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MOLECULAR-FIELD
APPROXIMATION IN THE THEORY
OF FERROMAGNETIC PHASE TRANSITION
IN DILUTED MAGNETIC SEMICONDUCTORS

In this pedagogical paper, the comparative analysis of two common approaches describing the
ferromagnetic phase transition in diluted magnetic semiconductors (DMS) is expounded in
terms of the Weiss field approximation. Assuming a finite spin polarization of the magnetic
ions, the treatment of carrier-ion exchange interaction in the first order evokes a homogeneous
Weiss molecular field that polarizes the spins of free carriers. In turn, this spin polarization of
the free carriers exerts the effective field that may stabilize the DMS spin polarization below a
critical temperature 𝑇C. The treatment of such self-consistent spontaneous DMS magnetization
can be done in terms of the spin-spin interaction independent of the inter-ion distance and
the infinitesimal in thermodynamic limit. On the other hand, by additionally accounting for
the second-order effects of the carrier-ion exchange interaction, we can treat a Weiss field in
terms of the Ruderman–Kittel–Kasuya–Yosida indirect spin-spin interaction, which oscillates
and does not disappear at finite inter-ion distances in the case of a finite concentration of
carriers. These both approaches result in the same Curie temperature 𝑇C provided a non-
correlated homogeneous random distribution of the localized spin moments over the sample
volume. We discuss the origin of such coincidence and show when this is not a case in other
more realistic models of the conducting DMSs.
K e yw o r d s: diluted magnetic semiconductors, ferromagnetic ordering, mean- field approxi-
mation, RKKY interaction.

1. Introduction

The carrier-ion exchange interaction (CIEI) trig-
gered a train of unusual electronic phenomena in
diluted magnetic semiconductors (DMS) like the
A1−𝑥Mn𝑥B – compounds, where AB denotes II–VI or
III–V semiconductors [1, 2]. Soon after the discovery
of the giant spin splitting of the exciton spectra in the
pioneer paper [1], the ferromagnetic (FM) phase tran-
sition accompanied by the mutual spin polarization of
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band carriers and localized spin moments (LSMs) in
DMS was predicted [3]. That paper had shown how
to convert the CIEI of spin polarized LSM to the
Weiss molecular field, which polarizes the spins of
free carriers (electrons or holes). They, in turn, serve
as a source of the exchange field capable to stabi-
lize a finite magnetic moment of LSMs at a certain
temperature. The approach of Ref. [3] predicts the
FM phase transition with the simultaneous arising
of the spontaneous magnetization for subsystems of
both the LSMs and the carriers (i.e. electrons and/or
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holes). Their mutual directions of spin polarizations
depend on the sign of CIEI that is generally different
for electrons and holes.

Similarly to works [4, 5], where a modeling of the
carriers-induced ferromagnetism through the CIEI
was developed for the first time to describe the
ferromagnetism of transition metals, the formalism
of Ref. [3] involves an additional effect of the ion-
ion spin-spin interaction with exchange constants
𝐽𝑚𝑚(R𝑗1,R𝑗2), where R𝑗1,R𝑗2 are the radii-vectors
of the corresponding magnetic ions. In Ref. [3], it was
supposed that the effective indirect RKKY [6–8] ion-
ion exchange interaction through the carriers could be
added to the contributions of 𝐽𝑚𝑚(R𝑗1,R𝑗2). This
not entirely correct assumption, as well as the dis-
cussion presented in the rest of that paper, was not
accompanied by a more thorough theoretical analysis
[8, 9]. Moreover, all estimations in [3] were carried out
in the limit 𝐽𝑚𝑚 → 0. Consequently, the approach of
Ref. [3] allows one to correctly estimate the range of
Curie temperatures 𝑇C for actual magnetically doped
semiconductors in the first-order perturbation only.

