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INFLUENCE OF ION VISCOSITY
ON THE DISTRIBUTIONS OF PLASMA
PARAMETERS IN STATIONARY GAS DISCHARGE

On the basis of hydrodynamic equations, the distributions of such plasma parameters as the
electric potential, the ion and electron densities, and the ion flow velocity toward the wall
in a plane layer of the stationary weakly ionized non-isothermal plasma confined between the
dielectric walls have been obtained. The temperatures of ions and electrons, as well as the
density of neutrals, are assumed to be constant. Instead of finding the eigenfunctions and
eigenvalues of the described problem, the Cauchy problem is solved with the initial values
corresponding to those that are in the plasma bulk. The wall position is determined from the
balance condition for the ion and electron fluxes. A method to avoid the singularity in the
system of hydrodynamic equations has been proposed. The influence of the ion viscosity in the
equation of ion motion was estimated. The distributions of plasma parameters are obtained
considering the ion viscosity in a quasineutral region.
K e yw o r d s: stationary gas discharge, viscosity, transient layer, hydrodynamic approxima-
tion, Debye radius.

1. Introduction
The problem of the steady state of a gas discharge
has been studied for about a century. The interac-
tion of plasma with surrounding surfaces occupies a
special place in those researches. The interaction of
plasma with a confining wall can be simply described
as follows. Owing to a high mobility of electrons, the
wall potential becomes negative with respect to the
surrounding plasma. The repulsion of electrons leads
to the formation of a region with a positive bulk
charge that screens neutral plasma from the nega-
tively charged wall. A typical width of this region is
determined by a few Debye–Hückel screening radii of
electrons, 𝑟D𝑒 =

√︀
𝑇𝑒/(4𝜋𝑒2𝑛𝑒0), where 𝑇𝑒 is the tem-

perature of electrons, 𝑒 the elementary charge, and
𝑛𝑒0 the hydrodynamic concentration of electrons in
the plasma bulk.

As a rule, the electron Debye radius 𝑟D𝑒 is small
in comparison with other characteristic lengths such
as the plasma size 𝐿 or the free path of ions, which
are determined by the ionization, recharging, and
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collision processes. In this case, plasma can be divi-
ded into two regions: a quasineutral region (the pre-
sheath) with the characteristic dimension 𝐿 and the
transient layer (the sheath) with the characteristic
thickness 𝑟D𝑒.

As was shown by Bohm [1], the formation of a sta-
tionary bulk charge layer is possible, only if the ions
enter the transient layer region at a velocity not lower
than the velocity of ion sound 𝑣B = 𝑣𝑠 =

√︀
𝑇𝑒/𝑚𝑖,

where 𝑇𝑖 and 𝑚𝑖 are the temperature and mass
of ions, respectively. In the case of non-isothermal
plasma (𝑇𝑒 > 𝑇𝑖), 𝑣𝑠 is larger than the thermal veloc-
ity of ions. This condition was obtained in the case
of cold ions (𝑇𝑖 = 0). At 𝑇𝑖 ̸= 0, the Bohm velocity
equals 𝑣B = 𝑣𝑠

√
1 + 𝜏 , where 𝜏 = 𝑇𝑖/𝑇𝑒 6 1. Hence,

the ions are pre-accelerated by a self-consistent elec-
tric field in the quasineutral region.

If the ions move to the plasma-confining surfaces
under the action of a self-consistent electric field,
the potential in plasma must have a maximum. In
the plane case, which is considered in this work, for
the symmetry reasons, this maximum should be lo-
cated in the middle plane of plasma. This plane is
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convenient to be chosen as the coordinate origin,
𝑥 = 0. Then the dielectric walls confining plasma are
located at 𝑥 = ±𝐿. A generalization to the cylindrical
or spherical case is not difficult.

Among the pioneering works on this issue, the most
cited are works [2, 3]. The corresponding formula-
tion of the problem is still often used. In work [2],
it was assumed for the first time that the ion ve-
locity is determined by a static self-consistent elec-
tric field, which is supported by the charge balance
between electrons and ions. An integral equation de-
scribing the plasma-layer potential distribution was
derived for various geometries, ion free path lengths,
and ionization methods. The solution of this equation
in the case of a short free path of ions in a cylin-
der with the ion generation proportional to the elec-
tron concentration brought about the same poten-
tial distribution as Schottky had found for a positive
column in the framework of the ambipolar diffusion
theory [3].

Among the later works, in which the hydrody-
namic approximation was used, works [4, 5] should
be mentioned. In work [4], the problem was solved
analytically for the first time in the quasineutral
region making allowance for the inertia of ions. In
work [5], the dependence of the ionic mobility on the
magnitude of the self-consistent field was taken into
consideration.

The authors of many works (see, e.g., work [6]) as-
sume that there are no collisions in plasma in the
transient layer because of its small thickness as com-
pared to the electron free path length. So, the terms
describing collisions in the equations of ion motion
and the continuity equations can be neglected. As
a result, the corresponding solutions turn out sim-
pler. However, there arise substantial difficulties as-
sociated with their matching with the solution in
the quasineutral region. Numerous references can be
found in works by Riemann [7, 8] who made a large
contribution to the study of this problem.

In work [7], the problem of matching the solutions
obtained for the quasineutral plasma region and the
transient layer was considered. It was solved both an-
alytically and numerically by explicitly constructing
a consistent asymptotic expression and comparing it
with exact solutions obtained for the hydrodynamic
plane Tonks–Langmuir problem in the limiting case
𝑟D𝑒/𝐿 → 0 (𝑇𝑖 = 0). However, the system of equa-
tions used in work [7] in the case of cold ions (𝑇𝑖 = 0)

possesses a singularity in the middle of plasma layer,
at 𝑥 = 0. To overcome this difficulty, the dimension-
less plasma potential Φ, the dimensionless concentra-
tion 𝑛, and the velocity of ions 𝑣 were expanded in a
vicinity of 𝑥 = 0 in the following power series in the
parameter �̄� = (𝑥𝛼𝑒)/𝑣𝑠, where 𝛼𝑒 is the ionization
frequency:

Φ = (𝑎0 + 𝑎(2)�̄�
2 + ...)�̄�2,

𝑛 = 𝑐0 + 𝑐(2)�̄�
2 + ...,

𝑣 = (𝑏0 + 𝑏(2)�̄�
2 + ...)�̄�.

