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We show how the familiar phenomenological way of combining the
Q2 (photon virtuality) and t (squared momentum transfer) de-
pendences of the scattering amplitude in Deeply Virtual Compton
Scattering (DVCS) [1, 2] and Vector Meson Production (VMP) [2]
processes can be understood in an off-mass-shell generalization of
dual amplitudes with Mandelstam analyticity [3]. By comparing
different approaches, we managed also to constrain the numerical
values of the free parameters.

1. Introduction

Measurements of exclusive deep inelastic processes such
as the production of a real photon or a vector meson (the
processes known as Deeply Virtual Compton Scattering
(DVCS) and Vector Meson Production (VMP), respec-
tively) opened a new window in the study of the nucleon
structure (SF) in three dimensions (3D), namely in the
virtuality Q2, the energy W =

√
s in the center of mass

of the γ∗p system, and the squared momentum transfer
t. The construction of scattering amplitudes depending
simultaneously on these variables is a challenge for the
theory, and its knowledge is necessary for the deconvo-
lution of the relevant Generalized Parton Distributions.

We earlier published an explicit phenomenological
mode for the DVCS amplitude [1], which was later gen-
eralized for the VMP [2], treating these processes on the

same footing. This phenomenological amplitude satis-
fies the Regge behavior and the scaling behavior. It is
compatible with the quark counting rules and fits the
experimental data on DVCS and VMP. On the other
hand, this amplitude is based on several assumptions,
that were not well justified in the original works. We
will come back to this point in Section 2.

Quite generally, two possible ways of combining Q̃2

and t dependences in DVCS and VMP exist: one is “ad-
ditive”, z = t− Q̃2 as in Refs. [1, 2], and the other one is
multiplicative, or scaling, f(t/Q̃2) called “Reggeometric”
in [4].

An alternative approach is known, however, in the lit-
erature. In a number of papers [3, 5–8], the authors
made attempts to build a generalized 3D dual ampli-
tude A(s, t,Q2), by starting from the classical Dual Am-
plitude with Mandelstam Analyticity (DAMA) [9], and
then related it to 3D SF. The main problem on this way
is how the photon virtuality Q2 enters the scattering
amplitude. In Ref. [11], the Q2 dependence is described
via a generalization of the vector dominance model. Ac-
cording to Donnachie and Landshoff [12, 13], the Q2

evolution can be effectively mimicked by a properly cho-
sen factor in front of the Regge-pole terms. Based on
this idea, these authors built a Regge-dual model with
Q2-dependent form factors in [7, 8], inspired by the pole
series expansion of DAMA [9], which fits the SF data in
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Fig. 1. Diagrams of DVCS (a) and VMP (b); (c) DVCS (VMP) amplitude in a Regge-factorized form

the resonance region. It is important that DAMA not
only allows, but rather requires nonlinear complex Regge
trajectories [9]. Then the trajectory with restricted real
part leads to a limited number of resonances.

A consistent treatment of the problem requires the
account for the spin dependence. It was done in [8],
and a substantial improvement of the fit, in comparison
to the earlier works [7] ignoring the spin dependence,
was found. Nevertheless, the applicability range of the
above model [8] is limited to the resonance region, as it
was actually discussed by the authors. For the sake of
simplicity, we ignore the spin dependence in this paper.
Our goal is rather to check qualitatively the proposed
new ways of constructing 3D dual amplitudes and/or
SFs (see Ref. [10]).

Probably, the most successful way of introducing
Q2 in the scattering amplitude was proposed in Ref.
[3], where a new, modified DAMA model with Q2-
dependence, thereafter referred to as M-DAMA, was
suggested. M-DAMA preserves the attractive features
of DAMA, such as its pole structure in s and t and
the Regge asymptotic behavior. An additional feature
is that its Q2-dependent form factors have the correct
Q2 → ∞ limit when compared with the structure func-
tion (at t = 0) at large-x. One of the main virtues
of the M-DAMA model is its applicability to physi-
cal processes over a wide kinematic region and con-
nections imposed by the duality conditions. Recently,
the DAMA and M-DAMA models were successfully ap-
plied to the detailed study of the J/Ψ photoproduction
and electroproduction processes [14, 15]. The electro-
production process is similar to photoproduction, but
with virtual photons, carrying virtuality Q2. Thus,
the J/Ψ photoproduction was studied in the frame-
work of DAMA [14]; while the authors used a gener-
alized Q2-dependent M-DAMA model to describe J/Ψ
electroproduction [15], and only the new parameters,

governing the Q2 dependence in the model, were al-
lowed to vary; the others were kept the same as in
Ref. [14].