The formalism developed in Refs. [4, 5] and Ref. [3]
treats CIEI in the first order of perturbation theory,
which evaluates only corrections to the energy of in-
teracting particles, while it cannot account for the ef-
fects of electron (hole) scattering with a changing of
their wave vectors. That is why a number of authors
use the lexis “direct carrier-ions exchange interaction”
to indicate CIEI in the first order of perturbation the-
ory. In this approach, the Weiss field generated by one
LSM via free carriers affects another spins regardless
the inter-ion distance. At one time, this circumstance
caused a lively scientific discussion (see Refs [8] and
[9]). Let us also mention that the formalism described
above involves no modification of the LSM-LSM ex-
change interaction due to CIEI.

An alternative approach to this problem treats the
free carriers as a mediator of the indirect interac-
tion between pairs of localized spins. Such interaction
is usually cited as the Ruderman–Kittel–Kasuya–
Yosida (RKKY) [6–8] indirect spin-spin interaction.
The standard procedure presumes evaluating the en-
ergy of the indirect interaction in the second order of
perturbation theory that mixes the electronic states
with different wave vectors k ̸= k′, but excludes the
case k = k′. Accordingly, the spin-dependent second-
order correction to the energy oscillates with the dis-
tance between spin locations. Note, however, that the

actual RKKY-procedure also implicitly involves the
contribution of singular points k = k′ for the scatter-
ing without wave vector changing. That contribution
was shown to coincide with first-order effects of the
spin-spin interaction [8,9]. Thus, the RKKY indirect
spin-spin interaction may lead to FM correlations and
phase transition calculated in terms of the first and
second orders of perturbation theory.

The FM phase transitions in DMS were first ob-
served in IV-Mn-VI compounds [10] and were explai-
ned in terms of the RKKY interactions. Surprisingly,
the Weiss molecular field calculated in the first order
of perturbation theory [3] and in terms of the sum of
RKKY spin-spin interactions results in the same ex-
pression in the case of random non-correlated distri-
bution of the magnetic ions. Based on this particular
statement, the identity of both approaches became a
conventional wisdom [11]. In other words, the Curie
temperature evaluated in the first order of CIEI sup-
poses to be not refined with adding the second-order
effects of the RKKY interaction. This also means that
the second- order effect represented by the sum over
scattered electrons/holes with k ̸= k′ does not con-
tribute to the energy of spins in the Weiss field under
a random non-correlated distribution of the magne-
tic ions.

Nevertheless, in contrast to the common stand-
point, the testing of this assumption for the exactly
solvable model of flat energy bands reveals the com-
plementary contributions of the “direct” (first order)
and “indirect” (second order) interactions to the criti-
cal temperature of the FM phase transition [12]. The
intrigue of this antinomy was strengthened by the
works [13, 14] demonstrated a significant discrepan-
cy of the mean-field [3] and RKKY treatments in the
more advanced approximation of random fields. Ho-
wever, the problem how a more realistic approxi-
mation of the band structure than the dispersion-
less one [12] would modify the Weiss molecular field
still remains an actual problem of the theory of FM
phase transition in disordered magnetic systems. Be-
low, we present the analysis of this problem in terms
of the effective fields mediated by CIEI in the first
and second orders separately. In particular, we show
that the second-order correction to the Weiss field be-
comes zero provided only a non-correlated equiproba-
ble LSM distribution up to infinitesimal inter-ion dis-
tances. Moreover, in contrast to such free gas mod-
eling of the LSM distribution, the irremovable lim-
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itation of the minimal inter-ion distance by the lat-
tice constant may visibly correct the estimation of the
critical temperature in DMS.

Note that the giant spin splitting observed in the
DMS band structure is usually treated in the first or-
der in CIEI. This approach does not involve oscilla-
tions of the spin density of charge carriers around the
LSM depending on the distance to it. On the other
hand, such oscillations may be important in other
phenomena. For example, RKKY-like oscillations of
the effective spin-spin interaction are responsible for
the non-monotonic dependence of the exchange in-
teraction between FM layers on thickness of the non-
magnetic spacer between them [15–18].