The corresponding coefficients were determined in
work [7] by substituting those series into the motion
and continuity equations and grouping the terms with
identical power exponents of �̄�.

In most works, the ion viscosity is considered to
be a small parameter, so it is not taken into consid-
eration in the equation of ionic motion. At the same
time, there is no justification that such a viscosity
neglecting is correct. In work [9], the following con-
dition allowing the viscosity-associated effects in the
transport equations to be neglected was presented:
𝑣𝑖 ≪ 𝜈𝐿𝑣, where 𝑣𝑖 is the hydrodynamic velocity of
ions, 𝜈 the collision frequency, and 𝐿𝑣 a character-
istic scale of hydrodynamic velocity variations. This
condition is definitely obeyed in the quasineutral re-
gion, but its validity for the transient layer remains
uncertain.

The presented work is devoted to the elucida-
tion of the role of the ion viscosity in the forma-
tion of distributions of plasma parameters in station-
ary gas discharges. Its structure is as follows. In Sec-
tion 2, the problem is formulated, and the basic equa-
tions are derived. In Section 3, the basic system of
equations is solved without taking viscosity into ac-
count. The quasineutral approximation is applied to
the quasineutral region. In Section 4, the influence of
the ion viscosity on the distributions of parameters
in the nonisothermal weakly ionized stationary gas
discharge plasma is analyzed using the solutions ob-
tained in the previous section. Solutions with viscos-
ity are also obtained for the quasineutral region. Ge-
neral conclusions are made in Section 5.

2. Basic Equations

In order to solve the problem of the stationary dis-
tribution of plasma parameters in gas discharges, the
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hydrodynamic approximation will be used. This ap-
proach can be applied when the macroscopic plasma
parameters, such as the hydrodynamic velocity 𝑣
and the particle concentration 𝑛, vary rather slowly
in space and time; namely, the characteristic dis-
tances at which the valuesof macroscopic quantiti-
eschange should be much longer than the average
free path length. The hydrodynamic approximation
is also valid in the case of collisionless plasma, if
the thermal motion of the particles can be neglected,
i.e. plasma must be sufficiently cold [10]. However,
even if those conditions are not satisfied, the hydrody-
namic approach can be used for the qualitative anal-
ysis of plasma parameters.

The general continuity and motion equations for a
unit volume with gas particles of the 𝑙-th kind look
like [9]

𝜕𝑛𝑙

𝜕𝑡
+∇ (𝑛𝑙v𝑙) =

𝛿𝑛𝑙

𝛿𝑡
, (1)

𝑚𝑙𝑛𝑙

[︂
𝜕𝑣𝑙𝛼
𝜕𝑡

+ (v𝑙∇) 𝑣𝑙𝛼

]︂
= 𝑍𝑒𝑛𝑙𝐸𝛼 −

− 𝜕𝑝𝑙
𝜕𝑥𝛼

− 𝜕𝜋𝑙𝛼𝛽

𝜕𝑥𝛽
+𝑚𝑙𝑛𝑙

𝛿𝑣𝑙𝛼
𝛿𝑡

, (2)

where 𝑝𝑙 = 𝑛𝑙𝑇𝑙; 𝐸𝛼 = −𝜕𝜙/𝜕𝑥𝛼; 𝑣𝑙 and 𝑛𝑙 are the
hydrodynamic velocity and the concentration, respec-
tively, of the particles of the 𝑙-th kind, 𝐸 is the self-
consistent electric field, and 𝜙 is its the potential; 𝑝𝑙,
𝑇𝑙, 𝑚𝑙, and 𝜋𝑙𝛼𝛽 are the pressure, temperature, mass,
and tensor of viscous stresses, respectively, for the 𝑙-th
particles; 𝑍 is the ion charge, ∇ the differentiation op-
erator, and the subscripts 𝛼 and 𝛽 denote the coordi-
nate components 𝑥𝛼 and 𝑥𝛽 . The second term on the
left-hand side of Eq. (1) describes a change in the con-
centration of particles owing to their hydrodynamic
directional motion, whereas the right-hand side de-
scribes the appearance or disappearance of particles
as a result of collision processes. The second term on
the left-hand side of Eq. (2) describes the variation
of the particle velocity as a result of the plasma dis-
placement, whereas the right-hand side represents the
force acting on the particles of the 𝑙-th kind in a unit
volume. Its first component is the electric force, the
second one is the force arising owing to the pressure
gradient of the 𝑙-th plasma particles, the third one is
the force arising under the action of viscous stresses,
and the fourth one is the friction force associated with
collision processes.

We suppose that plasma consists of electrons and
ions of atomic hydrogen. Let us consider the station-
ary variant of the problem (𝜕/𝜕𝑡 = 0). Let the mag-
netic field be absent (H = 0), and let the tempera-
tures of the plasma particles and the concentration of
hydrogen atoms do not depend on coordinates 1. The
particle concentration changes due to the electron-
impact ionization,

𝛿𝑛𝑖,𝑒

𝛿𝑡
= 𝛼𝑒𝑛𝑒,

and the hydrodynamic velocity of ions due to the
recharging and ionization processes,

𝛿𝑣𝑖𝛼
𝛿𝑡

=

(︂
𝜈ex +

𝛼𝑒𝑛𝑒

𝑛𝑖

)︂
𝑣𝑖𝛼,

where 𝑛𝑖 and 𝑛𝑒 are the hydrodynamic concentrations
of ions and electrons, respectively; and 𝜈ex is the fre-
quency of the ion recharging at hydrogen atoms. The
electron concentration is assumed to be determined
by the Boltzmann formula 𝑛𝑒 = 𝑛𝑒0 exp(𝑒𝜙/𝑇𝑒). This
formula can be easily obtained from Eq. (2), if we di-
vide the latter by the characteristic values of parame-
ters and neglect the terms containing the electron-to-
ion mass ratio 𝑚𝑒/𝑚𝑖. We also suppose that, when
reaching the plasma–insulator boundary (the wall),
the electrons and ions completely recombine.

