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MIXED SYMMETRY STATES IN 92Zr AND 94Mo NUCLEI

Mixed-symmetry states of 92Zr and 94Mo isotopes are investigated with the use of the collective
models, Interacting Boson Model-2 (IBM-2) and Quasiparticle Phonon Model (QPM). The
energy spectra and electromagnetic transition rates for these isotopes are calculated. The re-
sults of IBM-2 and QPM are compared with available experimental data. We have obtained
a satisfactory agreement, and IBM-2 gives a better description. In these isotopes, we observe
a few states having a mixed symmetry such as 2+

2 , 2+
3 , 3+

1 , and 1+
s . It is found that these

isotopes have a vibrational shape corresponding to the U(5) symmetry.

K e yw o r d s: IBM-2, QPM, mixed symmetry states, B(E2), B(M1), mixing ratios.

1. Introduction

The focus of this work is on an other kind of mixed-
symmetry states. In 1984, Hamilton [1] suggested the
first example of a (𝑛, 𝑛′𝛾) weakly collective 2+ mixed-
symmetry state in vibrational nuclei based on the
analysis of 𝐸2/𝑀1 multipole mixing ratios. Its main
experimental signatures is a strong 𝐵(𝑀1)-strength
to the 2+1 and a weakly collective 𝐵(𝐸2)-strength to
the ground state [2]. In general, detecting a transition
between two excited states exhibits a challenging task
and requires the combination of complementary ex-
perimental techniques. Hence, the knowledge about
this mode stayed sparse in the 1980s and 1990s. There
were only a few examples based on the absolute tran-
sition strength reported in [3–8]. In the 2000s, the
situation changed with the improvement of several
experimental techniques likes the successful-reaction
which allows determining the decay pattern of states
far off the yrast band. The prime example of 2+

mixed-symmetry states was identified by Pietralla et
al. in 94Mo [9]. Not only the 𝐵(𝑀1)-strength in this
nucleus is very high indicating a very “clean” mixed-

c○ S.N. ABOOD, A.A. AL-RAWI, L.A. NAJAM,
F.M. AL-JOMAILY, 2021

symmetry state (MSS), but also a multiphonon struc-
ture was observed [9, 10] which is formed by the sym-
metric and th mixed-symmetric 2+ phonons. This ob-
servation proves that both phonons can be considered
as building blocks of a collective nuclear structure in
nearly spherical nuclei. Nowadays, a large amount of
data on this excitation mode is available [2]. Unfor-
tunately, no example in radioactive nuclei has been
identified so far. This can be traced back to the diffi-
culties in measuring the 𝐵(𝑀1) strength.

As stressed by Heyde and Sau [11], the properties
of the 2+ mixed-symmetry states are directly sensi-
tive to the effective proton-neutron interaction. Near
the closed shells, one observes highly exciting phe-
nomena: The structure of both 2+ phonons contains
part-large single particle contributions in addition to
the collective one [12, 13]. This opens the opportu-
nity to study, in detail, the interplay between the col-
lective and single-particle degrees of freedom, when
going from spherical to more collective nuclei driven
by the proton-neutron interaction. Since usually only
two large single-particle components – one proton
and one neutron – are present, one can draw con-
clusions about the shell structure and the strengths
of the proton-neutron interaction, by investigating
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the configuration mixing between these large compo-
nents. The 𝐵(𝑀1)-strength between the MSS 2+1 and
the 𝑔-factors of both states are excellent experimental
observation for measuring the degree of mixing. This
is highlighted by comparing the 2+1 and MSS struc-
tures in 92Zr and 94Mo.

Since 92Zr lies at a proton subshell gap, the pro-
ton two-quasiparticle state is located at much higher
energy causing a drastically larger energy difference
between the lowest proton and neutron two- quasi-
particle configurations than in 94Mo. As a result, the
proton-neutron interaction mediates a smaller con-
figuration mixing in 92Zr than in 94Mo resulting in
a smaller 𝐵(𝑀1)-strength and a negative 𝑔-factor of
the [9,14]. Clearly, 2+ mixed-symmetry states consti-
tute a very fine probe for exploring the nuclear struc-
ture sensitive to tiny shell effects and the detailed
strength of the proton-neutron interaction.

The typical strategy how to learn more about the
nucleus and its constituents is to make use of external
fields and to analyze the response. In order to obtain
the complementary experimental information about
the nature of an excitation mode, it is important to
use different probes interacting strongly, electromag-
netically or weakly. So far,the gamma spectroscopy
has been the main experimental technique for in-
vestigating the properties of 2+ mixed-symmetry
states. This method gives access to absolute electro-
magnetic transition strengths, i.e., only the structure
of the proton wavefunction is tested. This work in-
vestigates the 2+ mixed-symmetry states in 92Zr and
94Mo in the electron and proton scatterings. Since
protons interact at medium energies isoscalarly [15]
with the nucleus, a detailed test of the neutron
wavefunction is possible. In addition, the energy and
momentum transfers are decoupled in the proton
and electron scattering experiments allowing one
to explore the nuclear structure at different mo-
menta transferred, which is impossible in the gamma
spectroscopy.

The aim of this work is on another kind of mixed-
symmetry states like 92Zr and 94Mo nuclei.