We will see that, in the M-DAMA framework, we can
naturally justify the model ansatz proposed in Refs. [1,
2], and it helps us to substantially reduce the number of
free parameters of the model.

The paper is organized as follows. In Section 2, we
recall the main features of the model developed in Refs.
[1, 2]. In Section 3, we will find the explicit expression
for the DVCS amplitude in M-DAMA and determine
some of the model parameters. Section 4 contains our
conclusions.

2. The Model

2.1. Kinematics

The diagrams of the reactions in question, DVCS and
VMP processes, with a single-photon exchange are
shown in Fig. 1. Since we are interested in the nu-
cleon structure, the precisely calculable electroweak ver-
tex e−γe− of Fig. 1, a, b can be factorized out. In the
remaining sub-process γ∗p → γ(V )p, where γ∗ is the
incoming virtual photon and the outgoing vector parti-
cle is a real photon γ (Fig. 1, a) or a vector meson V
(Fig. 1, b), at high energies typical of the HERA experi-
ments, the amplitude is dominated by Regge exchanges,
as shown in Fig. 1, c. In the center of mass of the γ∗p
system, the three independent variables of the reactions
are, as mentioned above, the virtuality Q2 = −q21 , whose
physical values are positive, the energy W = (p1 + q1),
and squared momentum transfer t = (q2 − q1)2. In the
study of VMP, it is customary to combine the virtuality
Q2 and the squared mass of the produced vector particle
M2
V as Q̃2 = Q2 +M2

V .
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2.2. The Amplitude

In Refs. [1, 2], a simple factorized Regge-pole model for
DVCS and VMP was suggested and successfully fitted
to the HERA data. Note that, at the HERA energies,
the sub-leading (secondary Reggeon) contributions are
negligible, so that a Pomeron exchange can account for
the whole dynamics of the reaction. The Pomeron pole
contribution was defined in Refs. [1, 2] on the following
grounds:
– It is a single factorable Regge pole;
– The dependence on the mass and virtuality of the ex-
ternal particles enters via the relevant residue functions,
which means that the virtuality Q2 and the produced
vector meson mass enter only via the upper residue in
Fig. 1(c), V1, while the Pomeron trajectory α(t) is uni-
versal and Q2-independent;
– Following the dual models (see, e.g., Ref. [16]), we
introduce the t dependence in the residues that enter
solely in terms of the trajectory;
– The Pomeron trajectory has logarithmic form

αt(t) = α0 − α1 ln(1− α2t), (1)

and the parameters αi, i = 0−2 have to be determined
from the data fitting. At small |t|, the Pomeron trajec-
tory has nearly linear behavior with a slope α′t = α1α2.
At large |t|, the amplitude and the cross-section obey the
scaling behavior governed by the quark counting rule.
In fact, the logarithmic asymptotics of the trajectory
is required by the scaling of the fixed angle scattering
amplitude (see Refs. [1, 17]). Moreover, it follows from
perturbative Quantum Chromodynamics (pQCD) calcu-
lations (consider, e.g., the BFKL theory [18]).

Figure 2 shows the comparison of our logarithmic tra-
jectory with a linear one, α0 + α′t, where α0 = 1.09
and α′ = 0.25 GeV−2 for the intercept and the slope,
respectively, typical of the soft processes [12], have been
used. The logarithmic asymptotics are important for
physical reasons: at large |t|, the amplitude and the
cross-sections obey the scaling behavior governed by the
quark counting rules, as seen in hadronic reactions [17],
where sufficiently large values of |t| have been reached
in pp and p̄p scattering, confirming the quark counting
rules. More arguments in favor of the logarithmic be-
havior in Q2 can be found in Ref. [22]. This is expected
in future measurements [19] and should be implied in
DVCS and VMP as well. The high Q2 region is gov-
erned by the QCD evolution, and it is beyond the scope
of the Regge-pole models. In any case, according to the
DGLAP evolution equation [20], the high Q2 behavior
must be tempered with respect to that given by the lin-
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Fig. 2. Logarithmic vs linear trajectory as a function of t

ear trajectory and be closer to the logarithmic one or,
maybe, even slower (double logarithmic?). This behav-
ior was studied in Ref. [21].