In the absence of a magnetic field, the ion viscous
stress tensor 𝜋𝑖𝛼𝛽 is expressed via the shear rate ten-
sor 𝑊𝛼𝛽 as follows:

𝜋𝑖𝛼𝛽 = −𝜂𝑖𝑊𝛼𝛽 ,

𝑊𝛼𝛽 =
𝜕𝑣𝑖𝛼
𝜕𝑥𝛽

+
𝜕𝑣𝑖𝛽
𝜕𝑥𝛼

− 2

3
𝛿𝛼𝛽

𝜕𝑣𝑖𝛾
𝜕𝑥𝛾

,
(3)

where 𝜂𝑖 is the dynamic ion viscosity coefficient,
𝛿𝛼𝛽 the Kronecker delta, and the subscript 𝛾 means
the relation to the coordinate component 𝑥𝛾 . Let us
divide the equation of motion (2) by the product
𝑚𝑖𝑛𝑖. Then, in the one-dimensional case, the motion,
continuity, and Poisson equations can be written in

1 If the particle temperature is determined self-consistently, it
is necessary to consider the equation of thermal conductivity
for particles in the presence of cooling and heating sources,
which makes the problem substantially more complicated.
Moreover, to a great extent, the problem solution will be
determined by the method of plasma heating.
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the form

𝑣𝑖
𝑑𝑣𝑖
𝑑𝑥

= − 𝑒

𝑚𝑖

𝑑𝜙

𝑑𝑥
−
(︂
𝜈ex + 𝛼𝑒

𝑛𝑒0 exp(𝑒𝜙/𝑇𝑒)

𝑛𝑖

)︂
𝑣𝑖 −

− 𝑇𝑖

𝑚𝑖𝑛𝑖

𝑑𝑛𝑖

𝑑𝑥
+

4

3
𝜂𝑖
𝑑2𝑣𝑖
𝑑𝑥2

, (4)

𝑑(𝑛𝑖𝑣𝑖)

𝑑𝑥
= 𝛼𝑒𝑛𝑒0 exp(𝑒𝜙/𝑇𝑒), (5)

𝑑2𝜙

𝑑𝑥2
= 4𝜋𝑒 (𝑛𝑒0 exp(𝑒𝜙/𝑇𝑒)− 𝑛𝑖), (6)

respectively, where 𝜂𝑖 = 𝜂𝑖/(𝑚𝑖𝑛𝑖) is the coefficient
of kinematic ion viscosity [11].

The recharging and ionization frequencies were cal-
culated making use of the relations 𝛼𝑒 = 𝜎𝑖𝑣𝑇𝑒𝑛𝑛

and 𝜈ex = 𝜎ex𝑣𝑇𝑖𝑛𝑛, where 𝜎𝑖 and 𝜎ex are the
cross-sections of electron-impact ionization and ion
recharging at hydrogen atoms, respectively; 𝑣𝑇𝑒 =
=
√︀
𝑇𝑒/𝑚𝑒 and 𝑣𝑇𝑖 =

√︀
𝑇𝑖/𝑚𝑖 are the thermal ve-

locities of electrons and ions, respectively; and 𝑛𝑛

is the concentration of neutral particles. The depen-
dence of the average product of the ionization cross-
section 𝜎𝑖 (in cm−3/s units) and the thermal velocity
of electrons on their temperature 𝑇𝑒 (in eV units) is
determined by the formula

𝜎𝑖𝑣𝑒 = 10−5 𝛩1/2

𝐼3/2 (6 +𝛩)
exp

(︀
−𝛩−1

)︀
,

where 𝐼 = 13.6 eV and 𝛩 = 𝑇𝑒/𝐼 [12]. The quantity
𝜎ex is determined by the formula [13]

𝜎ex = 4.9× 10−15

[︂
1 + 0.15× ln

(︂
1

𝑇𝑖

)︂]︂2
cm2,

where 𝑇𝑖 is reckoned in electronvolt units.
The coefficient of kinematic ion viscosity is equal

to the product of the characteristic ion velocity 𝑣𝑇𝑖

and the free path length 𝑙 (see, e.g., work [9]),

𝜂𝑖 = 𝑣𝑇𝑖𝑙 =
𝑣2𝑇𝑖

𝛼𝑒 + 𝜈ex + 𝜈C𝑖
,

where 𝜈C𝑖 = 𝜎C𝑖𝑣𝑇𝑖𝑛𝑖0 is the frequency of Coulomb
ion collisions, 𝑛𝑖0 the hydrodynamic ion concentra-
tion at 𝑥 = 0, 𝜎Ci = 𝜋(𝑒2/𝑇𝑖)

2𝛬𝑖 is the cross-section
of Coulomb ion collisions, 𝛬𝑖 = ln(𝑟𝐷𝑖/𝑟min 𝑖) is the
Coulomb logarithm, 𝑟Di =

√︀
𝑇𝑖/(4𝜋𝑒2𝑛𝑖0) is the ion

Fig. 1. Dependences of the dimensionless kinematic ion vis-
cosity 𝜂 on the ion temperature 𝑇𝑖 (in electronvolts) calculated
for 𝑛𝑒0 = 1010 cm−3, 𝑇𝑒 = 2 eV, and various concentrations
of neutral particles 𝑛𝑛 = 1013 (1 ), 1014 (2 ), 1015 (3 ), and
1016 cm−3 (4 )

Fig. 2. Dependences of the dimensionless frequencies of Cou-
lomb collisions, 𝜈𝐶 , recharging, 𝜈, and ionization, 𝛼, on the
ion temperature 𝑇𝑖 calculated for 𝑛𝑒0 = 1010 cm−3, 𝑛𝑛 =

= 1014 cm−3, and 𝑇𝑒 = 2 eV

Debye radius, and 𝑟min 𝑖 = 𝑒2/𝑇𝑖 is the impact pa-
rameter for the short-distance interaction.