2. Theoretical Considerations

2.1. The Interacting Boson Model (IBM)

The IBM-1 [16] is a purely phenomenological
model. Its basic assumption is that the collective low-
lying states in even-even nuclei can be described by

a fixed number of bosons having the angular momen-
tum and parity 𝐽 = 0+ (𝑠-boson) or 𝐽 = 2+ (𝑑-
boson). The restriction to 𝑠-boson and 𝑑-boson stems
from the observation that the residual interaction be-
tween like nucleons is strongest in the 𝐽 = 0+ and
𝐽 = 2+ channels. So, the microscopic counterparts
of 𝑠- and 𝑑-boson are correlated fermion pairs in
the shell model. It is possible to enlarge the model
space and to consider, e.g., 𝑔-bosons. Fixing the bo-
son number is the fundamental difference to the ge-
ometrical model causing several predictions, where
both approaches differ seriously. In the IBM-1 – the
simplest version of the interacting boson mode – no
distinction is made between protons and neutrons,
and the nucleus is considered as an one component
system. This restriction is lifted in the IBM-2 which
explicitly distinguishes between proton and neutron
bosons, as described in the next section. The IBM
considers only single boson energies for 𝑠-boson, as
well as for 𝑑-bosons. So clearly, it can not account for
any shell effects. Therefore, the model space of the
IBM-1 is a six-dimensional one spanned by the single
substate of the 𝑠-boson and the five magnetic sub-
states of the 𝑑-boson. To construct a suitable Hamil-
tonian, the following points have to be taken into
account:

∙ the Hamiltonian must fulfill the rotational sym-
metry, hermicity, and Pauli principle,

∙ the interaction between bosons is assumed to
have a two-body character,

∙ since the Hamiltonian must conserve the boson
number, every creation-operator must be combined
with a destruction-operator.

The IBM-2 distinguishes between proton and neu-
tron bosons. The Hamiltonian of IBM-2 can be writ-
ten as [17, 19]

𝐻 = 𝐻𝜋 +𝐻𝑣 +𝐻𝜋𝑣, (1)

𝐻 = 𝜖(𝑛𝑑𝜋+𝑛𝑑𝑣)+𝐾𝑄𝜋 𝑄𝑣+𝑉𝜋𝐾 +𝑉𝑉 𝑉 +𝑀𝜋𝑉, (2)

where 𝑛𝑑𝜌 (where 𝜌 = 𝜋 or 𝑣) are the 𝑑-boson number
operators for protons and neutrons with the respec-
tive 𝑑-boson energies 𝜖𝜌. The symbol 𝑄𝜌 denotes the
quadrupole operator for proton-bosons and neutron-
bosons. The last term of Eq. (2) denotes the so-called
Majorana interaction force, this parameter fixes the
state location with the mixed proton bosons – neutron
bosons symmetry with respect to totally symmetric
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states and is defined as [18, 19]

𝑀𝜋𝑣 =
1

2
𝜉2(𝑠

+
𝜋 𝑑

+
𝑣 − 𝑑+𝜋 𝑠

+
𝑣 ) (𝑠𝜋𝑑

−
𝑣 − 𝑑−𝑣 𝑠𝜋)−

−
∑︁

𝐾=1,3

𝜉𝐾

(︁[︀
𝑑+𝜋 𝑑

+
𝑣

]︀(𝐾)[︀
𝑑−𝜋 𝑑

−
𝑣

]︀(𝐾)
)︁
. (3)

The operator of quadrupole moment in the IBM-
2 model for proton and neutron boons takes the
form [7]:

𝑄𝜒𝜋
𝜋 = (𝑑+𝜋 𝑑

∼
𝜋 )

(2)𝜒𝜋(𝑠
+
𝜋 𝑑

∼
𝜋 + 𝑑+𝜋 𝑠𝜋)

(2)

and

𝑄𝜒𝑣
𝜋 =

(︀
𝑑+𝑣 𝑑

∼
𝑣

)︀(2)
𝜒𝑣(𝑠

+
𝑣 𝑑𝑣 + 𝑑+𝑣 𝑠𝑣)

(2). (4)

The terms 𝑉𝜋𝜋 is the interaction of proton-proton
bosons, and 𝑉𝑣𝑣 is the interaction of neutron-neutron
bosons only and is given by [20]:

𝑉𝜋𝜋 =
∑︁

𝐽=0.2.4

𝐶𝐿𝜌

[︁(︀
𝑑+𝑑+

)︀(𝐿)

𝜋
(𝑑∼𝑑∼)

(𝐿)
𝜋

]︁(0)
and
𝑉𝜋𝜋 =

∑︁
𝐽=0.2.4

𝐶𝐿𝜌

[︁(︀
𝑑+𝑑+

)︀(𝐿)

𝑣
(𝑑∼𝑑∼)

(𝐿)
𝑣

]︁(0)
. (5)

On the nucleonic level, the isospin is approximately a
good quantum number and presents a useful symme-
try to describe nuclear systems and to simplify calcu-
lations. Protons and neutrons are treated as different
states of one particle: the nucleon. On the bosonic
level, the 𝐹 -spin quantum number was introduced in
Ref. [19] as an analog to the isospin concept. The 𝐹 -
spin quantum numbers for proton and neutron bosons
are given by:

𝑏+𝜋 | 0⟩ =
[︂
𝐹 = 1/2,
𝐹𝑍 = 1/2, 𝑏+𝑣 | 0⟩ =

[︂
𝐹 = 1/2,
𝐹𝑍 = 1/2. (6)

The treatment of proton and neutron bosons as an
𝐹 -spin doublet imposes the SU(2) group structure;
therefore, the isospin and 𝐹 -spin are mathematically
identical. The generator of the SU(2) group can be
written as
𝐹+ = 𝑑+𝜋 𝑑

∼
𝑣 + 𝑠+𝜋 𝑠

∼
𝑣 ,

𝐹− = 𝑑+𝑣 𝑑
∼
𝜋 + 𝑠+𝑣 𝑠

∼
𝜋 ,

𝐹𝑍 =
1

2
[𝑑+𝜋 𝑑

∼
𝜋 + 𝑠+𝜋 𝑠

∼
𝜋 + 𝑑+𝑣 𝑑

∼
𝑣 − 𝑠+𝑣 𝑠

∼
𝑣 ],

𝐹𝑍 =
1

2
[𝑁𝜋 −𝑁𝑣],

(7)

𝐹+ and 𝐹− enhance or lower 𝐹𝑍 – being one half
of the difference between the numbers of proton and

neutron bosons – by 1. Since 𝐹+, 𝐹−, and 𝐹𝑍 form
a Lie algebra, they are closed under the commuta-
tion. As introduced in Eq. (7), it is possible to define
a Casimir operator for this algebra commuting with
each generator:

𝐹 2 = 𝐹−𝐹+ + 𝐹𝑍(𝐹𝑍 + 1). (8)

