groups of atoms make contribution to the latter reso-
nance, the dependence of the fluorescence intensity on
the detuning δ looks like a wide peak associated with
the Doppler line broadening and a narrow high peak at
its center. This phenomenon serves as a basis for two-
photon spectroscopy [14,24]. Therefore, there is no need
to use ultracold atoms or their localization in a small vol-
ume (the Dicke effect) at the two-photon excitation in
order to reduce a negative influence of the Doppler effect
on the frequency standard functioning.

6. Interaction of a Nucleus with the Field of a
Sequence of Propagating Light Pulses

Let the atom undergo the action of the field of a sequence
of light pulses with the pulse period T . The magnetic
field induction at the point, where the atom is located, is
described by expression (9). The spectrum of this field is
equidistant, with the difference between the frequencies
of spectral components Δ = 2π/T . On the basis of ex-
pressions (10) and (30), it is evident that the light shift

and the Rabi frequency can be expanded in the Fourier
series

S =
∞∑

n=−∞
Sne

inΔt (35)

and

Ω =
∞∑

n=−∞
Ωne

inΔt, (36)

where

Sn =
2|B0µge|2

3~2ω

∞∑

j=−∞
aj−naj×

× exp (iϕj − iϕj−n + ikj−nz − ikjz) (37)

and

Ωn = − B0
2

2~2ω
µge(µee − µgg)

∞∑

j=−∞
an−jaj×

× exp (iϕj + iϕn−j − ikn−jz − ikjz) . (38)

The light shift S and the Rabi frequency Ω include time-
independent terms and terms oscillating with the period
T = 2π/Δ,

S = S0 + S̃, Ω = Ω0 + ˜̃Ω. (39)

We consider the low intensities of laser radiation, for
which |S| � Δ and |Ω| � Δ. Then, by applying the
procedure of averaging over the rapid motion (in this
case, with the frequency Δ), which was described in Sec-
tion 4, it is possible to determine the effective Hamilto-
nian describing the variation of the slow components of
the probability amplitudes σg and σe in time. Similarly
to Eq. (23), we write down the quantities σg and σe as
sums of slowly varying in time and oscillating (marked
by the tilde sign) terms,

σj(t) = bj(t) + b̃j(t), j = g, e. (40)

From the Schrödinger equation with Hamiltonian (29),
it follows that

iḃg + i
˙̃
bg = 1

2Ω0be + 1
2
˜̃Ωb̃e + 1

2
˜̃Ωbe + 1

2Ω0b̃e−

− 1
2S0bg − 1

2 S̃b̃g − 1
2 S̃bg − 1

2S0b̃g,
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iḃe + i
˙̃
be = 1

2Ω∗0bg + 1
2
˜̃Ω∗b̃g + 1

2
˜̃Ω∗bg + 1

2Ω∗0b̃g+

+ 1
2S0be + 1

2 S̃b̃e + 1
2 S̃be + 1

2S0b̃e + δbe + δb̃e. (41)

Here, analogously to the notation in Eq. (24), the un-
derlined terms oscillate and vanish after being averaged
over the oscillation period, whereas the twice underlined
terms consist of products of oscillating multipliers and
can be presented as sums of slow and rapid components.
Equating the rapid terms independently, we obtain

i
˙̃
bg = 1

2
˜̃Ωbe − 1

2 S̃bg,

i
˙̃
be = 1

2
˜̃Ω∗bg + 1

2 S̃be. (42)

Here, we took into account that
∣∣∣ ˙̃bn(t)

∣∣∣ ∼ Δ
∣∣∣b̃n(t)

∣∣∣, Δ�
(Ω0, | ˜̃Ω|, |δ|), and

∣∣∣b̃n(t)
∣∣∣� 1. The solution of Eqs. (42)

looks like

b̃g =
1

2Δ

∞∑

n = −∞
n 6= 0

(Snbg − Ωnbe)
eiΔnt

n
,

b̃e = − 1
2Δ

∞∑

n = −∞
n 6= 0

(
Ω∗−nbg + Snbe

) eiΔnt

n
. (43)

The terms in Eq. (41) that slowly change in time give

iḃg = 1
2Ω0be − 1

2S0bg +
〈

1
2
˜̃Ωb̃e
〉
−
〈

1
2 S̃b̃g

〉
,

iḃe = 1
2Ω∗0bg + 1

2S0be +
〈

1
2
˜̃Ω∗b̃g

〉
+
〈

1
2 S̃b̃e

〉
+ δbe, (44)

where the notation 〈· · · 〉 means the averaging over the
time interval 2π/Δ. From expressions (37), (38), (43),
and (44), one can see that, in the case of two-photon
interaction, the averaged terms are quadratic in the in-
tensity, and they can be neglected. Then the equations
for the slowly varying components of the probability am-
plitudes are as follows:

iḃg = 1
2Ω0be − 1

2Sbg,

iḃe = 1
2Ω∗0bg + 1

2Sbe + δbe, (45)

where

S = S0. (46)