Neglecting spin, the invariant scattering amplitude
with a simple Regge pole exchange, as shown in Fig. 1,
c, can be written as

A(s, t, Q̃2)γ∗p→γ(V )p = −A0V1(t, Q̃2)V2(t)(−is/s0)α(t) .

(2)

Here, A0 is a normalization factor, V1(t, Q̃2) is the γ∗IPγ
vertex, and V2(t) is the pIPp vertex.

Similarly to Ref. [23], only the helicity conserving am-
plitude was considered in Ref. [1] for DVCS. For not
too large Q2, the contribution from longitudinal pho-
tons is small (it vanishes for Q2 = 0). Moreover, at high
energies typical of the HERA collider, the amplitude is
dominated by the helicity conserving Pomeron exchange,
and, since the final photon is real and transverse, the ini-
tial one is also transverse. Electroproduction of vector
mesons, discussed in the present paper, requires to take
both the longitudinal and transverse cross-sections into
account.

Following the arguments based on duality (see Ref. [1]
and references therein), the t dependence of the pIPp
vertex V2 is introduced via the trajectory as

V2(t) = eb1αt(t) . (3)

In Refs. [1, 2], a generalization of this concept was ap-
plied also to the γ∗IPγ vertex V1, which depends, apart

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 12 1199
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from t, also on Q̃2: first, a new Fazio–Fiore–Jenkovszky–
Lavorini (FFJL) variable zFFJL, combining t and Q2 de-
pendences was introduced as

zFFJL = t− Q̃2 . (4)

Then the γ∗IPγ was approximated through the trajec-
tory

δ(z) = δ0 − δ1 ln(1− δ2z) (5)

as follows:

V1(t, Q̃2) = V1(z) = eb2δ(z) . (6)

Furthermore, it was also assumed in Refs. [1, 2] that the
parameters of the δ(z)-trajectory are equal to those of
the Pomeron trajectory: δi = αi , i = 0− 2.

Hence, the FFJL scattering amplitude in Eq. (2) can
be written in the form

A(s, t, Q̃2)γ∗p→γ(V )p = −A0e
b2α(z)eb1α(t)(−is/s0)α(t) .

(7)

In the next section, we will try to justify the above
proposed ansatz for the DVCS and VMP amplitudes in
the framework of M-DAMA [3].

3. Explicit DVCS and VMP Amplitude from a
Modified DAMA Model

Technically on the model construction level, the only dif-
ference in the VMP amplitude with respect to the DVCS
one is the use of Q̃2 instead of just Q2. So for simplic-
ity, we will consider only DVCS case in this section; a
generalization for VMP is rather straightforward.

3.1. M-DAMA amplitude and its Regge
assymptotics

The Dual Model with Mandelstam Analyticity appeared
as a generalization of narrow-resonance (e.g., Veneziano)
dual models, intended to overcome the manifestly non-
unitarity of the latter [9]. Contrary to narrow-resonance
dual models, DAMA requires non-linear, complex tra-
jectories. The dual properties of DAMA were studied in
Ref. [2].

The DAMA amplitude [9] is given by

D(s, t) = c

1∫
0

dz

(
z

g

)−αs(s′)−1(1− z
g

)−αt(t′′)
, (8)

where αs(s) and αs(t) are Regge trajectories in the s
and t channels, correspondingly; x′ = x(1− z), x′′ = xz
(x = s, t, u); g and c are parameters, g > 1, c > 0.

To extend our model off-mass shell, we need to con-
struct the Q2-dependent dual amplitude. To this aim,
we use the so-called Modified DAMA (M-DAMA) for-
malism developed in Ref. [3]. The scattering amplitude
is given by

D(s, t,Q2) = c

1∫
0

dz

(
z

g

)−αs(s′)−β(Q2′′)−1

×

×
(

1− z
g

)−αt(t′′)−β(Q2′)

, (9)

where β(Q2) is a monotonically decreasing dimensionless
function of Q2.