Conveniently, 𝐹𝑍 is chosen to label the states to-
gether with the corresponding eigenvalue of 𝐹 2 =
= 𝐹𝑍(𝐹𝑍 + 1). For a given number of proton and
neutron bosons, the 𝐹 -spin can take values between
𝐹min = [𝑁𝜋 −𝑁𝑣]/2, 𝐹max = [𝑁𝜋 +𝑁𝑣]/2. 𝐹 -spin is
a useful quantum number to classify the boson states
with respect to their symmetry under pairwise pro-
ton and neutron exchange. The basis states that are
characterized by a maximum 𝐹 -spin quantum num-
ber 𝐹 = 𝐹max can be transformed by the succes-
sive action of the 𝐹 -spin raising operator F+ into
a state that consists of proton bosons only. Obvious-
ly, such a state is unchanged under the pairwise ex-
change of proton and neutron labels, since it does
not contain any neutron bosons. Therefore, IBM-2
states with maximum 𝐹 -spin quantum number are
called Fully-Symmetric States (FSSs). All states with
𝐹 < 𝐹max contain at least one pair of proton and neu-
tron bosons which behave antisymmetrically under
the exchange of proton and neutron labels. This class
of states is investigated in this work and is referred to
as Mixed-Symmetric States (MSSs). The IBM-2 tran-
sition operators have a simple form with the use of
the multipole operators. The M1 transition operator
is given by:

𝑇 (𝑀1) = 𝑔𝜋𝐿
(1)
𝜋 + 𝑔(1)𝑣 , (9)

where 𝐿
(1)
𝜋 and 𝐿

(1)
𝑣 are the proton and neutron bo-

sons angular momentum operators which are given as

𝐿(1)
𝜋 =(10)1/2(𝑑+𝜋 𝑑

∼
𝜋 )

(1) and 𝐿(1)
𝑣 = (10)1/2(𝑑+𝑣 𝑑

∼
𝑣 )

(1),

(10)

𝑇 (𝑀1) =

√︂
3

4𝜋

(︁
𝑔𝜋𝐿

(1)
𝜋 + 𝑔𝑣𝐿

(1)
𝜋

)︁
. (11)

The 𝑔𝜋 and 𝑔𝑣 are the boson 𝑔-factors which are mea-
sured in nuclear magnetons (𝜇𝑛) units. The 𝑇 (𝑀1)

operator can be written as [20]:

𝑇 (𝑀1) = 0.77
[︀
(𝑑+𝑑∼)𝜋 − (𝑑+𝑑∼)𝑣

]︀(1)
(𝑔𝜋 − 𝑔𝑣). (12)

Typically, 𝑔𝜋 = 1 and 𝑔𝑣 = 0 are chosen in calcu-
lations, 𝐿

(1)
𝜌 denotes the total angular momentum
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which is, by construction, a good quantum number
and cannot connect different states. This term can
only induce 𝑀1-transitions between states which dif-
fer by one unit of the 𝐹 -spin [2]. Therefore, 𝑀1-
transitions between two fully symmetric states are
exactly forbidden. Since, no other 𝑀1 transitions are
allowed, except for the one between a fully symmet-
ric state and a mixed-symmetry state, it can be used
as an unique experimental signature for identifying
the mixed-symmetry states. The difference between
the boson 𝑔-factors amounts to ∼1𝜇𝑁 . Consequently,
one can expect a 𝑀1 transition matrix element of the
order of ⟨𝐹𝑆𝑆‖𝑇 (𝑀1)‖𝑀𝑆𝑆⟩ ≈ 1𝜇𝑁 . The 𝐸2 tran-
sition operator is given by

𝑇 (𝐸2) = 𝑒𝜋𝑄
𝜒𝜋
𝜋 + 𝑒𝑣𝑄

𝜒𝑣
𝑣 . (13)

The 𝑒𝜋(𝑒𝑣) are the effective charges for proton (neu-
tron) bosons, respectively, in 𝑒𝑏 units. The effective
charges 𝑒𝜋 and 𝑒𝑣 depend on the numbers of proton
bosons and neutron bosons. The quadrupole opera-
tors 𝑄𝜒𝜋

𝜋 and 𝑄𝜒𝑣
𝑣 are defined in Eq. (13). The re-

duced electric quadrupole transition rates between
two states are given by [20]:

𝐵(𝐸2; 𝑖 → 𝑓) =
|⟨𝐼𝑖‖𝑇 (𝐸2)‖𝐼𝑓 ⟩|2

2𝐼𝑖 + 1
. (14)

The quadrupole moment for a state characterized
by the angular momentum 𝐼 of a nucleus is defined
as [20]:

𝑄21 =

√︂
16𝜋

175
⟨2+1 ‖𝑇 (𝐸2)‖2+1 ⟩. (15)

2.2. The Quasiparticle Phonon Model

The Quasiparticle Phonon Model (QPM) is a phe-
nomenological, microscopic model. It uses a separable
force in the particle-hole channel making it possible to
include all relevant single-particle states for describ-
ing the collective excitation, i.e., no effective charges
are necessary to reproduce electromagnetic transition
strengths. The golden horse of the QPM is the cou-
pling of one-phonon states to two- and three-phonon
states – a feature which is unique to the QPM. The
next section describes technical aspects how the QPM
tackles the nuclear many-body problem followed by a
section about transition operators with a special fo-
cus on 𝑀1-transitions being important for MSS. The
phenomenological Hamiltonian used in QPM calcula-
tions contains four parts

𝐻qpm = 𝐻sp +𝐻pair +𝐻m +𝐻sm (16)

where 𝐻sp is the single-particle Hamiltonian usu-
ally taken as a Wood–Saxon potential, 𝐻pair absorbs
the short-range pairing correlations in the particle-
particle channel, 𝐻m represents a separable multi-
pole interaction in the particle-hole channel, 𝐻sm is
a separable spin-multipole interaction in the particle-
hole channel. The QPM equations are obtained by
a step-by-step diagonalization of the Hamiltonian. In
what follows, each of these steps is examined in de-
tail, and realistic examples are provided for the case
of 92Zr. The discussion is limited to even-even nu-
clei and natural parity states. Therefore, the last
term 𝐻sm, being only important for unnatural parity
states, is not considered here. The additional infor-
mation can be found in Ref. [21]. First, an appropri-
ate mean-field potential is chosen separately for pro-
tons and neutrons- to account for parts of the long-
range interaction. The common choice in the case of
QPM is a Wood–Saxon potential of the form