2. Weiss Field
in the First-Order Approximation

For the sake of definiteness, let us consider a DMS
with the degenerate gas of free carriers, electrons
or holes, in a simple energy band accounting for
the isotropy dispersion law with an effective mass
𝑚*. Moreover, to focus only on the effects of CIEI, the
direct spin-spin interactions not related to free carri-
ers will be omitted. This simplification merely corre-
sponds to the model developed in Ref. [3] provided
nulling the direct spin-spin interaction. The Hamil-
tonian for the carrier-ion exchange interaction takes
the form of a contact interaction between electrons
with spin-space coordinates s𝑖r𝑖 and 𝑁𝑚 magnetic
ions with spins S𝑗 situated at the lattice sites 𝑅𝑗 :

𝐻̂𝐿,𝑒 = −𝛽Σ𝑖Σ𝑗S𝑗s𝑖𝛿(r𝑖 −R𝑗). (1)

The constant of CIEI 𝛽𝑁0, where 𝑁0 is the concen-
tration of primitive cells (number of primitive cells
divided by the volume), and 𝛽 is the calculation pa-
rameter with dimension of energy multiplied by the
volume. The value of 𝛽𝑁0 achieves a sufficient mag-
nitude in the valence bands of most DMSs up to 1 eV
and even more [19]. The exchange integral, which fol-
lows from (1), depends on both crystal and magnetic
ion parameters. The correspondent spin-Hamiltonian
stems from Eq. (1) after averaging the 𝛿(r𝑖 −R𝑗) on
the carrier coordinate wave function Ψ(r). The latter
represents a standard Bloch function normalized to
the crystal volume 𝑉 , if the CIEI (1) does not suf-
ficiently disturb the electronic states. The necessary
condition for this approximation corresponds to the
smallness of the parameter 𝜀 = 𝛽𝑁0/𝑊 , where 𝑊 is a

relevant bandwidth [20]. Below, this parameter is as-
sumed to be small, and the Bloch functions become a
good zero-order approximation for the electron/hole
states in DMS. One should note that, in such case,
the exchange integral for one carrier with one LSM,
𝐽1,1, is

𝐽1,1 = 𝛽/𝑉. (1a)

If the carrier is localized in some part of the crys-
tal, for instance, the electron of a neutral donor or a
carrier in the case of magnetic polaron formation, the
exchange integral of one carrier with one LSM may
be enhanced sufficiently due to a growth of the car-
rier density on the LSM in the decreased localization
volume.

If one will neglect spin fluctuations of LSM, Eq. (1)
represents the Zeeman energy of electrons in the ho-
mogeneous Weiss field of magnetic ions (m) acting on
the carrier (let it be an electron (e)) spins:

B𝑒/𝑚 =
𝛽𝑛𝑚⟨S𝑚⟩

𝑔𝑒𝜇B
, (2)

where 𝑛𝑚, 𝑔𝑒 and 𝜇B are the LSM concentration, elec-
tron g-factor and Bohr magneton, respectively.

On the other hand, CIEI (1) can be transformed
to the Zeeman energy of the magnetic ions affected
by the exchange field of the electrons with the mean
value ⟨s𝑒⟩ of the spin polarization,

B𝑚/𝑒 =
𝛽𝑛𝑒⟨s𝑒⟩
𝑔𝑚𝜇B

, (3)

where 𝑔𝑚 is the LSM g-factor, and 𝑛𝑒 is the electron
concentration.