In Fig. 1, the dependences of the dimensionless
kinematic ion viscosity 𝜂 = 𝜂𝑖/(𝑣𝑠𝑟D𝑒) = 𝜏/(𝜈+
+ 𝜈𝐶 + 𝛼) on the ion temperature 𝑇𝑖 calculated for
𝑇𝑒 = 2 eV and various concentrations of neutral par-
ticles 𝑛𝑛 are depicted. Here, 𝛼 = 𝛼𝑒/𝜔𝑝𝑖, 𝜈 = 𝜈ex/𝜔𝑝𝑖,
and 𝜈𝐶 = 𝜈Ci/𝜔𝑝𝑖 are the dimensionless frequencies,
and 𝜔𝑝𝑖 = 𝑣𝑠/𝑟D𝑒 is the ion plasma frequency. Note
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Fig. 3. Dependence of the plasma size 𝐿 on the electron con-
centration at the plasma center calculated for 𝑛𝑛 = 1014 cm−3,
𝑇𝑒 = 2 eV, and 𝑇𝑖 = 0.1 eV

that the kinematic ion viscosity increases consider-
ably with the growth of 𝑇𝑖 and the reduction of 𝑛𝑛.

In Fig. 2, the dependences of the dimensionless
frequencies of Coulomb collisions, 𝜈𝐶 , recharging, 𝜈,
and ionization, 𝛼, on the ion temperature 𝑇𝑖 calcu-
lated for 𝑛𝑒0 = 1010 cm−3, 𝑛𝑛 = 1014 cm−3, and
𝑇𝑒 = 2 eV are shown. This figure makes it possi-
ble to estimate which of the processes gives the main
contribution to the dimensionless parameter of the
kinematic ion viscosity. As the concentration 𝑛𝑛 of
neutral particles decreases, the point where the plots
for the recharging, 𝜈, and Coulomb collision, 𝜈𝐶 , fre-
quencies intersect becomes shifted toward higher ion
temperatures. The figure makes it evident that the
main contribution to 𝜂 is given by the recharging fre-
quency 𝜈, if the ion temperature 𝑇𝑖 is high and by the
Coulomb collision frequency 𝜈𝐶 at very low 𝑇𝑖’s. At
the same time, the electron-impact ionization fre-
quency 𝛼 weakly affects the dimensionless kinematic
ion viscosity at any 𝑇𝑖-value.

Let us change to the dimensionless variables 𝑣 =
= 𝑣𝑖/𝑣𝑠, 𝑛 = 𝑛𝑖/𝑛𝑒0, and Φ = 𝑒𝜙/𝑇𝑒 in the set of
equations (4)–(6). As a result, we obtain

𝑣𝑣′ = −𝛷′ −
(︂
𝜈 + 𝛼

exp(𝛷)

𝑛

)︂
𝑣 −𝜏

𝑛′

𝑛
+

4

3
𝜂𝑣′′, (7)

𝑛′𝑣 + 𝑛𝑣′ = 𝛼 exp(𝛷), (8)
𝛷′′ = exp(𝛷)− 𝑛, (9)

where the primed quantities mean their derivative
with respect to the dimensionless coordinate 𝑥/𝑟D𝑒.

The system of differential equations (7)–(9), in
which the ion viscosity is neglected, is a nonlinear
fourth-order system for the sought functions. It must
be supplied with boundary conditions. For reasons of
symmetry at the plasma center (𝑥 = 0), we have

𝑣(0) = 𝑛′(0) = 𝛷′(0) = 0. (10)

We should also remember that the potential is de-
fined with accuracy to an additive constant. Let us
take Φ(0) = 0. Another boundary condition concerns
the plasma-wall boundary: the hydrodynamic flow
of ions is equal to the flow of electrons in the direc-
tion of growing 𝑥. Besides that, it is assumed that the
electrons are distributed according to the Maxwell–
Boltzmann law, whereas the effects of electron reflec-
tion from the wall and electron emission by the wall
are absent [14]. As a result, we obtain

𝛤 (𝐿) = 𝑛(𝐿)𝑣(𝐿) =

√︂
𝑚𝑖

2𝜋𝑚𝑒
exp (𝛷(𝐿)). (11)

Hence, we have a system of fourth-order equa-
tions with four boundary conditions, i.e. an eigen-
value problem. For instance, if the parameters 𝐿, 𝑇𝑒,
𝑇𝑖, and 𝑛𝑛 are known, the stationary gas discharge
is possible at a certain value of 𝑛𝑒0, which has to be
determined by solving the indicated system.

3. Solution of the System
of Basic Equations in the Quasineutral
Approximation

Finding the eigenfunctions and eigenvalues for the
nonlinear system of equations (7)–(9) is a rather
complicated task. Therefore, it was analyzed with
the help of an alternative approach. Boundary condi-
tions (10) were considered as initial ones. They were
appended with an arbitrary initial 𝑛𝑒0-value, and sys-
tem (7)–(9) was integrated in the direction of posi-
tive 𝑥’s, i.e. the Cauchy problem was solved (see, e.g.,
works [7, 15], where the case of cold ions was consid-
ered). Integration was terminated at a point 𝑥 = �̂�,
where condition (11) is satisfied. As a rule, �̂� ̸= 𝐿 for
the first attempt. Then, the 𝑛𝑒0-value was changed,
and a new integration was carried out. The proce-
dure was repeated until �̂� = 𝐿 was obtained (see
Fig. 3). This method (the so-called shooting method)
was also used below when analyzing the influence of
the ion viscosity on the distribution of parameters in
stationary discharge plasma.
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Let us apply Eq. (7) with the excluded last term
and Eq. (8) to determine the dimensionless deriva-
tives of the ion velocity and concentration. We obtain