𝑈𝜏 (𝑟) =
𝑉 𝜏
0

1 + 𝑒(𝑟−𝑅𝜏
0 )/𝑎

𝜏
0

− ~2

𝜇2𝑐2
1

𝑟
×

× 𝑑

𝑑𝑟

(︂
𝑉 𝜏
𝑙𝑆

1 + 𝑒(𝑟−𝑅𝜏
0 )/𝑎

𝜏
𝑙𝑆

𝑙.𝑆

)︂
+ 𝑉C(𝑟). (17)

𝑉C represents the coulomb potential and 𝜇 the re-
duced mass. All parameters are fitted to obtain a suit-
able description of the properties of nuclei in a given
mass region with the restrictions 𝑅𝜏

𝑙𝑆 = 𝑅𝜏
0 , 𝑎𝜏𝑙𝑆 = 𝑎𝜏0 ,

and 𝑅C = 𝑅𝑝
0. Of course, this treatment reflects the

phenomenology of the QPM approach. However, in
principle, it would be possible to use a mean-field
potential obtained in a self-consistent way for the
Hatree–Fock and Skyrme forces [21]. This thesis in-
volves the nuclei 92Zr and 94Mo.

The main theoretical tool to account for this effect
is the BCS theory developed by Bardeen, Cooper,
and Schrieffer in 1957. As an ansatz for the nuclear
ground state, a wave function is chosen as such that
reflects the superfluid character of nuclei

|BCS⟩ =
∏︁
𝐾>0

(𝑢𝑘 + 𝑉𝑘𝑎
+
𝑘 𝑎

+
𝑘′)|0⟩, (18)

where 𝑘 runs over the whole single-particle basis, |0⟩ is
the vacuum state, and 𝑘′ represents the time-reversed
state of 𝑘, i.e. in a spherical basis 𝑘 = (𝑛, 𝑗, 𝑙,𝑚),
and 𝑘′ = (𝑛, 𝑗, 𝑙,−𝑚). The square of the coefficients
𝑢𝑘 and 𝑣𝑘 can be interpreted as the probability that
the state 𝑘 is either empty or occupied by a nucleon
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pair. In QPM calculations, the pairing correlations
are absorbed in the second term 𝐻pair of Eq. (18)

𝐻pair = −
𝑛,𝑝∑︁
𝜏

𝐺
(𝜏)
0

∑︁
𝑗𝑗′

√︀
(2𝑗 + 1)(2𝑗′ + 1)×

× [𝑎+𝑗𝑚𝑎+𝑗−𝑚]00 [𝑎
+
𝑗′−𝑚′𝑎

+
𝑗′𝑚′]00, (19)

where

[𝑎+𝑗 𝑎
+
𝑗′ ]𝜆𝜇 =

∑︁
𝑚𝑚′

𝐶𝜆𝜇
𝑗𝑚𝑗′𝑚′ 𝑎

+
𝑗𝑚𝑎+𝑗′𝑚′ . (20)

𝐶𝜆𝜇
𝑗𝑚𝑗′𝑚′ is the common Clebsch–Gordan coefficient.

The structure of the pairing Hamiltonian is very sim-
ple and assumes that the monopole pairing is of
zero-range and state-independent, as indicated by the
constant matrix element 𝐺

(𝜏)
0 . In principle, the last

assumption is not fully justified, and more refined
treatments are recommended like using a density-
dependent pairing force [22]. However, the QPM is
able to account for the main properties of spher-
ical nuclei. Therefore, this treatment seems to be
acceptable.

As for the particle-hole excitation spectrum in the
independent shell model, one can introduce a quasi-
particle excitation spectrum relative to the BCS-
ground state with the pleasant feature that the pair-
ing correlations are already included. The quasiparti-
cle energies can be calculated from the coefficients 𝑢𝑘

and 𝑣𝑘 with the equation below:

𝜖𝑗 =
√︁

△2
𝑗 + (𝐸𝑗 − 𝜆𝜏 )2, (21)

where 𝐸𝑗 is the single-particle energy from the Wood–
Saxon potential, and △𝜏 is the so-called pairing gap

△𝜏 = 𝐺(𝜏)
∑︁
𝑗

𝑢𝑗𝑣𝑗 . (22)

In the third step of the diagonalization procedure,
𝐻m is included, being responsible for the mixing of
quasiparticle states. In the quasiparticle representa-
tion, Hamiltonian (18) can be written as

𝐻qpm =

𝑛,𝑝∑︁
𝜏

±1∑︁
𝜏𝜌

∑︁
𝑗,𝑚

𝜖𝑗𝛼
+
𝑗𝑚𝛼𝑗𝑚 +

+

(︃∑︁
𝜆𝜇

±1∑︁
𝜏𝜌

(𝜅
(𝜆)
0 + 𝜌𝜅

(𝜆)
1 )𝑀+

(𝜆𝜇)(𝜏)𝑀
+
(𝜆𝜇)(𝜌𝜏)

)︃
, (23)

where the multipole operator is given by

𝑀+
(𝜆𝜇) =

𝜏∑︁
𝑗𝑗′

{︂
𝑢𝑗𝑗′

2

(︀
[𝛼+

𝑗 𝛼
+
𝑗′ ]𝜆𝜇 +

+(−1)𝜆+1[𝛼+
𝑗 𝛼

+
𝑗′ ]𝜆−𝜇

)︀
− 𝑣

(−)
𝑗𝑗′ 𝐵𝜏 (𝑗𝑗

′;𝜆𝜇)

