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Relaxation processes in a model system are studied with the use
of a kinetic equation. In a first approximation with respect to the
concentration, an expression for the temperature as a function of
the time has been derived in the spatially uniform case and for
the Maxwell distribution function with a non-uniform energy dis-
tribution over the rotational and translational degrees of freedom.
The relaxation time is shown to decrease, as the difference between
the initial and equilibrium values of average translational kinetic
energy diminishes and the equilibrium temperature grows. The
time of the average translational (rotational) energy relaxation to
the equilibrium value is found to be reciprocal to the square root
of the equilibrium temperature and to the particle concentration.
For the intrinsic moment of inertia, which is equal to the moment
of inertia of a spherical particle with certain effective radius, the
relaxation time is minimal. Relaxation times for some parameters
of particles in the system concerned are calculated.

1. Introduction

Plenty of theoretical researches dealing with non-
equilibrium processes in rarefied systems have been made
since L. Boltzmann had written down his kinetic equa-
tion for the first time. The calculations of transport
coefficients, which are based on a certain model describ-
ing the particle interaction in the medium, comprise the
main task of kinetic theory. However, this task does
not exhaust the role of kinetic theory. Its mathematical
apparatus developed for calculating the transfer and re-
laxation coefficients in the case of rarefied gases allows
the limits for the application of non-equilibrium ther-
modynamics to be established in the case of arbitrary
physical media. For instance, the techniques for solving
of Boltzmann kinetic equation have been well developed
for a weakly rarefied one-atomic gas, when the mean
free path is much shorter than the characteristic size
of the problem. In particular, these are the Chapman–
Enskog [1] and Grad [2] methods, which formed a basis
for the substantiation of non-equilibrium thermodynam-

ics in both its classical variant [3] and various general-
izations [4–6].

In the last decades, the development of the kinetic
theory of molecular gases gave rise to the appearance of
an approach based on the generalized Boltzmann kinetic
equation [7–9]. In this equation, the conventional Boltz-
mann integral is modified to describe a system of par-
ticles, in which the energy is distributed at collisions of
particles not only over the translational degrees of free-
dom, but also over the rotational ones. In the framework
of this approach, the system of gas-dynamic equations,
the expressions for the entropy flux, and so forth are
written down.

The development of models capable of an adequate
and, simultaneously, simpler description of transport
processes in a molecular gas at the qualitative level is
a challenging task, which has a pure theoretical value
and is important for the explanation of features experi-
mentally observed in the course of non-equilibrium pro-
cesses. In particular, an extremely important role in
engineering is played by the processes of heat trans-
fer in a gas and the processes of gas relaxation to the
equilibrium state (for example, see work [10]). For in-
stance, while calculating the thermal regimes of flying
vehicles, aircraft turbines, rockets, and so on, the effi-
ciency of energy exchange between gas layers and be-
tween gas molecules and a solid surface is dealt with.
In the general case, the mechanism of heat transfer
in gases is rather complicated. However, from the
microscopic viewpoint, the main problem consists in
the description of molecular scattering at collisions of
molecules with the surface and with one another at
a distance of their mean free path from the surface
(see, e.g., work [11]). As the experience shows, the
classical description of a system under study is suffi-
cient in many cases for the qualitative analysis. For
this purpose, some rather idealized models can be
used.
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Relaxation processes in gases can be described in
terms of the energy exchange at molecular collisions.
In particular, in work [12], the symmetry of the me-
chanical energy of a model system with respect to the
action of a projection operator on the two-body state
vector was used to determine the physical mechanism
of translational and angular momenta exchange at col-
lisions of perfectly rigid rough balls (the classical model
for the collision of two perfectly rigid rough balls from
the viewpoint of the kinematics of intrinsic angular and
translational momenta was proposed by Bryan as early
as in 1894 (see, e.g., works [1, 9])). The described
method allows a relation between the phases of two
model molecules before and after the collision to be
found without characterizing the interaction between
particles with the use of a potential.

