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MULTIFRACTAL ANALYSIS
OF CARDIAC SERIES AND PREDICTORS
OF SUDDEN CARDIAC DEATH

In the framework of the multifractal formalism and using the wavelet-transform modulus-
maxima method, the daily Holter monitoring records from the PhysioNet databases for sudden
cardiac death and normal sinus rhythm have been analyzed. On the basis of successive window
samples of the heart rate variability signals for the VFL range (0.0025–0.04 Hz), the time
dependences of the widths of singularity spectra and the positions of their maxima are calcu-
lated. The average energy of low-frequency oscillations of the singularity spectrum width for
the studied records of sudden cardiac death is found to be by 36% higher than the corresponding
value for the records of normal sinus rhythm. This discrepancy can be considered as a predictor
of sudden cardiac death.
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1. Introduction

Nowadays, cardiovascular diseases are the dominating
cause of death, including the sudden one, in the ma-
jority of developed countries. Sudden cardiac death
(SCD) is an unexpected death that occurs instantly
or within an hour after the appearance of drastic
changes in the clinical status of the patient due to
cardiac dysfunction [1]. Every year, almost 7 million
people in the world die suddenly from symptoms clas-
sified as SCD [2]. Therefore, the study of known prog-
nostic factors (predictors) of the SCD risk and the
search for new ones continue. The known factors in-
clude, e.g., [3], the potentials of delayed myocardial
depolarization, the dispersion and duration of the QT
interval, the T-wave alternation, and heart rate vari-
ability and turbulence. Despite the variety of SCD
predictors, the prognostic value of only some of them
has been reliably proven. Therefore, SCD remains
a challenging problem for the foreign and domestic
health cares.

As was noted in work [4], owing to the extremely
complicated character of the processes occurring in
the heart tissue, there is no adequate model of the
heart today, which would be able to help one to diag-
nose or predict the development of the disease. Note
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that most clinical studies in cardiology are based on
the analysis of electrocardiograms (ECGs) with the
help of well-tested techniques. One of them is the
analysis of the heart rate variability (HRV) [5]. Such
an analysis can be performed using the methods of
mathematical statistics and nonlinear dynamics in
terms of international standards (1996) [6].

Recently, the multifractal approach has become
widespread while analyzing the cardiac series [7–
10]. It accounts for the dynamic complexity of the
temporal organization of heart rhythm in a natural
way. It is known [11] that the variability of physiolog-
ical rhythms is characterized by the fractality, i.e. it
demonstrates the repeatability and self-affinity [12] in
a wide range of time scales. The introduction of addi-
tional nonlinear indicators of the scale invariance al-
lows a new evaluation of the qualitative and quantita-
tive properties of HRV to be carried out and the pos-
sibilities of clinical interpretation to be expanded [13].

The scaling properties of a monofractal signal are
homogeneous both locally and globally, and the cor-
responding process can be characterized by a single
scale indicator, e.g., the Hurst index or the correlation
indicator of detrended fluctuation analysis [14]. In
contrast, the multifractal signal is decomposed into
a large number of homogeneous fractal subsets, the
singular properties of which can be described by a
spectrum of local Hölder parameters [12]. The multi-
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fractal approach makes it possible to describe a wide
class of structurally more complicated signals as com-
pared to those characterized by a single fractal dimen-
sion [15].

The aim of this work was to clarify whether the
multifractal formalism based on the wavelet trans-
form can provide independent predictors of sudden
cardiac death. For comparison, the results of the anal-
ysis of the heart rate variability using the indicated
method applied to the records of the daily Holter
monitoring on the basis of PhysioNet databases were
selected.