}︂
, (24)

where
𝐵𝜏 (𝑗𝑗

′ : 𝜆𝜇) =
∑︁
𝑚𝑚

(−1)𝑗
′−𝑚′

𝑐𝜆𝜇𝑗𝑚𝑗′𝑚′ 𝛼
+
𝑗𝑚𝛼+

𝑗′𝑚′ . (25)

Besides the excitation energies, the electromagnetic
decay properties are an excellent to test the model
predictions and to deepen our understanding of nu-
clear structures, e.g., they can give important infor-
mations about the collective phenomena signaled by
large transition strengths. In the following, the ex-
pressions for transitions being important for MSS are
discussed. In the quasiparticle and phonon represen-
tations, the electric transition operator transforms
into

𝑀(𝐸𝜆𝜇) =

𝑛,𝑝∑︁
𝜏

𝑒(𝜆)𝜏

∑︁
𝑗𝑗′

⟨𝑗‖𝐸𝜆‖𝑗′⟩√
2𝜆+ 1

{︂
𝑢𝑗𝑗′

2
×

×
∑︁

(Ψ𝜆𝑖

𝑗𝑗′ − 𝜑𝜆𝑖

𝑗𝑗′)(𝑄
+
𝜆𝜇𝑖 + (−)𝜆−𝜇𝑄𝜆−𝜇𝑖)+

+ 𝑣
(−)
𝑗𝑗′

∑︁
𝑚𝑚′

𝐶𝜆𝜇
𝑗𝑚𝑗𝑚′(−)𝑗

′−𝑚′
𝛼+
𝑗′𝑚′𝛼𝑗′𝑚′

}︂
, (26)

where the single-particle transition matrix element
⟨𝑗‖𝐸𝜆‖𝑗′⟩ = ⟨𝑗‖𝑖𝜆𝑌𝜆𝑟

𝜆‖𝑗′⟩. The first term corre-
sponds to a one-phonon exchange term between the
initial and final states, while the second one is the so-
called boson-forbidden transition, i.e., in a pure boson
picture neglecting the inner fermion structure of the
𝑄-operators, this transition would be forbidden. The
quantity 𝑒𝑟 represents the effective charges to account
for states outside the chosen model space. In the shell
model, the typical values are 𝑒𝑛 = 0.5, 𝑒𝑝 = 1.5. Since
the QPM uses a drastically larger model space con-
taining all necessary states contributing to the tran-
sition of interest, it is possible to take the bare values
𝑒𝑛 = 0 and 𝑒𝑝 = 1.0. The explicit reduced matrix el-
ement for a ground state transition of a one-phonon
state is:

⟨𝑄𝜆𝑗‖𝜇(𝐸𝜆)‖0+𝑔.𝑠⟩ =
𝑛,𝑝∑︁
𝜏

𝑒(𝜆)𝜏 ×

×
∑︁
𝑗𝑗′

𝑢+
𝑗𝑗′

2
⟨𝑗‖(𝐸𝜆)‖𝑗′⟩(Ψ𝜆𝑖

𝑗𝑗′ + 𝜑𝜆𝑖

𝑗𝑗′). (27)
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Table 1. The IBM-2 Hamiltonian for 92Zr and 94Mo isotopes,
all Hamiltonian parameters in MeV units and are dimensionless

Isotopes 𝑁𝑣 𝑁𝜋 𝜖 𝜅 𝜒𝑣 𝜒𝜋 𝜉1 = 𝜉3 𝜉2 𝐶𝐿𝜋(𝐿 = 0, 2, 4)

Zr-92 1 5 1.000 –3.366 –0.70 –0.580 –0.70 0.22 0.025
Mo-94 1 5 1.020 –3.364 –0.72 –0.580 –0.72 0.24 0.026

Table 2. Parameters of the Wood–Saxon potential
used to calculate the properties of 92Zr and 94Mo

Particles 𝑉0, MeV 𝑅0, fm 𝑎0, fm 𝑉𝑙𝑠, fm

Neutron –44.70 5.802 0.6200 –9.231
Proton –56.70 5.577 0.6301 –9.306

The expression for the magnetic transitions with mul-
tipolarity 𝜆1 between two RPA-one-phonon states
with multipolarities 𝜆2 and 𝜆3 is given by

⟨𝑄3𝜆𝑖‖𝜇(𝐸𝜆1)‖𝑄𝜆3𝑖
′⟩ =

=

𝑛,𝑝∑︁
𝜏

𝑒(𝜆)𝜏

∑︁
𝑗1𝑗2𝑗3

𝑣+𝑗𝑗′⟨𝑗1‖𝑀𝜆1‖𝑗′2⟩×

×
[︂
𝜆3 𝜆2 𝜆1

𝑗1 𝑗2 𝑗3

]︂(︁
Ψ𝜆3

𝑗2𝑗3
Ψ𝜆3

𝑗3𝑗1
+ 𝜑𝜆3

𝑗2𝑗3
𝜑𝜆3
𝑗3𝑗1

)︁
. (28)

3. Results and Discussion

3.1. Energy spectra

The parameters of IBM-2 Hamiltonian for 92Zr and
94Mo are extrapolated in Table 1. The 𝜖, 𝜅, 𝜒𝑣 and
the Majorana parameter 𝜉1 = 𝜉3, 𝜉2 are treated as
free parameters which are functions of the numbers
of neutron and proton bosons or function of the
number of neutron bosons such as 𝜖 = 𝜖(𝑁𝜋, 𝑁𝑣),
𝜅 = 𝜅(𝑁𝜋, 𝑁𝑣), 𝜒𝑣 = 𝜒𝑣(𝑁𝑣), 𝜉𝐾 = 𝜉𝐾(𝑁𝜋, 𝑁𝑣).
The other parameters depend only on 𝑁𝑣 or 𝑁𝜋,
the parameter 𝜒𝜋 = 𝜒𝜋(𝑁𝜋), 𝐶𝐿𝜋 = 𝐶𝐿𝜋(𝑁𝜋) and
𝐶𝐿𝑣 = 𝐶𝐿𝑣(𝑁𝑣). The number of proton bosons is ac-
counted from the nearest major shell (𝑍 = 50). The
Zr isotope has 40 protons; therefore„ we have 𝑁𝜋 = 5
proton bosons, while the number of neutron bosons
is accounted from the nearest neutron closed shell
𝑁 = 50. Therefore, the number of neutron bosons
𝑁𝑣 = 1. The 94Mo has 42 protons; therefore, we
have 𝑁𝜋 = 5 proton bosons. The number of neutron
bosons for this isotope 𝑁𝑣 = 1. An increase of the

interaction strength 𝜅 will start to mix the unper-
turbed proton and neutron boson states and will fi-
nally cause the collective FSS and MSS connected by
a strong 𝑀1-transition, as seen in experiment. This
parameter is usually fixed empirically to experimental
data without considering its microscopic origin which
determines its strength.