Equations (2) and (3) look like the complete sys-
tem of equations with respect to effective fields, if one
takes the following relations into account:

⟨S𝑚⟩ = −𝜒(1)
𝑚

B𝑚/𝑒

𝑔𝑚𝜇B
(4)

and
⟨S𝑒⟩ = −𝜒(1)

𝑒

B𝑒/𝑚

𝑔𝑒𝜇B
, (5)

where the LSM susceptibility 𝜒
(1)
𝑚 (B𝑚/𝑒) per one

LSM is a function of B𝑚/𝑒 and the temperature 𝑇 ,
and 𝜒

(1)
𝑒 = (3/8)𝑔2𝑒𝜇

2
B/𝜀F is the susceptibility per

one particle of degenerate electrons with the Fermi
energy 𝜀F.

The equation for the critical temperature 𝑇C of
the appearance of a spontaneous magnetization rep-
resents the case of infinitesimal exchange fields B𝑚/𝑒
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and B𝑒/𝑚 in Eqs (4) and (5). Thus, to find 𝑇C, we
should replace the 𝜒

(1)
𝑚 (B𝑚/ℎ) by the zero-field sus-

ceptibility 𝜒
(1)
𝑚 (0). In the simplest case of magnetic

ions interacting only via band carriers, a solution of
the correspondent equation takes the form [12]:

𝑇C =
𝑆(𝑆+1)

3
𝛽2𝑛𝑚𝑛𝑒

𝜒
(1)
𝑒

𝑔2𝑒𝜇
2
B

=
𝑆(𝑆+1)

8

𝛽2𝑛𝑚𝑛𝑒

𝜀F
. (6)

Hereinafter, the temperature T is expressed in energy
units.

This equation can be derived in different manners
useful for the following analysis. Let us write down
the Hamiltonian with the Zeeman energy 𝐻̂eff

Zeem =
= 𝑔𝑚𝜇BB𝑚/𝑒

∑︀
𝑗 S𝑗 of the magnetic ions in the ef-

fective magnetic field [Eq. (3)] of conducting elec-
trons. Then the substitution of Eq. (5) to Eq. (3)
transforms the Zeeman Hamiltonian to

𝐻̂eff
Zeem = −𝛽2𝑛𝑚𝑛𝑒

𝜒
(1)
𝑒

𝑔2𝑒𝜇
2
B

⟨S𝑚⟩
∑︁
𝑗

S𝑗 . (7)

The last equation clearly shows that the Hamilto-
nian 𝐻̂eff

Zeem is nothing but the Weiss-field approxima-
tion of the Hamiltonian of the pair spin-spin interac-
tion of 𝑁𝑚 LSMs diluted in a sample of volume 𝑉 :

𝐻̂
(1)
𝑆𝑆 = − 1

𝑉

𝛽2𝑛𝑒𝜒
(1)
𝑒

2𝑔2𝑒𝜇
2
B

∑︁
𝑗,𝑗′(𝑗 ̸=𝑗′)

S𝑗S𝑗′ . (8)

These equations define the Weiss (or molecular)
field

B
(1)
W = −𝛽2 𝑛𝑚𝑛𝑒

𝑔𝑚𝜇B

𝜒
(1)
𝑒

𝑔2𝑒𝜇
2
B

⟨S𝑚⟩, (9)

that uniformly affects each LSM. Superscript “(1)” on
the left-hand sides of Eqs. (8) and (9) indicate that
these values are valid in the first order of perturbation
theory in terms of the unperturbed electron eigen-
functions. The factor 1/2 in Eq. (8) reflects the fact
that each pair of spins in the sum over 𝑗 and 𝑗′ is
twice accounted.

It would be instructive to show another deriva-
tion of Eq. (8). It originates from the definition of
a homogeneous mean field induced by the ensem-
ble of LSMs in the operator representation B̂𝑒/𝑚 =

= 𝛽
𝑔𝑒𝜇B

1
𝑉 Σ𝑗S𝑗 . This field reduces the magnetic en-

ergy of the free carriers to the standard form

𝐻̂
(1)
𝑆𝑆 = −1

2
𝑉 𝜒

Pauli
B̂2

𝑒/𝑚, (10)

that is, just Eq. (8) provided the Pauli susceptibility
of an electron gas is 𝜒

Pauli
= 𝑛𝑒𝜒

(1)
𝑒 .