In works [13–16], a system with a fixed number of
particles and a model mechanism of exchange of trans-
lational and angular momenta between hard rough balls
at their collision [12] were considered. On the basis of
the dynamics of localized (delta-function-like) distribu-
tions of such particles in the phase space, it was demon-
strated that the kinetic (macroscopic) equation for this
system, when being considered in the Bogolyubov split-
ting approximation in the nine-dimensional phase space,
has the form of the Boltzmann–Enskog equation, which
was derived earlier in a more phenomenological style in
work [1] and considered in the hydrodynamic approxi-
mation in work [9]. The obtained equation was proved
to have a solution in the form of the microscopic phase
density. Hence, in the case of the approximation of bi-
nary collisions, the equation obtained precisely describes
the evolution of a dynamical model system.

Here, we note that the dynamics of a localized distri-
bution of such particles interacting by a certain rule [12]
in the phase space allows the corresponding evolution
equation to be constructed (see work [15]), the struc-
ture of which is similar to that of the Liouville equation.
The equation obtained can be used to construct a hi-
erarchical chain of Bogolyubov equations, similarly to
what was done, e.g., for the distribution functions de-
pendent on the position and the spatial orientation of
long molecules in liquid crystals (see work [17]).

In this work, we prove that, for the model system con-
cerned [12], the kinetic equation for the averaged angular
momentum (or rotational momentum) has an analytical
solution in the spatially uniform case with a Maxwell-
like distribution function, when the energy is distributed
non-uniformly over the degrees of freedom. The obtained
solution is used calculate the relaxation time to the state
of thermodynamic equilibrium.

The Maxwell-like distribution as a tool to describe
the behavior of a system near its equilibrium state was
first proposed by L.D. Landau in work [18] while con-
sidering the problem of temperature equalization in a
two-component plasma. Under definite conditions (see
works [18, 19]), this method allows the relaxation in
the two-component plasma to be described rather suc-
cessfully. However, as can be demonstrated on the
basis of the Chapman–Enskog approach generalized in
work [19] and used there for the consideration of a two-
component plasma, “the traditional idea about a uni-
versal role of the Maxwell distribution in the descrip-
tion of quasi-equilibrium states is not confirmed” (cited
from work [19]). Moreover, as was revealed in work [20],
if the Chapman–Enskog method (see work [1]) is used,
the time-independent quasiequilibrium states of a two-
temperature plasma, generally speaking, are not “pure”
Maxwell ones. It is worth noting here that the exact an-
alytical solution, which is obtained in our work, proves
that the initial excitation given in the form of a Maxwell-
like distribution function with different translational and
rotational “temperatures” and with the preservation of
this form in time can guarantee that the system will re-
turn into a state with identical energy distributions over
the degrees of freedom. However, the issue concerning
the preservation of this Maxwell-like form in time for
the considered case of the collision integral (see works
[13, 15]) requires further researches. A probable much
smaller order of magnitude for quasiequilibrium correc-
tions in the problem dealt with in work [19] testifies in
favor of the model distribution adopted here even in the
case considered in work [21], when there exists an en-
ergy (particle) source with low enough intensity. More
general relaxation properties (such as, e.g., a periodic
energy transfer between rotational and translational de-
grees of freedom) can probably be obtained within the
method developed in work [19]. We should also note
that the examined Maxwell shape of the initial distri-
bution with different translational and rotational “tem-
peratures” can be physically substantiated owing to the
possibility of a “superquick” excitation of the rotational
motion of molecules by an electromagnetic pulse (for in-
stance, a strong enough pulse in the far infra-red region
can be used during the collision time interval, when a
dipole moment of non-polar molecules arises) and to a
relatively small number of “excited” molecules in com-
parison with the molecules that “still” remain in the local
equilibrium state (it is generally adopted and is observed
in rotational and vibrational molecular spectra).

The presented theoretical study of the “relaxation” ki-
netics of a model system can be applied, for example, to
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the description of a sufficiently rarefied system of non-
polar molecules. The results obtained are actual for the
modern branch of researches, where the rarefied systems
of rather heavy molecules and nanoparticles are studied
(e.g., see work [22]). The regularities observed in the
course of non-equilibrium processes, which run in such
systems, differ substantially from those that take place
in an ordinary one-atomic gas [8, 10].