𝑣′ = −
𝛷′𝑣 +

(︁
𝜈 + 𝛼 exp(𝛷)

𝑛

)︁
𝑣2 + 𝜏𝛼 exp(𝛷)

𝑛

𝑣2 − 𝜏
, (12)

𝑛′ =

[︁
𝛷′ +

(︁
𝜈 + 𝛼 exp(𝛷)

𝑛

)︁
𝑣
]︁
𝑛

𝑣2 − 𝜏
. (13)

One can see that this system of equations has a singu-
larity at the point, where the hydrodynamic velocity
of ions and their thermal velocity are identical, 𝑣 =
=

√
𝜏 . In the case of strongly non-isothermal plasma,

the singularity point is located in the quasineutral re-
gion, where the plasma parameters vary at distances
of the order of plasma size, 𝛥𝑥 ∼ 𝐿, i.e. rather far
from the transient layer. The indicated singularity
prohibits the direct integration of system (7)–(9).

To avoid difficulties associated with the singular-
ity, let us take advantage of the fact that the sec-
ond derivative of the potential in Eq. (9) is small:
Φ′′ ≪ 𝑛 expΦ. Such an approach will be called the
“quasineutral approximation”. After the first itera-
tion (Φ′′ = 0), from Eq. (9), we obtain

𝑛(1) = expΦ(1), Φ′
(1) =

𝑛′
(1)

𝑛(1)
. (14)

Equation (14) makes it possible to exclude the po-
tential from the system of equations (7) and (8) so
that

𝑣(1)𝑣
′
(1) = − (1 + 𝜏)

𝑛′
(1)

𝑛(1)
− (𝜈 + 𝛼) 𝑣(1) +

4

3
𝜂𝑣′′(1), (15)

𝑛′
(1)𝑣(1) + 𝑛(1)𝑣

′
(1) = 𝛼𝑛(1). (16)

Equations (15) and (16) give us the dimensionless
derivatives of the ion velocity and concentration with-
out making allowance for the ion viscosity:

𝑣′(1) =
(1 + 𝜏)𝛼+ (𝜈 + 𝛼)𝑣2(1)

1 + 𝜏 − 𝑣2(1)
, (17)

𝑛′
(1) = −

(𝜈 + 2𝛼)𝑛(1)𝑣(1)

1 + 𝜏 − 𝑣2(1)
. (18)

From whence, one can see that the system of equa-
tions (17) and (18) has a singularity at a point,
where the hydrodynamic ion velocity is equal to the
Bohm velocity, 𝑣(1) =

√
1 + 𝜏 . Therefore, we solve

this system in the region 0 < 𝑣(1) <
√
1 + 𝜏 using

the Cauchy method with the initial conditions at the
point 𝑥 = 0. After passing the point 𝑣(1) =

√
𝜏 , the

determined values of 𝑣(1) and 𝑛(1), as well as the val-
ues of Φ(1) and Φ′

(1) calculated using 𝑣(1) and 𝑛(1),
are applied as the initial conditions for integrating
Eqs. (7)–(9) in the interval

√
𝜏 < 𝑣(1) <

√
1 + 𝜏 .

This method can be used to obtain a smooth
matching for the main plasma parameters. However,
substantial oscillations of the second derivative of the
velocity take place in this case, whereas the values of
this parameter are required to evaluate the ion viscos-
ity. Therefore, in order to make the matching of the
solutions of the systems of equations (9), (12), (13)
and (17), (18) more accurate, the next iteration for
the second derivative of the potential is used. In the
second iteration, Φ′′ = Φ′′

(1), and Eqs. (14)–(16) read

expΦ(2) = 𝑛(2) + Φ′′
(1),

Φ′
(2) =

𝑛′
(2) + Φ′′′

(1)

𝑛(2) + Φ′′
(1)

,
(19)

𝑣(2)𝑣
′
(2) = −

𝑛′
(2) + Φ′′′

(1)

𝑛(2) + Φ′′
(1)

−

−

(︃
𝜈 + 𝛼

𝑛(2) + Φ′′
(1)

𝑛(2)

)︃
𝑣(2) − 𝜏

𝑛′
(2)

𝑛(2)
+

4

3
𝜂𝑣′′(2), (20)

𝑛′
(2)𝑣(2) + 𝑛(2)𝑣

′
(2) = 𝛼(𝑛(2) + 𝛷′′

(1)). (21)

If the last term on the right hand side of Eq. (20) is
omitted, we obtain

𝑣′(2) =

{︃(︃
1 + 𝜏

𝑛(2) + Φ′′
(1)

𝑛(2)

)︃
𝛼+

+

(︃
𝜈 + 𝛼

𝑛(2) + Φ′′
(1)

𝑛(2)

)︃
𝑣2(2) +

Φ′′′
(1)𝑣(2)

𝑛(2) + Φ′′
(1)

}︃
×

×

{︃
𝑛(2)𝑛(2) + Φ′′

(1) + 𝜏 − 𝑣2(2)

}︃−1

, (22)

𝑛′
(2) =

𝛼(𝑛(2) + 𝛷′′
(1))− 𝑛(2)𝑣

′
(2)

𝑣(2)
, (23)

where Φ′′
(1) and Φ′′′

(1) are known functions. Note that,
in the course of the second iteration, the singular-
ity became slightly shifted toward the plasma-wall
boundary. When the ion temperature approaches the
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Fig. 4. Dependences of the dimensionless ion velocity 𝑣 and
concentration 𝑛 on the 𝑥/𝐿-coordinate calculated for 𝑛𝑒0 =

= 1010 cm−3, 𝑛𝑛 = 1014 cm−3, 𝑇𝑒 = 2 eV, and 𝑇𝑖 = 0.1 eV

Fig. 5. Dependence of the dimensionless ion velocity 𝑣 and
concentration 𝑛, the electron concentration 𝑛𝑒/𝑛𝑒0, the electric
field −Φ′, and the potential Φ in the transient layer on the
coordinate (𝐿− 𝑥)/𝑟𝐷𝑒 calculated for 𝑛𝑒0 = 1010 cm−3, 𝑛𝑛 =

= 1014 cm−3, 𝑇𝑒 = 2 eV, and 𝑇𝑖 = 0.1 eV

electron temperature, the singularity points in the
systems of equations (9), (12), (13) and (17), (18)
come closer to each other, so further iterations in
the framework of the quasineutral approximation are
required.