The parameter 𝜒𝜋 is a constant for 92Zr and 94Mo
isotopes. This is due to the numbers of proton bosons
that are constant in these isotopes, whereas we in-
clude 𝐶0𝜋, 𝐶2𝜋, and 𝐶4𝜋 terms in the proton-proton
bosons interaction parameter 𝑉𝜋𝜋 and don’t include
𝑉𝑣𝑣, because 𝑁𝜋 > 𝑁𝑣 for the 92Zr and 94Mo isotopes.

The IBM-2 Hamiltonian parameters for 92Zr and
94Mo isotopes are estimated by fitting the experimen-
tal values. We varied one parameter, while keeping
the others to be constant to get the best fit with
experimental data. We can use these parameters to
evaluate the energy levels and electromagnetic tran-
sition rates using the computer codes NPBOS and
NPBTRAN program [23].

The Wood–Saxon parameters used to calculate the
properties of these nuclei are shown in Table 2. To ob-
tain the ground state configuration, we simply fill the
available number of nucleons from the bottom to the
top accounting for the Pauli exclusion principle. At
this stage, the model is called the independent shell
model and can describe only some properties of magic
nuclei. For giving a realistic description of nuclei, the
residual interaction codified in the last three terms of
Eq. (18) has to be taken into account.

The energy spectra for 92Zr and 94Mo in IBM-2 and
QPM are given in Figs. 1 and 2, respectively, together
with the experimental values, the agreement being
quite good for low-lying levels having a collective na-
ture. One can observe the discrepancies between our
IBM-2 and QPM calculations and experimental data
for high-spin states. This is due to that these states
are outside of the IBM-2 space. The calculated yrast
states 6+, 8+, and 4+ are slightly higher than the
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Table 3. The energy ratios for 92Zr and 94Mo

Isotopes
𝑅1 = 𝐸(4+1 )/𝐸(2+1 ) 𝑅2 = 𝐸(6+1 )/𝐸(2+1 ) 𝑅3 = 𝐸(8+1 )/𝐸(2+1 )

QPM IBM-2 Exp. QPM IBM-2 Exp. QPM IBM-2 Exp.

92Zr 3.228 3.172 3.165 1.585 1.586 1.600
94Mo 3.693 3.440 3.392 2.761 2.694 2.665 1.675 1.803 1.805
SU(5) 2 3 4
O(6) 2.5 4.5 7
SU(3) 3.3 7 12

experimental values. The calculations within IBM-2
are closer to experimental data more than those for
QPM, which is due to the parameters of the IBM-2
Hamiltonian.

The energy ratios for 92Zr and 94Mo isotopes are
given in Table 3. The energy ratio 𝑅1 = 1.600 for
92Zr isotope and 1.805 for 94Mo isotope. This indi-
cates that these isotopes show an anharmonic vibra-
tory shape character (almost spherical shape) corre-
sponding to the SU(5) symmetry.

One of the important features of IBM-2 is the pre-
diction of mixed-symmetry states 1+, 2+2 and 3+1 in
these isotopes. These states are obtained by choosing
the suitable values of Majorana parameters. In this
study, we found that the values of energies of 0+2 in
two theoretical models are close to experimental val-
ues [24, 25].

The QPM calculations were performed following
the procedure of Section 2. The parameters of the
Wood–Saxon potential used to obtain the single-
particle basis were fixed with regard for the prop-
erties of neighboring nuclei and are given in Ta-
ble 2. The strength of the pairing force was fitted to
odd-even mass differences, and the strength of the
residual interaction was determined to describe the
B(E2) value and the excitation energy of 2+1 . No ad-
ditional parameters are necessary to include the cou-
pling to multiphonon states. Since the QPM uses, in
contrast to the shell model, a single-particle basis
being sufficiently large to fulfill the energy-weighed
sum rules. The 2+1 and 2+2 states are nearly pure one-
phonon states, while 2+3 is dominantly a two-phonon
state with noticeable one-phonon contributions.

The wave functions of three lowest 2+ states are
shown in Tables 4 and 5. The 2+1 and 2+2 states are
dominated by the first and second RPA-phonons, re-
spectively. The contributions of other one-, two-, and

Fig. 1. Comparison between experimental data [24] and IBM-
2 and QPM calculated energy levels for 92Zr isotope

Fig. 2. Comparison between experimental data [26] and IBM-
2 and QPM calculated energy levels for 94Mo isotope

three-phonon states are less than 10%. The first and
second RPA-phonons are mainly formed by the same
two two-quasiparticle components (2𝑑5/2 ⊗ 2𝑑5/2)𝑛
and (1𝑔9/2 ⊗ 1𝑔9/2)𝑝. In the case of [2+1 ][RPA], both
components are in-phase and, for [2+2 ][RPA], out-of-
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phase forming the microscopic analogs of the sym-
metric and mixed-symmetry one-quadrupole phonon
states defined in the framework of the IBM-2.

The 2+3 state has a different structure. Its main
amplitude is a two-phonon component formed by
the first RPA-phonon. However, the contributions of
[2+4 ][RPA] and [2+5 ][RPA] phonons are appreciable and
indicate deviations from a harmonic phonon picture
in IBM-2 (Table 5) and QPM (Table 4). Figures 1
and 2, present a comparison between experimen-
tal and calculated excitation energies of five low-
est states. The IBM-2 and QPM reproduces the ex-
perimental energies with a reasonable accuracy of
∼0.1 MeV.