2. Relaxation of a Distribution Function of the
Maxwell Type

Consider a closed, spatially uniform system near its equi-
librium state. Let us study the dependence of the aver-
age energy of translational molecule motion on the time
in the case where the initial average energies of trans-
lational and rotational motions are different (see work
[16]). For this purpose, let us obtain the time derivative
of the average translational energy,

d

dt
〈P 2〉 =

d

dt

∫
f(X, t)P 2dX =

=
∫
P 2 d

dt
f(X, t)dX =

∫
IB(X, t)P 2dX, (1)

where f(X, t) is the distribution function, IB is the

collision integral,
d

dt
f(X, t) = IB(X, t) in the case of

a spatially uniform system, and X =
(
p√
m
,
M√
J

)
=

(P ,M). Here, p andM are the phase translational mo-
mentum and the intrinsic phase rotational momentum,
respectively. For the closed system,

d

dt

(
〈P 2〉+ 〈M2〉

)
= 0. (2)

Therefore,

d

dt
〈P 2〉 = − d

dt
〈M2〉. (3)

Then, by substituting the expression for IB(X, t) in the
form introduced in work [15] into Eq. (1), we obtain

d

dt
〈P 2〉 = − a2

√
m
n×

×
∫ ( ∫

(P ′−P )σ≥0

(P
′
− P )σ

{
b̂(σ)− 1

}
×

×f(X
′
, t)f(X, t)dσdX

′
)
M2dX, (4)

where n is the concentration. The action of the operator
b̂(σ) is governed by the mechanism of scattering of two
perfectly rough hard balls at their collision [12],

b̂(σ) · f(t,X)f(t,X
′
) = f(t,X∗)f(t,X

′∗) ,

where the phases before and after the collision are con-
nected according to the rule

P ∗ =
1

1 + κ

[
κP + P

′
+
√

κ[
(
M +M

′
)
× σ]−

− κσ{(P − P
′
)σ}

]
,

M∗ =
1

1 + κ

[
M − κM

′
+
√

κ[σ ×
(
P − P

′
)
]+

+ κσ{(M +M
′
)σ}

]
,

P
′∗ =

1
1 + κ

[
κP

′
+ P −

√
κ[
(
M +M

′
)
× σ]+

+ κσ{(P − P
′
)σ}

]
,

M
′∗ =

1
1 + κ

[
M
′
− κM +

√
κ[σ ×

(
P − P

′
)
]+

+ κσ{(M +M
′
)σ}

]
. (5)

Here, the unit vector is directed from the center of the
ball with the phase X toward the center of the ball with
the phase X ′, and dσ is an infinitesimally small element
of the solid angle.

Let f(t,X) look like

f(X, t) =
1

(T1T2)3/2π3
e−

P 2
T1
−M2
T2 , (6)

where, for convenience, the doubled Boltzmann constant
is equal to 1 (or the temperature is reckoned in corre-
sponding units). According to the first equation,

3
2
T1(t) = 〈P 2〉, 3

2
T2(t) = 〈M2〉,

which corresponds to three translational and three ro-
tational degrees of freedom. Note that the quantities
T1 and T2 stand for the average translational and rota-
tional, respectively, components of the total mechanical
energy of the system. Strictly speaking, they cannot be
considered as thermodynamic parameters. Then, for the
temperature (in the sense given above) that corresponds
to translational degrees of freedom, we obtain the equa-
tion

3
2
d

dt
T1(t) = − a2

√
m

(
1

(T1T2)3/2π3

)2

n

∫
M2×
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×
( ∫
(P ′−P )σ≥0

(P
′
− P )σ

{
e−

P∗2+P
′∗2

T1 e−
M∗2+M

′∗2
T2 −

−e−
P 2+P

′2
T1 e−

M2+M
′2

T2

}
dσdP

′
dM

′
)
dP dM . (7)

Let us change the order of integration and make the
variable transformations

3
2
d

dt
T1(t) = − a2

√
m

(
1

(T1T2)3/2π3

)2

n×

×
∫ ( ∫

(P ′−P )σ≥0

(P
′
− P )σ

{
M∗2(−σ)−M2

}
×

×e−
P 2+P

′2
T1(t) e

−M2+M
′2

T2(t) dP
′
dM

′
dP dM

)
dσ, (8)

where M∗2(−σ) is expressed by means of relations that
describe the model system of rigid rough balls in the case
of the specular reflection (5) of the two-particle phase
at collisions; here, the notation (−σ) means only the
functional dependence on the unit vector direction.