It has been shown in Ref. [3] that, by choosing the β
function in the form

β(Q2) = −1− αt(0)
ln g

ln
(
Q2 +Q2

0

Q2
0

)
, (10)

all asymptotics of the amplitude at large s remain valid,
and the Q2 behavior of the amplitude is in qualitative
agreement with the experiment.

Regge assymptotics of M-DAMA amplitude reads (see
[3] for details)

D|s→−∞ ≈ −sαt(t)+β(0)gαt(t)+αs(a)+β(Q2)+β(0)+2×

× a−αt(t)−β(0)−1

√
2π

−α′′s (0) ln g − α′s(0) ln g
a

, (11)

where

a =
αt(t) + β(0) + 1

α′s(0) ln g
=

(αt(t) + β(0) + 1)s0
α1,s ln g

, (12)

assuming that the Regge trajectory is approximately lin-
ear for small s: αs(s) = αs(0)+α1,ss/s0, and s0 is some
characteristic scale. Now putting β(0) = −1 [3] and ig-
noring the slow dependences, we have:

D(s, t,Q2) ∼
(
s

s0

)αt(t)−1(
αt(t)
α1,s ln g

)−αt(t)
gβ(Q2)+αt(t) ,

for‖s| → ∞ . (13)

1200 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 12
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The minimal model for the total scattering amplitude is
a sum:

A(s, t,Q2) = c(s− u)(D(s, t,Q2)−D(u, t,Q2)). (14)

In the Regge limit, t, Q2 = const, s → ∞, u = −s, the
total amplitude behaves itself as

A(s, t,Q2)|s→∞ ∼
(
s

s0

)αt(t)( αt(t)
α1,s ln g

)−αt(t)
×

×gβ(Q2)+αt(t) . (15)

3.2. Explicit DVCS amplitude from M-DAMA

Comparing Eqs. (7) and (15), we see that, in order to
combine the t and Q2 dependences in the gβ(Q2)+αt(t)

term of Eq. (15), the following connection between the
parameters β(Q2), Eq. (10), and αt(t), Eq. (1), is re-
quired:

α1 = αt(0)/ ln g ⇒ ln g = αt(0)/α1 . (16)

This requirement will fix the M-DAMA model parameter
g.

Now, based on Eq. (16), we obtain

β(Q2)+αt(t) = αt(0)−1−α1 ln
(

(1− α2t)(1 +
Q2

Q2
0

)
)

=

= αt(0)− 1− α1 ln
(

1− α2

(
t− Q2

α2Q2
0

+ t
Q2

Q2
0

))
=

= δ(0)− α1 ln (1− α2z) = δ(z), (17)

where

z = t− Q2

α2Q2
0

+ t
Q2

Q2
0

. (18)

Please, note that δ(0) = αt(0)−1, but this shift is always
possible to do without any problem for the model. So,
we can assume that parameters of δ(z) are just the same
as parameters of αt(t) (if Eq.([16]) is satisfied).

Thus, three main assumptions of Refs. [1, 2], namely
that
A) Q2 and t enter into the γ∗IPγ vertex V1 via one vari-
able z;
B) the contribution of this vertex can be given in the
form eb2δ(z);
C) the new z-dependent trajectory has exactly the same
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Fig. 3. Correction to the b1 parameter. We assume that the
slopes of the trajectories are approximately the same plotted in
ln

(
αt(0)
αt(t)

)
. The parameters of the αt(t) trajectory are taken as

quoted in the text. We expect that the parameter b1 close to 8,
and, thus, the correction amounts at most to 3%

form and the same parameters as the Pomeron trajec-
tory;
can be justified in M-DAMA, fixing its only free param-
eter g as it is given in Eq. ([16]).

The resulting M-DAMA scattering amplitude looks
like

A(s, t,Q2)|s→∞ ∼
(
s

s0

)αt(t)( αt(t)
α1,s ln g

)−αt(t)
gδ(z) =

=
(
s

s0

)αt(t)
e
ln

(
αt(0)
αt(t)

α1,s
α1

)
αt(t)eln g δ(z) . (19)

3.3. Comparison of the DVCS amplitude from
M-DAMA with the FFJL ansatz

Comparing the FFJL amplitude, Eq. (7), with our ex-
pression, Eq. (19), we identify:

z = t− Q2

α2Q2
0

+ t
Q2

Q2
0

. (20)