Hence, the variation in time of the slow components
of the probability amplitudes in the case where the nu-
cleus is excited by a sequence of propagating pulses is
described by the Schrödinger equation with the effective
Hamiltonian

Heff =
~
2

(
−S Ω0

Ω∗0 2δ + S

)
, (47)

where S and Ω0 are defined by expressions (46) and (38)
at n = 0, respectively.

For the further calculations, we must select a model for
the field. We assume that the phases ϕn of all spectral
components of the field equal zero, and the amplitudes
are described by the Gaussian distribution

an = exp
(
−n

2

n2
0

)
. (48)

Let n0 � 1, so that the summation in the expressions
given above can be replaced by the integration if the
time t satisfies the condition nΔt � 1. This inequality
means that we do not deal with time intervals far from
light pulses, where the field strength is very low. The
calculation of B̃ gives

B̃ = B0
n0
√
π

2
exp

[
ik0z −

n2
0Δ

2

4

(
t− z

c

)2
]
. (49)

This expression describes the time dependence of the
field created by one of the pulses that follow one another
with period T . As one can see from Eq. (49), the field
created by pulses is described by the Gaussian function
exp

(
−t2/τ2

p

)
, where

τp =
2

Δn0
=

T

πn0
. (50)

The time-averaged intensity of laser radiation is equal to

I =
2c〈|B̃|2〉
µ0

=
n0c
√

2π3

4µ0
B2

0 . (51)

The light shift is determined by the expression

S =
4µ2

geµ0

3~2ωc
I. (52)

The calculation of the Rabi frequency Ω0 gives

Ω0 = −µge(µee − µgg)
~2ωc

µ0Ie
−2ik0z (53)

Expression (52) for the light shift and expression (53)
for the Rabi frequency coincide with the correspond-
ing formulas (32) obtained for the field of a propagating
monochromatic wave.
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The coordinate dependence of the Rabi frequency (53)
for a moving atom testifies, as was indicated in Section 5
in the case of propagating monochromatic waves, to the
Doppler shift of the resonance frequency of the interac-
tion of the nucleus with the field by 2kv. Therefore, in
the case of free atoms or ions, it is necessary to analyze
the interaction of the atom with the field of counter-
propagating pulse sequences, for which the formation of
a narrow resonance is possible, at least under the inter-
action with a monochromatic field.

7. Two-Photon Interaction of a Nucleus with
the Field of Counter-Propagating Sequences
of Light Pulses

From expressions (30) for the light shift and the Rabi
frequency at the two-photon interaction between the nu-
cleus and the field of counter-propagating sequences of
light pulses (see Eqs. (11) and (12)), we obtain

S =
∞∑

n=−∞
Sne

inΔt (54)

and

Ω =
∞∑

n=−∞
Ωne

inΔt, (55)

where

Sn =
8|B0µge|2

3~2ω

∞∑

j=−∞
aj−naj cos kj−nz×

× cos kjz exp (iϕj − iϕj−n) (56)

and

Ωn = −2
B0

2

~2ω
µge(µee − µgg)

∞∑

j=−∞
an−jaj×

× cos kn−jz cos kjz exp (iϕj + iϕn−j) . (57)

As was done in Section 6, we normalize the relative am-
plitudes of spectral components an in such a way that
the component with n = 0 has the maximum amplitude
a0 = 1. Carrying out the calculations similar to those
made in Section 6, we determine the effective Hamilto-
nian (47) describing the two-photon interaction between
the atom and the field, where S = S0.