Let us calculate the integral on the right-hand side of
the expression

I =
∫ ( ∫

(P ′−P )σ≥0

(P
′
− P )σ

{
M∗2(−σ)−M2

}
×

× e−
P 2+P

′2
T1 e−

M2+M
′2

T2 dP
′
dM

′
dP dM

)
dσ =

=
∫ ( ∫

(P ′−P )σ≥0

(P
′
− P )σ e−

P 2+P
′2

T1 e−
M2+M

′2
T2 ×

×
{

1
(1 + κ)2

{
M − κM

′
+
√

κ[−σ,P − P
′
]+

+κσ
(
σ(M +M

′
)
)}2

−M2

}
dP

′
dM

′
dP dM

)
dσ.

(9)

Here, the bracketed comma, [. . . , . . .], denotes the vector
product. After changing to a new Cartesian coordinate

system (ξ,η,σ), in which the axis OZ is parallel to σ,
the integral I reads

1
(1 + κ)2

∫ ( ∫
(P ′−P )σ≥0

dP
′
dM

′
dP dM

(
P
′

σ − Pσ
)
×

×e−
P2
σ+P2

ξ+P2
η+P

′2
σ +P

′2
ξ +P

′2
η

T1 e−
M2
σ+M2

ξ+M2
η+M

′2
σ +M

′2
ξ +M

′2
η

T2 ×

×
{
−(κ2 + 2κ)(M2

ξ +M2
η ) + κ2(M

′2
ξ +M

′2
η )−

−2κ(M
′

ξMξ +M
′

ηMη) + 2
√

κ(Mη − kM
′

η)(Pξ − P
′

ξ)+

+2
√

κ(kM
′

ξ −Mξ)(Pη − P
′

η) + κ(Pξ − P
′

ξ)
2+

+κ(Pη − P
′

η)
2

})
dσ, (10)

where the differential dP = dPσdPξdPη, and so on.
Since the exponent power is an even function, and the
integration is carried out over the whole phase space, the
integrals of terms in the braces with odd powers of the
integration variables equal zero. In addition, the inte-
grals of similar terms in the braces with opposite signs
mutually compensate each other. Then the latter for-
mula can be rewritten in the form

I =
1

(1 + κ)2

∫ ( ∫
(P ′−P )σ≥0

(P
′

σ − Pσ)×

×e−
P2
σ+P2

ξ+P2
η+P

′2
σ +P

′2
ξ +P

′2
η

T1 e−
M2
σ+M2

ξ+M2
η+M

′2
σ +M

′2
ξ +M

′2
η

T2 ×

×
{
−2κ(M2

ξ +M2
η )− 2κ(M

′

ξMξ +M
′

ηMη)+

+κ(Pξ−P
′

ξ)
2 +κ(Pη−P

′

η)
2

}
dP

′
dM

′
dP dM

)
dσ. (11)

Let us introduce new variables (P̃ ,M̃) =
(
P√
T1

,
M√
T2

)
.

Then, with regard for the equality of the integration vari-
ables Pξ, Pη and P

′

ξ , P
′

η (it becomes evident if one re-
moves the parenthesis), the integral I looks, in terms of
new notations, as

I = − 2κ
(1 + κ)2

T
7/2
1 T 3

2

∫ ( ∫
P̃ ′σ−P̃σ≥0

(P̃
′

σ − P̃σ)×
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Fig. 1. Time dependences of the average translational energy. Dif-
ferent signs correspond to different relations: T1 < T (+) and
T1 > T (−). The numbers in the parentheses denote the parame-
ters (c, T

1/2
1 ν) in relative units

× e−(P̃ 2+P̃
′2+M̃2+M̃

′2)