2. Formalism of the Method

The wavelet-transform modulus-maxima (WTMM)
method is applied to study the multifractal properties
of signals with a complex structure. It was developed
at the beginning of the 1990s [16–18] as an alternative
to the Fourier transform and the Shannon function
method. The WTMM method is based on a wavelet
transform consisting in the signal expansion in a basis
constructed from a soliton-like function (wavelet) 𝜓
by means of scaling changes and time transfers. In
the wavelet transforms, the scale replaces the fre-
quency concept used in the spectral analysis. In order
to cover the time axis with wavelets, the function shift
𝜓 = 𝜓((𝑡 − 𝑏)/𝑎) is introduced, where 𝑏 is the shift,
and 𝑎 is the scale. The continuous wavelet transform
of the function 𝑔(𝑡) is determined by the formula

𝑊 (𝑎, 𝑏) =
1√
𝑎

∞∫︁
−∞

𝑔(𝑡)𝜓

(︂
𝑡− 𝑏

𝑎

)︂
𝑑𝑡. (1)

Various approaches are used to construct the
wavelets [19]. The most known of them is the appli-
cation of the derivatives of Gaussian functions,

𝜓𝑚(𝑡) = (−1)𝑚
𝜕𝑚

𝜕𝑡𝑚

[︂
exp

(︂
− 𝑡

2

2

)︂]︂
. (2)

In practice, the wavelets with 𝑚 = 1 and 2 (the so-
called “Mexican hat”, MHAT) turned out the most
popular ones.

The basic concepts of the WTMM method are as
follows [13,20]. At first, a linear trend is removed from
the time series 𝐺𝑖 (𝑖 = 1, 𝑁), and the fluctuation pro-
file of the signal, 𝑔𝑖 = |𝐺𝑖 −𝐺|, is constructed, where
𝐺 is the arithmetic mean of the initial series. The
continuous wavelet transform (1) is often replaced by

the approximate version

𝑊 (𝑎, 𝑏) =
1√
𝑎

𝑁∑︁
𝑖=1

𝑔𝑖𝜓

(︂
𝑖− 𝑏

𝑎

)︂
. (3)

As a result, we obtain a function of two variables,
i.e. the surface 𝑊 (𝑎, 𝑏) in the three-dimensional
space. The most important information is contained
in the skeleton of this surface, the set of lines of lo-
cal modulus-maxima of the wavelet coefficients 𝐿(𝑎),
which satisfy the condition

𝜕|𝑊 (𝑎, 𝑏)|
𝜕𝑏

= 0. (4)

Along every skeleton line ℓ ∈ 𝐿(𝑎), the generalized
statistical sum is calculated on the scales 𝑎′ less than
a given value 𝑎,

𝑍(𝑞, 𝑎) =
∑︁

ℓ∈𝐿(𝑎)

(︀
sup
𝑎′≤𝑎

|𝑊 (𝑎′, 𝑥ℓ(𝑎
′))|

)︀𝑞
, (5)

where 𝑥ℓ(𝑎′) determines the position of the maximum
corresponding to the line ℓ on the scale 𝑎′ ≤ 𝑎.

According to works [16–18], for Eq. (5), we have

𝑍(𝑞, 𝑎) ∼ 𝑎𝜏(𝑞). (6)

In this formula, the power exponent 𝜏(𝑞) is a scaling
exponent calculated as the ratio ln𝑍(𝑞, 𝑎)/ ln 𝑎. The
variation of 𝑞 when constructing the statistical sums
(5) makes it possible to obtain a linear or a nonlinear
dependence 𝜏(𝑞), which gives either a constant value
of the Hölder exponent ℎ(𝑞) = const for monofractal
signals or a set of exponents ℎ(𝑞) = 𝑑𝜏(𝑞)/𝑑𝑞 ̸= const
for multifractal signals. In the last case, we obtain
the distribution of Hölder exponents (the spectrum of
singularities), which can be obtained from 𝜏(𝑞) using
the Legendre transformation

𝐷(ℎ) = 𝑞 ℎ(𝑞)− 𝜏(𝑞). (7)