Let us choose the same model of field as that in the
previous section,

an = exp
(
−n

2

n2
0

)
. (58)

For pico- and femtosecond-pulses, which we are inter-
ested in, n0 � 1, and the summation in the expres-
sions given above can be replaced by the integration at
nΔt� 1. The calculation of B̃ gives

B̃ = B0
n0
√
π

2
exp

[
ik0z −

n2
0Δ

2

4

(
t− z

c

)2
]

+

+B0
n0
√
π

2
exp

[
−ik0z −

n2
0Δ

2

4

(
t+

z

c

)2
]

(59)

for two counter-propagating pulses. The whole sequence
of pulses is obtained from Eq. (59) by repeating it with
period T . As is evident from Eq. (59), the field of pulses
is described by the Gaussian function exp

(
−t2/τ2

p

)
,

where τp is determined by expression (50).
The light shift is calculated from Eq. (56) taken at

n = 0 with regard for Eq. (51) as

S0 =
8µ2

geµ0I

3~2ωc

(
1 + e−2z2/l2p cos 2kz

)
, (60)

where lp = cτp, and I is the intensity of either of the
counter-propagating waves. Expression (60) is valid if
the value of Δz/(2πc) is close to an integer. Hence, the
light shift consists of two components; one of them is
constant in space, and the other is modulated with the
spatial period λ = 2π/k0 and has the envelope in the
form of a set of Gaussian curves located in a vicinity
of z = cTn, where n is an integer; here, the counter-
propagating pulses “collide”.

Similar calculations for the Rabi frequency Ω0 in
Eq. (57) give rise to

Ω0 = −2µ0I

~2ωc
µge(µee − µgg)

(
cos 2kz + e−2z2/l2p

)
. (61)

The exponential function in Eq. (61) corresponds to the
spatial overlapping of pulses. The component of Ω0 pro-
portional to cos 2kz is responsible for the formation of
resonances shifted by ±2kv owing to the Doppler effect
in the case of moving atoms or ions. The resonance,
which is independent of the atom velocity, arises owing
to the term with the Gaussian coordinate dependence.
It is connected with a simultaneous absorption of pho-
tons from two counter-propagating pulses. The S0- and
Ω0-quantities averaged over the wavelength equal

〈S0〉 =
8µ2

geµ0I

3~2ωc
(62)
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and

〈Ω0〉 = −2µ0I

~2ωc
µge(µee − µgg)e−2z2/l2p . (63)

It is this value of Rabi frequency averaged over the wave-
length that is responsible for the formation of a narrow
resonance at the frequency equal to half a frequency of
the transition in the nucleus.

One can see that the magnitude of Rabi frequency av-
eraged over the wavelength is described by a Gaussian
with the maximum located at the point where the pulses
“collide”. Whence, it follows that, for the atoms to effec-
tively interact with the field, they must be localized in a
volume with the linear dimension along the direction of
pulse propagation of an order of lp. For instance, it can
be a cell filled with a thorium-containing gas, or atoms
can be localized in an optical trap. Two-photon excita-
tion of nuclei with a sequence of laser pulses is effective
as much as that using a monochromatic field, because all
spectral field components are engaged at that. For ex-
ample, in the resonance case 2ω = ω0, the pairs (n,−n)
of spectral components participate in the formation of
the two-photon transition.

8. Discussion of Results

Let us estimate the expected fluorescence of a specimen
in the framework of the two-level model of interaction
between the nucleus and the laser radiation field. Pro-
vided that the rate of relaxation of level populations is
equal to γ (we assume that the relaxation occurs owing
to the spontaneous radiation emission from the excited
state), and their coherence equals γ′, the stationary pop-
ulation of the excited state amounts to

ρ22 =
1
2

|Ω0|2γ′
|Ω0|2γ′ + γ (γ′2 + (δ + S)2)

, (64)

where δ is the detuning from the two-photon resonance.
For a free atom or ion in the field of laser radiation,
γ′ = 1

2 (γ + γL), where γL is the diffusion coefficient
for the laser radiation phase [26], i.e. the width of the
laser spectrum in the case of monochromatic radiation.
From Eq. (64), taking into account that γ � γL, one
can see that, for the absorption to saturate at the reso-
nance, δ+S = 0, the condition |Ω0| > √γγL ∼ 0.03 s−1

must be satisfied. For instance, if γL/2π ≈ 1 Hz, it is
obeyed at |Ω0| ≈ 0.03 s−1, and, if γL/2π ≈ 100 Hz,
at |Ω0| > 0.3 s−1. The number of photons emitted at
the absorption saturation reaches the maximum value of
γ/2 ∼ 0.0001 s−1 per each nucleus on the average.

Since the nucleus spin changes from 5/2 to 3/2 at the
excitation of the nucleus, the hyperfine structure of en-
ergy levels of an atom or ion with the nucleus in the
isomeric state also changes. As a result, there emerges
a possibility of detecting the excited nucleus with the
help of optical laser radiation with the frequency tuned
to one of the transition frequencies between hyperfine
levels. Since the linewidths Γ’s for the corresponding
electron transitions are of the order of 107 s−1, the exci-
tation of each nucleus stimulates the emission of about
107 photons during a second. The implementation of this
registration setup requires that atoms or ions should be
excited simultaneously from all sublevels of the hyper-
fine structure of the ground electron state of an atom or
ion with the isomeric nucleus in order to prohibit atoms
or ions to be accumulated on one of them when the tran-
sition from the excited state into the ground one takes
place in the course of spontaneous radiation emission.