Figure 4 illustrates the solution matching for the
systems of equations (9), (12), (13) and (22), (23)
in the whole plasma volume. The solutions were
matched at the point 𝑥/𝐿 = 0.85. The solutions of
the system of equations (22) and (23) are shown in
the interval 0 < 𝑥/𝐿 < 0.85; and the solutions of
the system of equations (9), (12), and (13) in the
interval 0.85 < 𝑥/𝐿 < 1. The solutions of the sys-

Fig. 6. Dependences of the dimensionless ion velocities 𝑣, 𝑣(1),
and 𝑣(2) in the transient layer on the coordinate (𝐿 − 𝑥)/𝑟De

calculated for 𝑛𝑒0 = 1010 cm−3, 𝑛𝑛 = 1014 cm−3, 𝑇𝑒 = 2 eV,
and 𝑇𝑖 = 0.1 eV

tem of equations (9), (12), and (13) in the transient
layer are shown in Fig. 5. The following values of di-
mensional and dimensionless quantities were used in
calculations: 𝑛𝑒0 = 1010 cm−3, 𝑛𝑛 = 1014 cm−3,
𝑇𝑒 = 2 eV, 𝑇𝑖 = 0.1 eV, 𝑣𝑇𝑒 = 5.93 × 107 cm/s,
𝑣𝑇𝑖 = 3.09 × 105 cm/s, 𝑣𝑠 = 1.38 × 106 cm/s, 𝑟D𝑒 =
= 1.05× 10−2 cm, 𝜔𝑝𝑖 = 1.32× 108 s−1, 𝛼𝑒 = 1.39×
× 103 s−1, 𝜈ex = 2.74×105 s−1, 𝜈C𝑖 = 1.49×105 s−1,
𝜂𝑖 = 2.25×105 cm2/s, 𝐿 = 104.6 cm, 𝛼 = 1.05×10−5,
𝜈 = 2.08×10−3, 𝜈𝐶 = 1.13×10−3, and 𝜂 = 15.5. The
parameter values typical of a glow discharge were cho-
sen. Note that, for a better perception, the distance
is reckoned in the units of the plasma size 𝐿 in Fig. 4
and in Debye radii 𝑟D𝑒 in Fig. 5. The reference point
corresponds to the plasma-confining surface.

From Figs. 4 and 5, one can see that the solution
obtained for the systems of equations is continuous
and has no peculiarities. Expectedly, the solutions
change slowly in the quasineutral region. At the same
time, in the transient layer, the size of which is ap-
proximately equal to 3 cm [(25÷40)× 𝑟𝐷𝑒], there ap-
pears a bulk charge and the plasma parameters vary
drastically.

In addition to Figs. 4 and 5, Fig. 6 demonstrates
the first and second iterations for the ion velocity.
One can see that the iterations 𝑣(1) and 𝑣(2), which
were calculated under the quasineutrality condition,
begin to deviate from the “true” solution 𝑣 at a dis-
tance of about 40𝑟D𝑒 from the plasma-confining sur-
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face. This is slightly larger than the transient-layer
thickness, if the latter is defined as the distance from
the surface to the point, where 𝑣 = (1 + 𝜏)1/2. From
the first iteration of the Poisson equation, we deter-
mine the velocity at which the quasineutrality ap-
proximation is violated. It evidently occurs, when
the space-charge term Φ′′

(1) comprises a considerable
fraction of the electron- or ion-concentration terms,
Φ′′

(1) ≈ 0.01𝑛(1).
In order to find Φ′′

(1), let us firstly take the deriva-
tive of the last expression in Eqs. (14). Then, we have
to determine (𝑛′

(1)/𝑛(1))
2 and 𝑛′′

(1)/𝑛(1). For this pur-
pose, we use Eq. (18). Ultimately, we obtain⃒⃒⃒⃒
⃒Φ

′′
(1)

𝑛(1)

⃒⃒⃒⃒
⃒ ≈ (𝜈 + 2𝛼) (𝜈 + 5𝛼) (1 + 𝜏)

2

𝑛(1)

(︁
1 + 𝜏 − 𝑛2

(1)

)︁3 . (24)

By substituting the parameter values at which the
numerical calculations were performed into Eq. (24),
we arrive at the conclusion that the quasineutral-
ity approximation is violated at 𝑣(1) ≈ 0.93, which
is in good agreement with the result shown in
Fig. 6.

In Fig. 7, the distributions of the potential, self-
consistent electric field, and space charge in the
plasma volume are exhibited. Note that the ion con-
centration exceeds that of electrons within the en-
tire plasma volume by the quantity Φ′′, which can
be calculated at the coordinate origin by expand-
ing it in a series in 𝑥, so we obtain Φ′′

𝑥=0 ≈ −[(𝜈+
+2𝛼)𝛼]/2. In this case, the hydrodynamic velocity
of electrons, which can be obtained from the con-
tinuity equation for ions and the stationary condi-
tion, 𝑣𝑒/𝑣𝑠 = 𝑛𝑣/(𝑛 + Φ′′), turns out some higher
than the ion velocity. In spite of the presence of the
space charge, the electric field becomes appreciable
only in the transient layer, unlike the potential that
changes rather strongly throughout the whole plasma
volume.