3.2. Electromagnetic transition probabilities

3.2.1. Electric transition probability B(E2)

In IBM-2, to calculate the reduced electric transition
probability 𝐵(𝐸2) from Eq. (13), we note that 𝐵(𝐸2)
depends on the effective charges of proton and neu-
tron bosons. The effective charge values for proton
and neutron bosons are estimated from the experi-
mental 𝐵(𝐸2; 2+1 → 0+1 ) values.

The effective charges of proton bosons for 92Zr and
94Mo isotopes are given as 𝑒𝜋 = 1.5 and 𝑒𝑣 = 0.5
in QPM. The effective charges are 𝑒𝑝 = 1.0 and
𝑒𝑛 = 0.0. The 𝐵(𝐸2) values for 92Zr and 94Mo iso-

Table 4. The structure of three
lowest 2+ states in 92Zr

States Exp. QPM Structure
(MeV) (MeV)

2+1 0.934 0.922 91%[2+1 ][RPA]

2+2 1.847 1.872 91%[2+2 ][RPA]

2+3 2.066 2.153 17%[2+4 ][RPA] + 13%[2+5 ][RPA] +

+54%[2+1 ⊗ 2+1 ][RPA]

Table 5. The structure of three
lowest 2+ states in 94Mo

States Exp. QPM Structure
(MeV) (MeV)

2+1 0.871 0.871 92%[2+1 ][RPA]

2+2 1.864 1.892 92%[2+2 ][RPA]

2+3 2.067 2.117 16%[2+4 ][RPA] + 14%[2+5 ][RPA] +

+52%[2+1 ⊗ 2+1 ][RPA]

topes and experimental values are listed in Table 6,
the agreement between them is a quite good.

In 𝐸2 transitions, the probability rates between
symmetric and mixed- symmetry states are propor-
tional to the quantity (𝑒𝜋𝜒𝑝𝑖 − 𝑒𝑣𝜒𝑣)

2 [26] and de-
pend on the nature of the states. The comparison
between experimental and calculated 𝐵(𝐸2) tran-
sition rates is shown in Table 6. Again, the QPM
describes well the decay properties being important
for the wave functions of the symmetric and mixed-
symmetry states. The 𝐸2 reduced probability be-
tween isovector to isoscalar states is low, differing by
an even number of phonons.

The electric quadrupole moments for the first ex-
cited states for 92Zr and 94Mo isotopes are presented
in Table 6, the values of 𝑄(2+1 ) decrease, by indicating
a prolate shape in the first excited state. The theoret-
ical values are in agreement with experimental values
in magnitude and sign.

3.2.2. Magnetic transition probability B(M1)

In order to calculate the 𝑀1 transition probabilities
in IBM-2, we have to estimate the 𝑔-factor of bosons
for proton bosons and neutron bosons in Eq. (11). We
used the Sambataro relation [27]:

𝑔 = 𝑔𝜋
𝑁𝜋

𝑁𝜋 +𝑁𝑣
+ 𝑔𝑣

𝑁𝑣

𝑁𝜋 +𝑁𝑣
. (29)

Equation (29) is used to estimate the 𝑔-factor for the
first excited 2+1 state. The magnetic dipole moment
value for 92Zr isotope, 𝜇 = −0.360(20)𝜇𝑁 [24], and
the mixing ratio value for 92Zr isotope to the tran-
sition 𝛿(𝐸2/𝑀1; 2+2 → 2+1 ) = 0.016(12) 𝑒𝑏/𝜇𝑁 [28],
are used to evaluate the 𝑔-factor of bosons. The value
for proton and neutron bosons is 𝑔𝜋 = 0.46𝜇𝑁 , 𝑔𝑣 =
= 0.24𝜇𝑁 . For 94Mo isotope, we follow the same pro-
cedure in 92Zr isotope. The values are 𝑔𝜋 = 0.47𝜇𝑁 ,
𝑔𝑣 = 0.23𝜇𝑁 . In QPM, the estimated 𝑔-factor for 92Zr
is equal to (−0.18𝜇𝑁 ) and, for 94Mo, is 0.274𝜇𝑁 .

To evaluate the magnetic transition probability
in 𝐵(𝑀1) in IBM-2 and QPM, we used Eqs. (11)
and (27), respectively. The theoretical results and
available experimental values are tabulated in Ta-
ble 7. Unfortunately, the experimental data on the
𝑀1 transition probability are very rare, and the ap-
proximate theory does not make it possible to set-
tle the question of nuclear nonaxiality. They show a
reasonable agreement with the available experimental
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Table 6. Comparison of the calculated and experimental E2
transition strengths in 2+ states in 92Zr 94Mo isotopes in W.U.

Transitions

92Zr 94Mo

Exp. [24] IBM-2 QPM Exp. [25, 29] IBM-2 QPM

2+1 → 0+1 0.64(6) 0.66 0.87 0.203 (4) 0.314 0.31
2+2 → 0+1 3.4(4) 4.22 5.22 0.33 (11) 0.52 0.58
2+3 → 0+1 <0.005 0.33 0.0031 – 0.45 0.11
2+2 → 2+1 – 23 11 60+20

−30 57 32
4+1 → 2+1 4.05 (11) 5.2 5.25 26.0 (42) 25.43 17
4+2 → 2+1 6.1 (8) 7.4 8.23 5.9 (10) 5.1 3.5
3+1 → 2+1 – 11 8.2 2.5+3.10

−2.1 3.11 0.876
3+1 → 2+2 – 0.854 1.2 1.5+1.2

−0.6 0.99 1.414
𝑄(2+1 ) –0.23 (5) –0.26 –0.30 –0.13 (8) –0.14 –0.21

Table 7. Comparison of the calculated and experimental
M1 transition strengths in 92Zr 94Mo isotopes in 𝜇2

𝑁 Units

Transitions

92Zr 94Mo

Exp. [24] IBM-2 QPM Exp. [25, 29] IBM-2 QPM

2+1 → 0+1 0.37 (4) 0.53 0.0011 0.37 (4) 0.007 0.0009
3+1 → 2+1 – 0.087 0.0076 0.01+0.102