{
T2(M̃2

ξ + M̃2
η )−

−T1(P̃ 2
ξ + P̃ 2

η )
}
dP̃ ′dM̃ ′dP̃ dM̃

)
dσ =

= − 2κ
(1 + κ)2

T
7/2
1 T 3

2 {T2 − T1} · Ĩ, (12)

where

Ĩ = 2
∫ ( ∫

P̃ ′σ−P̃σ≥0

(P̃
′

σ − P̃σ)e−(P̃ 2+P̃
′2+M̃2+M̃

′2)×

×P̃ 2
ξ dP̃

′dM̃ ′dP̃ dM̃

)
dσ. (13)

From the relation 3T =
3
2
(T1 + T2) = const, it follows

that T2 = 2T − T1, and the evolution equation for the
temperature reads

3
2
d

dt
T1 = 2

a2

√
m
n

1
π6

2κ
(1 + κ)2

T
1/2
1 (T − T1) · Ĩ. (14)

After the separation of variables, the obtained equation
can be solved in quadratures,

T1(t)∫
T1(0)

dT1

T
1/2
1 (T − T1)

=

t∫
0

νdt, (15)

where

ν =
4
3
a2

√
m
n

1
π6

2κ
(1 + κ)2

· Ĩ. (16)

By integrating equality (15), we obtain

ln

(∣∣∣∣∣
√
T +

√
T1(t)√

T −
√
T1(t)

∣∣∣∣∣ ·
∣∣∣∣∣
√
T −

√
T1(0)√

T +
√
T1(0)

∣∣∣∣∣
)

=
√
T ν t. (17)

Whence, the ultimate expressions for the average trans-
lational energy are

T1(t) = T

(
c− e−

√
T ν t

)2

(
c+ e−

√
T ν t

)2 , for T1(0) < T ; (18)

T1(t) = T

(
c+ e−

√
T ν t

)2

(
c− e−

√
T ν t

)2 , for T1(0) > T, (19)

where

c =

∣∣∣∣∣
√
T +

√
T1(0)√

T −
√
T1(0)

∣∣∣∣∣ . (20)

To visualize the result obtained and to make its anal-
ysis simpler, let us illustrate the time dependence of the
temperature for various c- and

√
Tν-values (see Fig. 1).

The figure allows us to draw conclusion that the relax-
ation time for the average translational energy T1 to
its equilibrium value NEGT decreases as the quanti-
ties c and

√
Tν grow. Accordingly, the relaxation time

increases with the simultaneous reduction of ν and c.

2.1. Relaxation Time

Let us consider the expression for the time dependence of
the average translational energy and examine the kinetic
parameter of this process, the relaxation time. Accord-
ing to the condition T ∼= T1, we have the approximate
equality

ln

∣∣∣∣∣
√
T −

√
T1(0)√

T −
√
T1(t)

∣∣∣∣∣ ∼= √T ν t. (21)
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The relaxation time τ =
1√
T ν

can be determined from

the condition

∣∣∣∣∣
√
T −

√
T1(0)√

T −
√
T1(t)

∣∣∣∣∣ = e, which gives rise to

the result

τ =
3π6
√
m(1 + κ)2

8Ĩ
√
T a2 n κ

(22)

or

τ =
3π6(ma2 + 4J)2

32Ĩ
√
T
√
ma4 n J

, (23)

where J is the intrinsic momentum of inertia of the
molecule.

In Fig. 2, the dependence of the relaxation time on
the parameter κ is depicted. The minimum value of τ

is attained at κ = 1 or, equivalently, J =
ma2

4
. In

other words, we have a single extremum of the function
τ(J) for the intrinsic momentum of inertia that is equal
to the momentum of inertia of a spherical particle. In
addition, the relaxation time is reciprocal to the square
root of the equilibrium temperature and to the particle
concentration.

Let us take into account that the approximate value

for the mean free path of particles equals L =
1

πna2
, and

the average velocity of thermal motion is ϑ =

√
3RT
µ

.