Equation (10) establishes an effective spin-spin in-
teraction independent of the inter-ion distance. Mo-
reover, it becomes infinitesimal in the thermodynamic
limit 𝑉 → ∞ for any pair of spins that keeps a fi-
nite value of the Weiss field in the thermodynamic
limit 𝑁𝑚 → ∞ under 𝑛𝑚 = const, as mentioned
above. This result arises in the first order of perturba-
tion theory that treats CIEI (1) in terms of the undis-
turbed electron wave functions. Nevertheless, the fi-
nite critical temperature (6) follows from the Weiss
field approximation of Eq. (8) provided the finite LSM
concentration 𝑛𝑚 = 𝑁𝑚/𝑉 .

3. RKKY Interaction

An alternative approach to the FM phase transition
stems from the CIEI transforming to an indirect LSM
spin-spin interaction mediated by free carriers in the
second order of perturbation theory:

𝐻̂
(2)
𝑆𝑆 =

𝛽2

𝑉 2

∑︁
𝜎,𝜎′

∑︁
k,k′=(𝑘′ ̸=𝑘)

𝑓(𝜀k)(1− 𝑓(𝜀k′))

𝜀k − 𝜀′k
×

×
∑︁

𝑗,𝑗′ (̸=𝑗)

e𝑖(k−k′)(R𝑗−R𝑗′ )(𝜎|S𝑗s𝑒|𝜎′)(𝜎′|S𝑗′s𝑒|𝜎), (11)

where 𝑓(𝜀k) is the Fermi–Dirac distribution function,
and the normalizing factor 𝑉 −2 appears in the cal-
culation of a matrix element with Bloch functions of
the band electrons.

Accounting for the identity for the trace over the
spin variable 𝜎, Tr𝜎(S𝑗s𝑒)(S𝑗′s𝑒) = 1/2S𝑗S𝑗′ and re-
arranging the k and k′ in Eq. (11), we obtain:

𝐻̂
(2)
𝑆𝑆 =

𝛽2

4𝑉 2

∑︁
k,k′=(𝑘′ ̸=𝑘)

𝑓(𝜀k)− 𝑓(𝜀k′)

𝜀k − 𝜀k′
×

×
∑︁

𝑗,𝑗′ (̸=𝑗)

e𝑖(k−k′)(R𝑗−R𝑗′ )S𝑗S𝑗′ . (12)

The procedure in the second order of perturbation
theory implies to eliminate the points k′ = k from the
sum in Eq. (12) 1. Nevertheless, to restore the analyt-
icity of the integrand arising as a result of the integral
representation of the sums over k′, expression (12)
should be supplemented with the limit k′ → k, as it

1 Other exclusive points k′ ̸= k at |𝑘′| = |k| are not actual,
since the exponent exp[𝑖(k− k′)R𝑖𝑗 ] nullifies their cont-
ribution.
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was stressed in the original work by Yosida [8]. Being
applied to the fraction in Eq. (12), this limit pro-
duces −𝛿(𝜀k − 𝜀F), where 𝜀F is Fermi energy. Then
the straightforward calculations yield the expression
of the additive to Eq. (12) due to such treatment of
k ̸= k′ in sum (12) in the form:

𝛿𝐻̂
(2)
𝑆𝑆 =

𝛽2

4𝑉
𝐷(𝜀F)

∑︁
𝑗,𝑗′( ̸=𝑗)

S𝑗S𝑗′ =
𝛽2𝑛𝑒𝜒

(1)
𝑒

2𝑉 𝑔2𝑒𝜇
2
B

∑︁
𝑗,𝑗′( ̸=𝑗)