Note that our z coincides with the zFFJL = t − Q2,
introduced in [2], in the region Q2/Q2

0 � 1 and if the
characteristic scales are the same, i.e. Q2

0 = 1/α2.
The further identification gives

b2 = ln g = α(0)/α1 , (21)

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 12 1201
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and, finally,

b1 = ln
(
αt(0)
αt(t)

α1,s

α1

)
= b̃1 + ln

(
αt(0)
αt(t)

)
(22)

is not a constant, but a slowly varying function of t.
Please, note that the scaling parameter s0 is not really
known – for simplicity, we will fix it to be s0 = m2

p,
and the possible corrections to it (of the type ln s̃0/s0)
will contribute to b1 or, more precisely, to the b̃1 pa-
rameter. Therefore, b̃1 cannot be fixed from the model
and has to be fitted to the data. The functional de-
pendence of b1(t) is indeed very slow in the region
of interest, as illustrated in Fig. 3 (the parameters
of the trajectory will be discussed in the next sec-
tion).

Thus, the final expression for the DVCS amplitude in
M-DAMA coincides with that of Refs. [1, 2]:

A(s, t,Q2)|s→∞ = A0

(
s

s0

)α(t)

eb2α(z)eb1α(t) , (23)

where we use a unifying notation α(x) = αt(x) = δ(x).
The parameters of the Regge trajectory α (αi, i = 0−2)
as well as A0, b1, and Q2

0 are fitting parameters.

3.4. Parameters of the model

Now, we can proceed constructing the physical quanti-
ties to be fitted to the experimental data.

The differential cross-section dσ(γ∗ p→ γ(V ) p)/dt is
defined as

dσ

dt
(Q̃2, s, t) =

π

s2
|A(Q̃2, s, t)|2. (24)

This integral can be calculated analytically, as it was
done in Ref. [2], and the result is

σ(s, Q̃2) =
π|A0|2(s/s0)2α0

s2
(
1 + Q̃2

Q2
0

)2b2α1

e2α0(b1+b2)

2α1 [b1 + b2 + ln(s/s0)]− 1
.

(25)

Although the model has many parameters, most of
them are constrained by plausible assumptions. First,
we can fix the intercept of αt(t) (and, correspond-
ingly, δ(z)) to some typical value, for example 1.08
[2]. The hardening of the dynamics with increasing
Q̃2 may be accounted for either by letting the in-
tercept to be Q̃2-dependent, unacceptable by Regge-
factorization, or by introducing one more, hard com-
ponent in the Pomeron (still unique!) with a Q̃2-
dependent residue (as suggested, e.g., in Refs. [13] and

[2]). In any case, the trajectories and their parame-
ters are the same for DVCS and for VMP. The other
two parameters of the trajectories, α1 and α2 (δ1 and
δ2) can be fixed in the following way: their product
α′ = α1α2, which is the forward slope of the trajectory,
can be set equal to some typical value, like α′ = 0.25
GeV−2. Furthermore, since α1 ≈ 2 from the quark
counting rules (see Ref. [1]), we get α2 = α′/α1 = 0.125
GeV−2.

With these parameters we obtain, using eq. (21):
b2 = ln g = α(0)/α1 = 0.545 ⇒ g = 1.725. Please,
note that, in the original FFJL papers [1, 2], b2 was
a free fitting parameter of the model. In the fits
were obtained the following results for this parameter
[2]: 0.65 < b2 < 0.77 from the fits to DVCS data;
1.08 < b2 < 1.15 from the fits to VMP data. Tak-
ing into account that the z variable appearing in the
M-DAMA approach is a bit different from zFFJL sug-
gested in the FFJL model, we see the obtained value
b2 = 0.545 as a very reasonable number. Note that
there are no fitting or extra assumptions – this value
of b2 came directly from the comparison of two ex-
pressions for the scattering amplitude: Eq. (7) and
Eq. (19).

The parameter s0 is not fixed by the Regge-pole
theory. There is a nice plausible relation s0 =
1/α′ ≈ (1/4)m2

p, which follows from the hadronic string
model [24]. However, other values, for example s0 =
m2
p ≈ 1 GeV2 [2], cannot be excluded.
Finally, we can set the parameter b1 entering the pro-

ton vertex (lower vertex of Fig. 1, c) as b1 = 8.0. In
fact, this (pIPp) vertex is known from the analysis of
the pp and p̄p scattering to be of the form exp(bt), and
an estimate of b is b ≈ b1α1α2 ≈ 2 GeV−2 (see Ref. [25]
and references therein). If the parameter b1 ≈ 8.0, the
t-dependent correction to it (see Fig. 3) is smaller than
3% in all the region of interest, and, thus, can be safely
neglected.