Let us evaluate the Rabi frequency at the two-photon
excitation of Th3+ ion. Its ground state has six hyper-
fine components with the total moment F ranging from
0 to 5, and the ground state of the electron shell of an ion
with the excited nucleus has four hyperfine components
with the F -values ranging from 1 to 4. From expres-
sions (32), (53), and (63), one can see that the Rabi
frequency is maximal, if the product (µee − µgg)µeg is
maximal. This condition is satisfied for the transition
between the levels |g〉 = |F = 1,m = 0, I = 5/2〉 and
|e〉 = |F = 1,m = 1, I = 3/2〉. In this case,

µee − µgg =
3
2
µB, (65)

µeg = (−1)Fg+Ie+J−1‖µeg‖
√

2Fg + 1×

×CFeme

Fgmg1q

{
Ig J Fg

Fe 1 Ie

}
= −

√
7
30
‖µeg‖

2
. (66)

For a laser radiation power of 100 mW and provided
that radiation is focused into a spot 1 µm in diameter,
we obtain I = 107 W/cm2, with the Rabi frequency
of the transition, according to Eq. (63), being equal to
Ω0 ≈ 0.07 s−1 and the light shift, according to Eq. (62),
being equal to about 5.3× 10−6 s−1. So a small value of
light shift testifies that the very procedure of recording
the signal from a thorium nucleus inserts, in essence, no
additional error into the results of transition frequency
measurements. The actual accuracy of optical clocks
is governed by other factors, which are not associated
with the thorium excitation; in particular, these are the
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frequency stability of a radiation source and the field in
the trap. The indicated evaluation of the Rabi frequency
testifies to a capability of achieving the absorption satu-
ration at the two-photon transition in a thorium nucleus
by applying moderate-power laser radiation.

In order to enhance the fluorescence signal, it is neces-
sary to increase the number of irradiated thorium nuclei.
A high concentration of thorium nuclei can be achieved
in crystals. In this case, on the one hand, the Rabi
frequency becomes lower by three orders of magnitude,
because thorium is tetravalent in known chemical com-
pounds. On the other hand, however, the number of
thorium ions can be increased by many orders of mag-
nitude. Let us evaluate the number of emitted photons
in this case. In the case of the transition in Th4+, the
expression for the transition dipole moment looks like

µeg =
‖µeg‖√
2Ie + 1

CIeme

Igmg1q, q = me −mg. (67)

For |g〉 = |I = 5/2,m = 3/2〉 and |e〉 = |I = 3/2,m =
3/2〉, we obtain µeg = 1√

15
‖µeg‖. For a laser radiation

power of 100 mW and if radiation is focused into a spot
1 µm in diameter, we obtain I = 107 W/cm2. Such
a radiation intensity cannot guarantee the absorption
saturation. The Rabi frequency Ω0 of the transition, ac-
cording to Eq. (63), is of the order of 1× 10−5 s−1, and
the term containing Ω0 in the denominator of expres-
sion (64) for ρ22 can be neglected.

Let the crystal be illuminated with a laser beam char-
acterized by the spatial intensity distribution

I =
2P
πw2

exp
(
−2r2

w2

)
, (68)

where P is the laser radiation power,

w = w0

√
1 +

z2

b2
, (69)

r is the distance from the point to the beam axis, w0

the minimum beam radius (the minimum distance from
the beam axis, at which the field decreases by a factor
of e), z the coordinate along the beam, b = πw2

0/λ is the
confocal parameter, and λ the wavelength of laser radi-
ation. Let us determine the number of photons emitted
per unit time from the irradiated crystal volume at the
two-photon excitation. Let the concentration of thorium
nuclei in the specimen be n. Then γnρ22 photons are
emitted per unit volume per unit time. Taking the in-
equality Ω0 � γγ′ into account and integrating over the
whole specimen volume, we obtain the total number of

emitted photons per unit time,

F =

∞∫

0

dr 2πr

∞∫

−∞

dz nN =
nπP 2

2λγ′

[
µge(µee − µgg)

~2ωc
µ0

]2
.