4. Estimates of the Influence
of Ion Viscosity in the Ion
Motion Equation

Let us estimate the last term in the right-hand side
of Eq. (15). This term describes the viscosity of ions
in the quasineutral approximation. Let us divide it
by the first term (with 𝑛′

(1)/𝑛(1)), which includes the

Fig. 7. Dependences of the dimensionless potential Φ (1 ),
electric field −Φ′ (2 ), and space charge −Φ′′ = 𝑛𝑖 − 𝑛𝑒 (3 )
on the coordinate 𝑥/𝐿 calculated for 𝑛𝑒0 = 1010 cm−3, 𝑛𝑛 =

= 1014 cm−3, 𝑇𝑒 = 2 eV, and 𝑇𝑖 = 0.1 eV

electric field. The expression for 𝑣′′(1) can be obtained
from Eq. (17). As a result, we have⃒⃒⃒⃒
⃒4𝜂𝑛(1)𝑣

′′
(1)

3𝑛′
(1)

⃒⃒⃒⃒
⃒ = 8𝜂(1 + 𝜏)

3
(︁
1 + 𝜏 − 𝑣2(1)

)︁2 ×

×
[︁
(𝜈 + 2𝛼)(1 + 𝜏)− (𝜈 + 𝛼)

(︁
1 + 𝜏 − 𝑣2(1)

)︁]︁
. (25)

From whence, it follows that, at the plasma center,
where 𝑣(1) ≪ 1,⃒⃒⃒⃒
⃒4𝜂𝑛(1)𝑣

′′
(1)

3𝑛′
(1)

⃒⃒⃒⃒
⃒ ≈ 8

3
𝜂𝛼. (26)

As one can see from Figs. 1 and 2, in the case of
plasma parameters that were used in numerical cal-
culations, the contribution of the ion viscosity (26)
to Eq. (15) is small at the plasma center, being
of an order of 4 × 10−4. At the boundary between
the quasineutral plasma and the space-charge layer,
𝑣(1) .

√
1 + 𝜏 , and Eq. (25) implies that⃒⃒⃒⃒

⃒4𝜂𝑛(1)𝑣
′′
(1)

3𝑛′
(1)

⃒⃒⃒⃒
⃒ ≈ 8𝜂(𝜈 + 2𝛼)(1 + 𝜏)2

3
(︁
1 + 𝜏 − 𝑣2(1)

)︁2 . (27)

This result demonstrates that the contribution of
the ion viscosity increases rapidly, as the hydrody-
namic ion velocity approaches the ion sound veloc-
ity. But, in this case, the system of equations (9),
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Fig. 8. Dependences of the ratios of the terms in the equations
of motion (20) and (7) to the term containing the electric field
on the coordinate (𝐿 − 𝑥)/𝐿 calculated for 𝑛𝑒0 = 1010 cm−3,
𝑛𝑛 = 1014 cm−3, 𝑇𝑒 = 2 eV, and 𝑇𝑖 = 0.1 eV: |𝑣𝑣′/Φ′| (1 ),
|Φ′/Φ′| = 1 (2 ), |(𝜈 + 𝛼 exp(Φ)/𝑛)𝑣/Φ′| (3 ), |𝜏(𝑛′/𝑛)/Φ′| (4 ),
and |(4/3)𝜂𝑣′′/Φ′| (5 )

Fig. 9. Dependences of the ratios of the terms in the equations
of motion (20) and (7) to the term containing the electric field
on the coordinate (𝐿−𝑥)/𝑟𝐷𝑒 in the transient layer calculated
for 𝑛𝑒0 = 1010 cm−3, 𝑛𝑛 = 1014 cm−3, 𝑇𝑒 = 2 eV, 𝑇𝑖 =

= 0.1 eV, and 𝑛𝑛 = 1014 (2, 3 ) and 5 × 1014 cm−3 (3, 4 ):
|𝑣𝑣′/Φ′| (2, 4 ), |Φ′/Φ′| = 1 (1 ), |(4/3)𝜂𝑣′′/Φ′| (3, 5 )

(12), and (13) has to be applied instead of Eqs. (17)
and (18).

Let us estimate the contribution of the ion viscosity
to the equation of ion motion (7), if 𝑣 >

√
𝜏 . For this

purpose, we should determine the second derivative
of the ion velocity taking the Poisson equation (9)

Fig. 10. Dependence of the ratio |𝑣′′/Φ′| on the coordi-
nate (𝐿 − 𝑥)/𝑟𝐷𝑒 in the transient layer calculated for 𝑛𝑒0 =

= 1010 cm−3, 𝑇𝑒 = 2 eV, 𝑇𝑖 = 0.1 (1, 3 ) and 0.3 eV (2, 4 ),
and 𝑛𝑛 = 1014 (1, 2 ) and 5× 1014 cm−3 (3, 4 )

Fig. 11. Dependences of the ion concentration and velocity
on the coordinate 𝑥/𝐿 calculated in the quasineutral approxi-
mation taking (𝑣(1)𝜂 , 𝑛(1)𝜂) and not taking (𝑣(1), 𝑛(1)) the ion
viscosity into account for 𝑛𝑒0 = 1010 cm−3, 𝑛𝑛 = 1014 cm−3,
𝑇𝑒 = 2 eV, and 𝑇𝑖 = 0.1 eV

into account. The first derivatives of the ion velocity
and concentration are determined by Eqs. (12) and
(13), respectively. Then we obtain

𝑣′′ = −
{︂
Φ′′𝑣 +

[︂
Φ′ + 2

(︂
𝜈 + 𝛼

expΦ

𝑛
− 𝑣′

)︂
𝑣

]︂
×

× 𝑣′+𝛼
expΦ

𝑛

(︂
Φ′ − 𝑛′

𝑛

)︂
(𝑣2+𝜏)

}︂
×{𝑣2−𝜏}−1. (28)

Finally, the contribution of the ion viscosity to the
equation of ion motion (7) in the region, where
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𝑣 >
√
𝜏 , amounts to⃒⃒⃒⃒

4𝜂𝑣′′

3Φ′

⃒⃒⃒⃒
= −

{︂
𝜂

⃒⃒⃒⃒
Φ′′𝑣+

[︂
Φ′ + 2

(︂
𝜈 + 𝛼

expΦ

𝑛
− 𝑣′

)︂
𝑣

]︂
×

× 𝑣′ + 𝛼
expΦ

𝑛

(︂
Φ′ − 𝑛′

𝑛

)︂
(𝑣2 + 𝜏)