3. Calculation Results
and Their Discussion

The WTMM method was applied to analyze daily
Holter monitoring records from the open PhysioNet
databases for sudden cardiac death [21] and nor-
mal sinus rhythm [22]. Seven longest ECG record-
ings (lasting at least 18 h) were selected from each
database (records No. 30, 33, 38, 42, 44, 47, and
48 from Sudden Cardiac Death Holter Database and
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records No. 16265, 16273, 16420, 16483, 16539, 16773,
and 16786 from MIT-BIH Normal Sinus Rhythm
Database). Each of 14 records is an intervalogram,
i.e. a series of time intervals between two consecutive
heartbeats (the distance between the neighbor peaks
of the R-waves). The series of R-R intervals cannot
be considered as a time series, because the argument
here is the sequence number of the cardiocycle, rather
than the time. Therefore, before studying the fractal
properties of the HRV signal, the latter was inter-
polated using cubic splines. Then, the intervalogram
was projected on a uniform time grid with a step of
1 s (Fig. 1).

The obtained time series 𝐺𝑖 (𝑖 = 1, 𝑁) underwent
the procedure of the linear trend elimination and con-
struction of the signal 𝑔𝑖 fluctuation profile, which was
described in the previous section. In order to study
the variation of the fractal properties of HRV in time,
the WTMM method was applied to analyze the suc-
cessive window samples from the series 𝑔𝑖. For each
𝑘-th sample (𝑘 = 1,𝐾) with the duration 𝑇 , a sta-
tistical sum of type (5) was constructed according to
the rule [13]

𝑓𝑐
𝑓max

≤ 𝑎′ ≤ 𝑓𝑐
𝑓min

, (8)

where 𝑓𝑐 is the central frequency of the parent
wavelet, and [𝑓min, 𝑓max] is the frequency interval,
where the spectrum of the HRV signal is ana-
lyzed. We considered the VLF interval (very low fre-
quencies from 𝑓min = 0.0025 Hz to 𝑓max = 0.04 Hz)
because of its physiological importance [23]. The min-
imum frequency of this interval corresponds to the pe-
riod 𝑇min = 400 s. Hence, in order to reliably record
signals with the frequency 𝑓min, it is necessary to use
window samples with a duration of at least half the
period, i.e. 𝑇 = 200 s.

MHAT wavelet (2) with 𝑚 = 2 and the center fre-
quency 𝑓𝑐 = 0.3 Hz was chosen as 𝜓(𝑡) in transforma-
tion (3). This wavelet has a narrow energy spectrum
and two zero moments. It is well suited for the analy-
sis of complex signals, because the coefficients𝑊 (𝑎, 𝑏)
depend on a narrow interval of the wavelet frequency
range [24].

In Fig. 2, as an example, a typical singularity spec-
trum obtained using the WTMM method while ana-
lyzing HRV signals is exhibited. The main character-
istics of the distribution 𝐷(ℎ) are the position of the
maximum ℎmax, its magnitude 𝐷max, and the spec-

Fig. 1. R-R interval duration as a function of the time. Nor-
mal sinus rhythm, record No. 16273

Fig. 2. Singularity spectrum of the HRV signal (circles). Nor-
mal sinus rhythm, record No. 16273, sample 𝑘 = 23. See the
explanation of symbols in the text

trum width Δℎ = ℎ2−ℎ1. The points ℎ1 and ℎ2 were
determined by parabolically extrapolating the calcu-
lated 𝐷(ℎ)-values, as is shown in Fig. 2.

For each of the 14 daily Holter monitoring records
used in this paper, the time dependences of the quan-
tities ℎmax and Δℎ, as well as their Pearson correla-
tion coefficients 𝑟𝑥𝑦, were calculated and the statisti-
cal significance of the latter, 𝑡𝑟, was estimated [25],

𝑟𝑥𝑦 =
cov(𝑥, 𝑦)
𝜎(𝑥)𝜎(𝑦)

, 𝑡𝑟 =
𝑟𝑥𝑦

√
𝑛− 2

1− 𝑟2𝑥𝑦
, (9)

where cov(𝑥, 𝑦) is the covariance of the quantities 𝑥
and 𝑦, 𝜎(𝑥) and 𝜎(𝑦) are their variances, and 𝑛 is
the series length. As follows from the analysis of the
values obtained for 𝑟𝑥𝑦 and 𝑡𝑟 (see Table 1), there is
a moderate linear correlation between ℎmax and Δℎ
with an error less than 0.1% [26].