(70)

In work [21], while estimating the possibility of the cre-
ation of an optical γ-laser on a LiCaAlF6 crystal with
a thorium impurity, the concentration of the latter was
taken to equal 1018 cm−3, so that Th4+ ions did not
change the crystal structure substantially. For our esti-
mation, we adopt, as was done in the case of free ion,
that γ′ = γL. Then, according to Eq. (70), the specimen
emits 3.6 photons per second if the radiation intensity is
10 W and γL/2π = 1 Hz.

Now, let us evaluate the volume of the active region
in the crystal. For w0 = 10 µm and λ = 320 nm, we
obtain b = 1 mm. Therefore, the crystal volume can
be smaller than 0.1 mm3. Provided that the concen-
tration equals n = 1018 cm−3, such a volume contains
n = 1014 thorium atoms, 400 of which decay every sec-
ond. As a result, additional radiation may be gener-
ated, by depending on the crystal used. For example,
in a CaF2 crystal 25 mm3 in dimension, every α-decay
of 241Am invoked scintillations (about 40 photons) dur-
ing 10−5 s in the spectral range of 220–400 nm far from
the length of the excited 229Th fluorescence signal [27].
This radiation can be reduced considerably by applying
a thin specimen in order to allow α-particles to leave it
quickly after the decay. In particular, a crystal 1 µm in
thickness on a metal substrate can be used, in which the
fluorescence can be excited with the help of a surface
electromagnetic wave.

9. Conclusions

Our analysis of two-photon optical transitions in a 229Th
nucleus showed that the averaged intensities of a propa-
gating monochromatic wave and the field of a sequence
of short light pulses, which are required for the identi-
cal excitation of nuclei, are equal to each other. The
light shifts in the polychromatic and monochromatic
fields are also identical. Since radiation for the exci-
tation of nuclei (with a wavelength of about 320 nm)
is generated in multiphoton processes, it is easier to
obtain the required intensity of laser radiation from a
pulse sequence rather than from monochromatic radia-
tion. Moreover, the application of two-photon transi-
tions allows the background scattering signal to be re-
duced substantially, because nuclei are excited at a fre-
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quency that is half as high as that for the fluorescence
signal. Another advantage of the pulse excitation con-
sists in a possibility of measuring the frequency of the
nuclear transition, provided that the excitation is car-
ried out with the help of a broadband frequency comb.
While irradiating Th3+ thorium ions in an electromag-
netic trap and at a pumping power of 100 mW, the ab-
sorption saturation at the two-photon transition can be
attained. With regard for the long lifetime of excited
nuclei at their detection, an auxiliary radiation can be
used, which is in resonance with one of the transitions
between the components of the hyperfine structure of
a thorium ion with the isomeric nucleus. This circum-
stance allows the fluorescence signal to be enhanced by
several orders of magnitude. If a 10-W laser radiation is
used to excite Th4+ ions in a solid, several photons per
second can expectedly be emitted with a frequency equal
to that of the optical transition in a thorium-229 nucleus.
Thus, the method proposed here for the creation of ex-
cited isomeric state of thorium-229 on the basis of the
two-photon absorption can be used in both solid-state
optical nuclear clocks and clocks on the basis of ions in
an electromagnetic trap.
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DIRECT TWO-PHOTON EXCITATION OF ISOMERIC TRANSITION

ПРЯМЕ ДВОФОТОННЕ ЗБУДЖЕННЯ IЗОМЕРНОГО
ПЕРЕХОДУ В ЯДРI ТОРIЮ-229

В.I. Романенко, О.Г. Удовицька, Л.П. Яценко,
О.В. Романенко, А.Н. Лiтвiнов, Г.А. Казаков

Р е з ю м е

Розглядається можливiсть двофотонного збудження iзомерно-
го стану в ядрi торiю-229. Показано, що iнтенсивнiсть флуоре-
сценцiї однакова при збудженнi ядер монохроматичним випро-

мiнюванням або полiхроматичним випромiнюванням послiдов-
ностi коротких свiтлових iмпульсiв тiєї ж iнтенсивностi. При
двофотонному збудженнi iона Th3+ в електромагнiтнiй пас-
тцi сфокусованим випромiнюванням лазера з довжиною хвилi
∼ 320 нм i потужнiстю близько 100 мВт можна досягти наси-
чення поглинання, за якого випромiнювання флуоресценцiї з
частотою переходу в ядрi максимальне. В кристалах, допова-
них Th4+ з концентрацiєю близько 1018 см−3, у полi лазерного
випромiнювання потужнiстю 10 Вт можливе випромiнювання
кiлькох фотонiв за секунду з довжиною хвилi ∼ 160 нм.

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 11 1131