S𝑗S𝑗′ ,

(13)

where 𝐷(𝜀F) = 3𝑛𝑒/4𝜀F is the electron density of
states of each spin branch at the Fermi surface. The
comparison of 𝛿𝐻̂𝑆𝑆 with Eq. (8) shows that the in-
tegrand in the integral approximation of the sums
on k and k′ in Eq. (12) is transformed to a smooth
analytic function by adding the first-order Hamilto-
nian 𝐻̂

(1)
𝑆𝑆 = 𝛿𝐻̂𝑆𝑆 to the effective Hamiltonian repre-

senting the spin-spin interaction in the second order
𝐻̂

(2)
𝑆𝑆 . The calculation of these integrals in the usual

manner reproduces the common expression for the
RKKY interactions:

𝐻̂RKKY = 𝐻̂
(1)
𝑆𝑆 +𝐻̂

(2)
𝑆𝑆 =

1

2

∑︁
𝑗,𝑗′ (̸=𝑗)

𝐽RKKY(R𝑗,𝑗′)S𝑗S𝑗′ ,

(14)

where the effective constant of the indirect interaction
between the ions distanced on R𝑗,𝑗′ is

𝐽RKKY(R
𝑗,𝑗′) =

2𝛽2𝑘
(3)
F 𝜒

Pauli

𝜋𝑔2𝑒𝜇
2
B

𝐹RKKY(2𝑘F𝑅𝑗,𝑗′) (15)

and

𝐹RKKY(𝑥) =
𝑥 cos𝑥− sin𝑥

𝑥4
. (16)

Equation (14) along with definitions (15) and (16)
is usually called “indirect RKKY exchange interac-
tion”. Each term 𝐽RKKY(R𝑗,𝑗′)S𝑗S𝑗′ in sums (14) cor-
responds to a finite pair spin-spin interaction. For this
reason, coefficient 1/2 guarantees that each pair is ac-
counted for once.

Expression (15) is obtained for degenerate electrons
or holes and is not applicable to the single carrier
case. However, Eq. (1a) reflects the dependence of the
CIEI exchange constant on the density of carriers at a
single LSM. The actual dependence of 𝑘F and 𝜒

Pauli

on carriers’ concentration 𝑛𝑒 establishes the inverse
proportionality of the prefactor of 𝐹RKKY(𝑥) in (15)
to carriers’ density in power 4/3. Therefore, the en-
largement of the crystal volume 𝑉 at a fixed number

of carriers diminishes the 𝐽RKKY as 1/𝑉 4/3 that re-
sembles Eq. (1a).

It should be emphasized that the second order for
the indirect interaction in the form of Eq. (14) pro-
vides a finite strength of the effective exchange in-
teraction (15) for any finite inter-ion distance |𝑅𝑗,𝑗′ |
in the case of finite carriers’ concentration. From this
standpoint, addition (13) to Hamiltonian (12) in the
first-order form (8) does not modify this interac-
tion in the limit 𝑉 → ∞ at 𝑛𝑒 = const, because
𝐻̂

(1)
𝑆𝑆 −→

𝑉→∞
0. Nevertheless, this conclusion fails, if we

turn from the local (intensive) individual LSM mag-
netic property to thermodynamic (extensive) prop-
erties that characterize the phase state in the entire
system. As has been shown, the thermodynamic limit
does not nullify the molecular field stemmed from the
Hamiltonian 𝐻

(1)
𝑆𝑆 (5) provided a finite concentration

𝑛𝑚. Therefore, we should expect additive contribu-
tions to thermodynamic potentials stemmed from the
first and second orders of the Hamiltonians 𝐻̂

(1)
𝑆𝑆 and

𝐻̂
(2)
𝑆𝑆

2. In particular, the exactly solvable model for a
spin cluster [12] confirms this general result.

4. RKKY Modeling of the Phase Transition

Let us consider the critical temperature of the FM
phase transition calculated for the RKKY interaction
in the Weiss field approximation. The latter imposes
the equal mean values ⟨S𝑗⟩ = ⟨S𝑗′⟩ for all LSMs so
that Weiss field