The dependences ℎmax(𝑡) and Δℎ(𝑡) are important
indicators of the signal singularity. In particular, the
decrease of ℎmax in time testifies that the process be-
comes less smooth, and the decrease of Δℎmeans that
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Fig. 3. Singularity spectrum width of the HRV signal Δℎ(𝑡)

and its Fourier spectrum 𝐼(𝑓) smoothed using a rectangular
window with 17 points. Normal sinus rhythm, record No. 16273

Fig. 4. Singularity spectrum width of the HRV signal Δℎ(𝑡)

and its Fourier spectrum 𝐼(𝑓) smoothed using a rectangular
window with 17 points. Sudden cardiac death database, record
No. 30

the signal losses its multifractal character [12]. As fol-
lows from the results of works [27, 28], the transition
from the multifractal mode to the monofractal one is
a precursor of a drastic change in the properties of
the examined systems (by the way, not only biologi-

cal). For example, the loss of multifractality was ob-
served at human cancer diseases [29] and at the stress
influence on the dynamics of blood pressure in white
rats [30]. Hence, the spectrum of Δℎ-oscillations may
contain the important information that reflects the
physiological state of the cardiovascular system.

Figures 3 and 4 illustrate examples of the calcu-
lated dependences Δℎ(𝑡) and their spectra obtained
making use of the Fourier transformation.

A common property of the oscillation spectra Δℎ(𝑡)
in the case of recordings of sudden cardiac death is
a substantial predominance of low-frequency compo-
nents in comparison with the normal sinus rhythm
(see Figs. 3 and 4). Table 2 demonstrates the spec-
trum energy values 𝐼(𝑓) calculated according to the
formula [31]

𝐸 =

𝑓 ′∫︁
0

|𝐼(𝑓)|2𝑑𝑓, (10)

where 𝑓 ′ = 0.0025 Hz is the lower limit of the VLF
interval, which was chosen by us when carrying out
the wavelet-transformation of the time series of HRV
signals.

Table 1. Pearson correlation coefficient
𝑟𝑥𝑦 and its statistical significance 𝑡𝑟 for the time
series of ℎmax and Δℎ i Δℎ

Record No. 𝑟𝑥𝑦 𝑡𝑟 Record No. 𝑟𝑥𝑦 𝑡𝑟

30 0.656 17.989 16265 0.627 16.066
33 0.406 9.203 16273 0.339 6.923
38 0.440 8.721 16240 0.431 9.389
42 0.425 9.970 16483 0.409 8.705
44 0.387 8.523 16539 0.387 8.610
47 0.453 10.432 16773 0.443 9.721
48 0.548 13.734 16786 0.461 10.626

Table 2. Energy of the oscillation
spectrum of the quantity Δℎ(𝑡)

Record No. 𝐸, Hz−1 Record No. 𝐸, Hz−1

30 0.135 16265 0.125
33 0.079 16273 0.070
38 0.132 16240 0.079
42 0.062 16483 0.078
44 0.110 16539 0.061
47 0.091 16773 0.073
48 0.161 16786 0.078
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From the data in Table 2, it follows that the av-
erage energy of low-frequency oscillations of the sin-
gularity spectrum width in the case of the record-
ings of sudden cardiac death amounts to ⟨𝐸SCD⟩ =
= 0.11 Hz−1, which is 36% higher than the corre-
sponding value for the recordings of normal sinus
rhythm, ⟨𝐸NSR⟩ = 0.081 Hz−1.