⃒⃒⃒⃒}︂
×

×
{︂
3 |Φ′| (𝑣2 − 𝜏)

}︂−1

. (29)

In the case of strongly non-isothermal plasma, ex-
pression (28) for the transient layer can be simpli-
fied. Then we obtain⃒⃒⃒⃒
4𝜂𝑣′′

3𝛷′

⃒⃒⃒⃒
≈ 4𝜂|𝛷′′𝑣 + [𝛷′ − 2𝑣𝑣′] 𝑣′|

3 |𝛷′| (𝑣2 − 𝜏)
. (30)

In Fig. 8, the ratios of all terms in the equation of
motion (7) to the term containing the electric field are
depicted. From this figure, one can see that the ion
viscosity has a little effect in the quasineutral region,
but this effect increases in the transient layer and
must be taken into consideration.

For the sake of comparison, the same ratios but for
𝑛𝑛 = 5×1014 cm−3 in the transient layer are shown in
Fig. 9. As the concentration of neutrals 𝑛𝑛 decreases,
the ion viscosity coefficient 𝜂 increases so that the ion
viscosity contribution exceeds that of the electric-field
term in the transient layer. At the same time, the
contribution of the ion-viscosity term remains small
throughout the other plasma volume.

In Fig. 10, the spatial profiles of the ratio |𝑣′′/Φ′|,
which were calculated for 𝑇𝑒 = 2 eV and various
values of 𝑇𝑖 and 𝑛𝑛, are demonstrated. As one can
see, if 𝑇𝑒 is fixed, the magnitude and the behavior of
the quantity |𝑣′′/Φ′| only slightly differs for various
𝑇𝑖- and 𝑛𝑛-values. From whence, it follows that the
magnitude of the contribution |(4/3)𝜂𝑣′′/Φ′| is deter-
mined by the value of (4/3)𝜂 only.

Figure 11 illustrates the distributions of the ion
concentration and velocity calculated in the quasineu-
tral approximation, taking and not taking into
account the term describing the ion viscosity in
Eqs. (20) and (15). As one can see, since the magni-
tude of this term is small in the volume of quasineu-
tral plasma, its consideration has a little effect on the
plasma size 𝐿.

The exact solution of the system of equations (7)–
(9) taking the viscous term in the transient layer into
account is the subject of further researches.

5. Conclusions

It is well known that, when studying the distribu-
tion of plasma parameters in a stationary gas dis-
charge, the plasma volume can be divided into two
regions. One of them includes the main volume of
plasma, where the quasineutrality condition is sat-
isfied almost exactly, i.e. the concentration of ions is
almost equal to the concentration of electrons dis-
tributed in the plasma potential according to the
Boltzmann distribution. The potential distribution in
plasma is determined by the exit of electrons to the
plasma-confining surface and the subsequent screen-
ing of this surface by ions. The other region is the re-
gion, where ions screen the surface, and the quasineu-
trality condition is violated. An approximate “bound-
ary” between those regions is a point, where the ve-
locity of ions accelerated toward the surface is equal
to the Bohm velocity. The distance of this point from
the surface is about 30 electron Debye radii. The task
of determining the parameters for a stationary gas
discharge is an eigenfunction and eigenvalue prob-
lem. It is usually solved in the form of a Cauchy prob-
lem with the initial conditions given at the plasma
center, whereas the coordinate of the boundary sur-
face is determined from the balance condition for the
ion and electron fluxes. A “true” position of the sur-
face can be obtained by varying, e.g., the electron
concentration at the plasma center provided that the
other parameters are fixed.

When determining the distribution of plasma pa-
rameters in a stationary gas discharge, the account
for the ion viscosity was usually neglected. In this
work, a method aimed at determining the parameter
distributions in strongly non-isothermal (𝑇𝑒 ≫ 𝑇𝑖)
plasma making allowance for the finite ion temper-
ature has been proposed and applied. In particular,
the method was used to estimate the account for
the ion viscosity in the equation of ion motion. It
was shown that the corresponding effect is small in
the quasineutrality region, i.e. in almost the whole
plasma volume. It does not result in an appreciable
change in the plasma concentration in bulk. On the
other hand, the calculations showed that the ion vis-
cosity substantially affects the distribution of plasma
parameters in the transient layer. The exact solution
of the system of equations taking the ion viscosity
in the transition layer into account is the subject of
further researches.
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Я.Ф.Лелеко, Д.Л. Греков

ВПЛИВ В’ЯЗКОСТI IОНIВ
НА РОЗПОДIЛ ПАРАМЕТРIВ ПЛАЗМИ
В СТАЦIОНАРНИХ ГАЗОВИХ РОЗРЯДАХ

Для плоского шару стацiонарної слабоiонiзованої сильноне-
iзотермiчної плазми, обмеженого дiелектричними стiнками,
на основi рiвнянь гiдродинамiки отримано розподiли пара-
метрiв плазми – потенцiалу, густини iонiв i електронiв та
швидкостi потоку iонiв у напрямку стiнок. Припускалось,
що температури iонiв i електронiв та густина нейтралiв є
постiйними. При цьому замiсть знаходження власних фун-
кцiй i власних значень цiєї задачi, розв’язувалась задача
Кошi для початкових значень, якi є заданими в центрi пла-
зми. Положення стiнки визначалось з умови рiвностi по-
токiв iонiв i електронiв. Запропоновано метод розв’язання
проблеми сингулярностi, що присутня в системi рiвнянь гi-
дродинамiки. Проведено оцiнки ефекту в’язкостi iонiв у рiв-
няннi руху iонiв. Отримано розподiли параметрiв плазми з
урахуванням в’язкостi iонiв в областi квазiнейтральностi.

Ключ о в i с л о в а: стацiонарний газовий розряд, в’язкiсть,
перехiдний шар, гiдродинамiчне наближення, радiус Дебая.
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