−0.06 0.006 0.071
3+1 → 2+2 – 0.004 0.005 0.24+0.14

−0.07 0.0021 0.0006
1+1 → 0+1 – 0.96 1.43 0.16 (1) 1.100 0.89
1+1 → 2+1 – 0.0056 0.0087 0.007+6

−2 0.0057 0.95
2+3 → 2+1 – 0.00034 0.00011 0.003 0.009 0.126
1+1 → 2+2 – 0.55 0.409 0.43 (12) 0.641 0.853
2+3 → 2+1 – 0.41 0.431 0.35 (15) 0.329 0.356
3+1 → 4+1 – 0.12 0.011 0.074+0.044

−0.019 0.11 0.0071
𝜇(2+1 ) –0.360 (20) –0.35 –0.41 – –0.371 0.45

Table 8. Comparison of the calculated
and experimental 𝛿(𝐸2/𝑀1) in 92Zr 94Mo isotopes in 𝑒𝑏/𝜇𝑁 Units

Transitions

92Zr 94Mo

Exp. [29] IBM-2 QPM Exp. [29] IBM-2 QPM

2+2 → 2+1 0.016 (2) 0.022 1.22 –2.0 (3) –2.5 6
3+1 → 2+1 2.13 (7) 2.2 3.78 1.36 (9) 1.56 3.4
3+1 → 2+2 – 10 16 – 8 0.22
2+3 → 2+1 –1.04 (11) –1.55 –2.34 –1.9+0.5

−0.4 –2.0 4.5
4+1 → 2+1 – –1.414 2.45 – 2.98 13
3+1 → 4+1 – 6.7 9.88 – 4.21 8.9
4+2 → 4+1 – 0.14 11 – 3.90 11
1+1 → 2+1 – 23 20 – 17 22
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values. In addition, it is questionable, if the 𝐵(𝑀1)
strength is a suitable yool to identify a MSS in heavier
nuclei, since it is decreasing, as the square of the de-
formation parameter increases. It is not clear whether
this decrease can be attributed to a washing out of
the MSS, or, may be, a structural change in 2+1 is the
cause. The 𝐵(𝑀1) strength depends on the structure
of both states and cannot answer this question.

The 𝑀1 transition theoretical scheme is in a rea-
sonable agreement with the experimental data. We
get strong transitions between members of the iso-
scalar and isovector groups having an equal number
of phonons. We also obtain weak transitions between
different isospin states, but with different phonon
numbers and between states belonging to the same
isospin group.

The magnetic dipole moment for the first excited
state 𝜇(2+1 ) has been calculated in two collective mo-
dels, the results agree satisfactorily with the experi-
mental values.

3.2.3. Mixing ratios

To estimate the mixing ratios for 92Zr 94Mo isotopes,
we apply the following equation [28]:

𝛿(𝐸2/𝑀1; 𝐽𝑖 → 𝐽𝑓 ) = 0.835𝐸𝛾 (in MeV)×

× ⟨𝐽𝑓‖𝜇(𝐸2)‖𝐽𝑖⟩
⟨𝐽𝑓‖𝜇(𝑀1)‖𝐽𝑖⟩

𝑒𝑏

𝜇𝑁
. (30)

The mixing ratio values are listed in Table 8. wWe
can see a generally good agreement with experiments
values with the results of IBM-2- and QPM-based cal-
culations. The scheme of 𝛿(𝐸2/𝑀1 rates is consistent
with the picture provided by IBM-2 more than QPM
in magnitude and sign.

4. Conclusions

The systematic investigation of the mixed-symmetry
states for 92Zr 94Mo isotopes is carried out by the
collective models, namely, Interacting Boson Model-
2 (IBM-2) and Quasiparticle Phonon Model (QPM).
The energy spectra and electromagnetic transitions
are presented in this work, the agreement with the
experimental values is quite well. Now, we summarize
the conclusions of the main results in this study.

1. From the energy ratios, we show that the 92Zr
and 94Mo isotopes possess the U(5) symmetry and
have a vibrational shape (close to the spherical one).

2. The calculations of energy levels within IBM-2
and QPM, indicates that 2+2 , 2+3 , and 1+ are mixed-
symmetry states. They have the same character as
those proposed by Hamilton et al., [1] in the U(5)
limit.

3. The rates of electric transitions 𝐵(𝐸2) between
symmetric and mixed- symmetry states are propor-
tional to the quantity (𝑒𝜋𝜒𝜋−𝑒𝑣𝜒𝑣)

2 [26] and depend
on the nature of the states.

4. For the magnetic transition 𝐵(𝑀1), one can ob-
serve the strong transitions between members of the
isoscalar and isovector groups having an equal num-
ber of phonons.

5. For 𝑀1 transitions, we obtained a weak transi-
tion between different isospin states, but with differ-
ent phonon umbers and between states belonging to
the same isospin group.
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СТАНИ ЗI ЗМIШАНОЮ
СИМЕТРIЄЮ ЯДЕР 92Zr I 94Mo

Вивчаються стани зi змiшаною симетрiєю iзотопiв 92Zr та
94Mo iз застосуванням колективних моделей: модель-2 вза-
ємодiючих бозонiв (IBM-2) i модель фононiв-квазiчастинок
(QPM). Розрахованi спектри енергiї та швидкостi електро-
магнiтних переходiв для цих iзотопiв добре узгоджуються з
наявними експериментальними даними. Модель IBM-2 на-
дає бiльш точний опис даних. В цих iзотопах ми виявили
кiлька станiв зi змiшаною симетрiєю, таких як 2+2 , 2+3 , 3+1
i 1+𝑠 . Встановлено, що цi iзотопи мають вiбрацiйну форму,
що вiдповiдає U(5) симетрiї.

Ключ о в i с л о в а: модель-2 взаємодiючих бозонiв, мо-
дель фононiв-квазiчастинок, стани зi змiшаною симетрiєю,
B(E2), B(M1), коефiцiєнти змiшування.
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