Then, using the integral value Ĩ = 2
√

2π13/2, expression
(22) looks like

τ =
3
√
π

32
L

ϑ

(1 + κ)2

κ
. (24)

In Table 1, the relaxation times for some parameters
of particles of the system are quoted. For the given
temperature and concentration, the ratio between the
relaxation times in a system of balls, τ•, and a sys-
tem of spheres, τ◦, approximately equals 1.23. A sys-
tem of heavy spherical particles with a molar mass of

T a b l e. Relaxation times
µ, g/mol L/a T , K κ mol. type τ , s

16 103 300 1 sphere 1.70× 10−8

16 103 300 2.5 ball 2.10× 10−8

720 103 300 1 sphere 1.15× 10−7

720 103 300 2.5 ball 1.41× 10−7

720 104 300 2.5 ball 1.41× 10−6

16 104 300 10 ball 4.30× 10−7

with a heavy core
720 104 300 10 ball 2.99× 10−6

with a heavy core

Fig. 2. Dependence of the relaxation time τ on the parameter

κ =
ma2

4J

0.72 kg/mol can correspond to a system of fullerene
molecules C60. While calculating the relaxation time,
we supposed the mean free path to be approximately
equal to 10−5–10−4 m, which corresponds to the change
in the concentration by an order of magnitude, provided
the given diameter of particles (about 10−8 m).

In the expression for the relaxation time in the system
under study, we can factorize a multiplier that charac-
terizes the relaxation time in a one-atomic gas, τ̃ . Since
the relaxation time for a one-atomic gas has an order of
the ratio between the mean free path and the average
velocity, Eq. (24) can be presented in the form

τ =
3
√
π

32
(1 + κ)2

κ
τ̃ . (25)

The formula testifies that, provided the same values for
the mean free paths and the mean quadratic velocities,
the ratio between the relaxation times for the process
concerned in the case κ = 1 and in the one-atomic gas
is approximately equal to 0.66.

3. Conclusions

To summarize, a model system has been studied in the
spatially uniform case. In the first approximation with
respect to the concentration, an analytical expression for
the temperature as a function of time has been obtained
in the case of a non-uniform initial energy distribution
over the degrees of freedom. The corresponding kinetic
equations for the “translational” and “rotational” tem-
peratures (considered as the averaged translational or
rotational, respectively, momentum) with the Maxwell-
like distribution function and with a non-uniform initial
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distribution of energy ocer the degrees of freedom are
shown to have analytical solutions.

It is found that a reduction of the difference between
the initial average translational (rotational) energy and
the equilibrium one, as well as the growth of the equilib-
rium temperature, results in a decrease of the relaxation
time. The time of the average translational (rotational)
energy relaxation to the equilibrium value is shown to be
reciprocal to the square root of the equilibrium temper-
ature and to the particle concentration. For the intrinsic
momentum of inertia, which equals the momentum of in-
ertia of a spherical particle with certain effective radius,
the relaxation time attains the minimum value.

For the given temperature and concentration, the ratio
between the characteristic relaxation times for a system
of rough balls, τ•, and a system of rough spheres, τ◦,
equals 1.23, i.e. exceeds 1.
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РЕЛАКСАЦIЯ ПРОСТОРОВО ОДНОРIДНОЇ ФУНКЦIЇ
РОЗПОДIЛУ ЗА УМОВИ НЕОДНОРIДНОГО
РОЗПОДIЛУ ЕНЕРГIЇ

А.С. Сiжук, С.М. Єжов

Р е з ю м е

У роботi дослiджено релаксацiю модельної системи з викори-
станням кiнетичного рiвняння. У просторово однорiдному ви-
падку, а також максвеллiвської функцiї розподiлу з неоднорi-
дним розподiлом енергiї за ступенями вiльностi (обертальни-
ми i поступальними), у першому наближеннi за концентрацiєю
знайдено вираз для температури як функцiї часу. Показано,
що iз зменшенням рiзницi мiж початковим та рiвноважним
значеннями середньої поступальної енергiї i зростанням рiв-
новажної температури час релаксацiї зменшується. Знайдено,
що час релаксацiї середньої поступальної (обертальної) енер-
гiї до рiвноважного значення обернено пропорцiйний кореню
квадратному вiд рiвноважної температури та обернено пропор-
цiйний концентрацiї частинок. Для власного моменту iнерцiї,
що дорiвнює моменту iнерцiї сферичної частинки iз ефектив-
ним радiусом, значення часу релаксацiї набуває мiнiмального
значення. Обчислено значення часу релаксацiї для окремих па-
раметрiв частинок системи.
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