BW =
1

𝑔𝑚𝜇B

∑︁
𝑗′

𝐽RKKY(R𝑗,𝑗′)⟨S𝑗′⟩ (17)

evenly polarizes each magnetic ion. The resulting spin
polarization can be found in terms of the Brillouin
function 𝐵𝑆 as ⟨𝑆⟩ = −𝑆𝐵𝑠(𝑔𝑚𝜇B𝐵W𝐵/𝑇 ). The last
equation evaluates the critical temperature of the FM
phase transition: as

𝑇𝐶 =
1

3
𝑆(𝑆 + 1)

∑︁
𝑗′

𝐽RKKY(R𝑗,𝑗′). (18)

Assuming a random LSM distribution with con-
stant density 𝑛𝑚, the integral representation of the
sum over 𝑗′ reads∑︁
𝑗′

𝐽RKKY(R𝑗,𝑗′) → 𝑛𝑚

∞∫︁
0

𝐽RKKY(𝑟)4𝜋𝑟
2𝑑𝑟. (19)

2 We recall that RKKY in the integral form just involves the
contributions of both first and second orders of perturbation
theory.
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The substitution of this approximation into
Eq. (18) reproduces expression (6) for the Curie tem-
perature obtained in the first order of perturbation
theory. Obviously, applying another approximation
for LSM distribution (such as a lattice gas or cor-
related LSM dispensation) will violate the identity of
Eqs (18) and (6).

To clarify such coincidence, let us go back to
Eq. (11) and treat it as the energy of spin S𝑗 in the
Weiss effective field

B
(2)
W =

𝛽2

2𝑔𝑚𝜇B𝑉 2

∑︁
k,k′ (̸=k)

𝑓(𝜀k)− 𝑓(𝜀′k)

𝜀k − 𝜀′k
×

×
∑︁

𝑗,𝑗′ (̸=𝑗)

𝑒𝑖(k−k′)(R𝑗−R𝑗′ )⟨S𝑗′⟩. (20)

The independence of ⟨S𝑗⟩ = ⟨S⟩ of the specific spin
location immediately simplifies the summation over
𝑗′. If the ideal gas models the magnetic ion distribu-
tion over the crystal, the sum over 𝑗′ yields a non-
zero result only for k = k′ that, in turn, nullifies
B

(2)
W . This result demonstrates that the conventional

utilization of a homogeneous distribution of magnetic
ions results in the exclusion of the second order of per-
turbation theory. On the other hand, supplementing
the singularity at k = k′ with the limit k → k′ re-
produces the B

(1)
W (12) that is virtually included to

B
(2)
W . This means that B

(1)
W (12) should be not taken

into account once again as an independent contribu-
tion to the Weiss field (19). Thus, a simple evaluation
of 𝑇C in the first approximation (8) turns out equiv-
alent to a more complicated summation of the spin-
spin RKKY interactions over the locations of mag-
netic ions in the crystal.

However, our approach can be applicable to a more
realistic LSM distribution, which is not equivalent
to a constant probability independent of the lattice
structure. As the first obvious generalization, let us
consider the lattice gas approximation rather than
the free gas model. The simplest way to estimate
the effect of a lattice gas distribution consists in
the explicit limitation of the minimal inter-ion dis-
tance 𝑑. At larger distances, the constant probability,
proportional to the concentration 𝑛𝑚 still approxi-
mates the discrete distribution function over the lat-
tice sites. Such elaboration diminishes the strength
of the molecular field by the factor 𝛿 = 4𝜋

3 𝑛𝑚𝑑3 pro-
vided 𝑘F𝑑 ≪ 1. This correction may be not too small
compared with 1. For example, in DMS with the zinc

blende lattice, the short-range space correlation mod-
ifies expression (8) for the Curie temperature by the
factor 1−

√
2𝜋
3 𝑥 that reduces 𝑇C by 15% at the LSM

substitution level 𝑛𝑚Ω = 𝑥 = 10% (Ω is the vol-
ume of a semiconductor primitive cell). Apparently,
the same result is produced by the RKKY approach,
Eq. (14), provided the integration over the reduced
domain (𝑑,∞) takes the space correlations in Eq. (20)
into account.