Thus, we remain with the following free parameters:
the characteristic virtuality scale Q2

0 and the squared
modulus of the normalization factor |A0|2.

In Refs. [1, 2], the fitting parameters were the pa-
rameter b2, entering the photon vertex γ∗IPγ(V ), and
|A0|2. Starting from the M-DAMA, we fix b2 according
to Eq. (21), but introduce a new free parameter Q2

0. In
fact, with an additional requirement that our z should
be maximally close to zFFJL, we can fix Q2

0 = 1/α2 = 8
GeV2. In this case, the two variables will be identical
z ≈ zFFJL for small Q2 (Q2 � 8 GeV2), i.e. in the re-
gion, where the agreement with experimental data is the
best [2].

1202 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 12
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4. Conclusions

In this paper, we have demonstrated that, interestingly
enough, two (DVCS and VMP) models constructed in
two completely different manners ultimately give practi-
cally the same expression.

The purely phenomenological FFJL model [1, 2] is
based on several ansätze, introduced “by hand” to the
scattering amplitude, namely that
A) the Q2 and t enter into the γ∗IPγ vertex V1 via one
variable z;
B) the contribution of this vertex can be given in the
form eb2δ(z);
C) the new z-dependent trajectory has exactly the same
form and the same parameters as the Pomeron trajec-
tory.
It was shown in Section 3 3.2 that all these assumptions
can be naturally understood in the M-DAMA [3] with
the correct choice of its only free parameter g (see Eq.
(16)).

Furthermore, as it was demonstrated in Sections 3.3
and 3.4, the comparison of the FFJL and M-DAMA
scattering amplitudes fixes some free parameters of the
model, namely b1, b2, and Q2

0, if we require that z and
zFFJL be as close as possible.

We would like to stress that this is not just a
mathematical coincidence, it has an important con-
sequence. The FFJL model was developed to be
used in the Regge limit (see Eq. (2)). On the other
hand, the M-DAMA, which shows a similar behavior
in the Regge limit, can be used in the whole kine-
matically allowed region of energies. Technically, this
is not always simple, due to the complexity of the
M-DAMA integral [3], Eq. (9), but (e.g., in Ref. [15])
the full M-DAMA integral calculation has been per-
formed.

Another interesting result is that the variable z, com-
bining the t and Q2 dependences in the γ∗IPγ vertex,
is not exactly the same in two approaches. In the low
Q2 limit, zFFJL coincides with z of the M-DAMA under
a proper choice of Q2

0. However, generally, if one uses
Q2

0 as a free parameter, there should be a noticeable dif-
ference in the behavior of the scattering amplitudes (7)
and (19), especially at large Q2.

Both the FFJL model and M-DAMA were con-
fronted against the experimental data showing a reason-
able agreement; the most recent results can be found
in Refs. [2] and [15], correspondingly. The future
study will show whether the use of the new variable
z, Eq. (20), improves the fits with respect to that of
zFFJL.
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ПРО ЗАЛЕЖНIСТЬ ВIД Q2 ТА t ЕКСКЛЮЗИВНОГО
ДИФРАКЦIЙНОГО НАРОДЖЕННЯ РЕАЛЬНИХ
ФОТОНIВ ТА ВЕКТОРНИХ МЕЗОНIВ
В ep ЗIТКНЕННЯХ

Р. Фiоре, Л.Л. Єнковський, А. Лаворiнi, В.К. Магас

Р е з ю м е

Показано яким чином дуальна амплiтуда з мандельстамiв-
ською аналiтичнiстю, продовжена за масову поверхню [3], до-
помогає зрозумiти аддитивну залежнiсть амплiтуди розсiяння
вiд вiртуальностi фотона Q2 та квадрата переданого iмпульсу
t [1, 2]. Порiвнюючи рiзнi моделi нам вдалося знайти чiсельнi
значення для деяких вiльних параметрiв цих моделей.
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