The variations in the frequency spectrum of a phys-
ical system, when it transits from one state to an-
other one, were studied in work [32]. In the stability
area, the low noise does not significantly affect the
behavior of the system. When the system state ap-
proaches the bifurcation point, the effect of the noise
increases, and its low-frequency components, the so-
called soft modes, grow. The system becomes suscep-
tible to small low-frequency perturbations, which be-
come the main modes (the order parameters), and
the high-frequency modes become subordinate to
them [33]. Recall that the growth of soft modes near
the bifurcation point of the steady state is a univer-
sal phenomenon [34]. Thus, the growth of soft modes
in the noise spectrum of the system can be used to
evaluate, in advance, the approach to a bifurcation
(catastrophe) in the system. Therefore, the increase
in the energy of low-frequency oscillations of the HRV
singularity spectrum width can be considered as a
predictor of sudden cardiac death.

4. Conclusions

Within the framework of the multifractal formalism
and on the basis of the wavelet transformation, the 14
longest records of daily Holter monitoring from the
PhysioNet databases on sudden cardiac death and
normal sinus rhythm have been analyzed. Based on
the successive samples of the heart rate variability
signals in the VLF interval (0.0025–0.04 Hz), the time
dependences of the widths of the singularity spectra,
Δℎ(𝑡), and the positions of their maxima, ℎmax(𝑡),
were calculated using the wavelet-transform modulus-
maxima method. It is shown that there is a moder-
ate linear correlation between the quantities Δℎ and
ℎmax with an error less than 0.1%. It is found that
the average energy of low-frequency oscillations of the
singularity spectrum width for the studied records of
sudden cardiac death is 36% higher than the corre-
sponding value for records of normal sinus rhythm,
which can be considered as a predictor of sudden car-
diac death.

1. Clinical Arrhythmology. Edited by A.V. Ardashev (Med-
praktika, 2009) (in Russian) [ISBN: 978-5-98803-198-7].

2. M.E. Mortada, M. Akhtar. Sudden cardiac death. Cardiac
Intens. Care 25, 293 (2010).

3. V.E. Oleynikov, M.V. Lukianova, E.V. Dushina. Sudden
death predictors in patients after myocardial infarction by
Holter ECG monitoring. Russ. J. Cardiol. 119 (3), 108
(2015).

4. A.V. Ardashev, A.Y. Loskutov. Practical Aspects of Mod-
ern Analysis Methods of Heart Rate Variability (Medprak-
tika, 2011) (in Russian) [ISBN: 978-5-98803-250-2].

5. R.M. Bayevsky. Analysis of heart rate variability: His-
tory and philosophy, theory and practice. J. Clin. Inform.
Telemed. 1, 54 (2004) (in Russian).

6. Heart rate variability: Standards of measurement, phys-
iological interpretation, and clinical use. Task force of
the european society of cardiology the north american
society of pacing electrophysiology. Circulation 93, 1043
(1996).
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from Ukrainian by O.I. Voitenko

В.I.Ковальчук, О.С.Свєчнiкова, Л.А.Булавiн

МУЛЬТИФРАКТАЛЬНИЙ АНАЛIЗ
КАРДIОЛОГIЧНИХ РЯДIВ ТА ПРЕДИКТОРИ
РАПТОВОЇ СЕРЦЕВОЇ СМЕРТI

У рамках мультифрактального формалiзму з використан-
ням методу максимумiв коефiцiєнтiв вейвлет-перетворення
проаналiзовано записи добового монiторiнгу Холтера баз
даних PhysioNet для раптової серцевої смертi та нормально-
го синусового ритму. На основi послiдовних вiконних вибо-
рок сигналiв варiабельностi серцевого ритму для дiапазону
VLF (0,0025–0,04 Гц) обчислено часовi залежностi ширин
спектрiв сингулярностей та положень їх максимумiв. Вста-
новлено, що середня енергiя низькочастотних коливань ши-
рини спектра сингулярностей для дослiджених записiв ра-
птової серцевої смертi на 36% бiльше вiдповiдної величини
для записiв нормального синусового ритму, що може роз-
глядатися як предиктор раптової серцевої смертi.

Ключ о в i с л о в а: мультифрактальний аналiз, варiабель-
нiсть серцевого ритму, раптова серцева смерть.
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