Another non-trivial example discloses the case of
approximate estimation of 𝑇C based on decreasing
RKKY’s interaction strength (15) for the remote
LSMs. This diminishing interaction also results in de-
creasing the collective effect of the remote LSMs to
the Weiss field. The latter can be evaluated using the
RKKY interaction of some LSM located at the R𝑗

site with a finite number of LSMs surrounding R𝑗

[10]. In such case, the contribution of the first order
(8), (13) vanishes assuming a large crystal volume and
a finite number 𝑁𝑚′ of LSMs located at lattice sites
𝑅𝑗′ inside an allotted volume 𝑉 ′ which maintains the
concentration 𝑛𝑚 = 𝑁𝑚′/𝑉 ′. Thus, the account for
the finite number of LSMs might approximately eval-
uate the Weiss field in terms of Eq. (20) derived in
the second order in CIEI. The appearance of a non-
zero effect of Eq. (20) looks not surprising, since the
summation over the limited numbers R𝑗 in a finite
volume 𝑉 ′ admits the finite contributions of the wave
vectors that lie beyond the specific electronic states
with 𝑘 = 𝑘′. Then the estimation of 𝑇C assumes ap-
plying B

(2)
W to all LSMs in the whole crystal. The de-

tailed analysis of the Weiss field B
(2)
W in an LSM clus-

ter embedded into a large crystal is beyond the scope
of this paper. Note, however, that a cluster with 𝑁𝑚′

LSMs in a volume𝑉 ′ mimics the actual DMS with a
fixed LSM concentration 𝑛𝑚, where the Weiss field is
B

(1)
W . Such intuitive approach supposes that B(2)

W well
approximates B

(1)
W at large enough 𝑉 ′. The correct-

ness of such approximation is estimated by a devia-
tion of the integral in Eq. (19) from that calculated
for the finite upper limit 2𝑘F(𝑉

′)1/3. As seen, either
consideration does not assume the interference of B(2)

W

and B
(1)
W for the Weiss field evaluation.

A more accurate estimation of the 𝑇C supposes
incorporating an inter-ion exchange interaction not
related to band carriers to the formalism devel-
oped above. This interaction of the antiferromagnetic
(AFM) type inside of the nearest neighboring pairs
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of LSMs may exceed the effect of the carrier-induced
exchange field, and thermal energy 𝑇 (as it was men-
tioned earlier, 𝑇 is expressed in energy units) and es-
tablishes their total zero spin moments. As a result,
such nearest neighboring LSMs are omitted that ap-
pears as the effective LSM density 𝑥′ < 𝑥 [21]. Intro-
ducing the phenomenological parameter 𝑥′ improves
the matching of experimental data and calculations
for the spin splitting of exciton spectra. Such approxi-
mation of the AFM inter-ion interaction is also clearly
applicable to the consideration of the magnetic (in-
cluding FM) properties of DMS in terms of the Weiss
field calculated in the first order. Nevertheless, the
exclusion of AFM pairs from consideration enhances
a deviation of the actual LSM distribution from the
ideal gas model along with a consequent difference of
the results obtained in the second-order approxima-
tion with ones, where the mean field is treated in the
first order [3–5].

5. Conclusions

This paper clearly demonstrates that the molecular
field approximation applied to the second-order ex-
pression of the LSM indirect interaction in the form of
the sum of exponentials (12) reveals the nulling of this
contribution for all electronic states with wave vectors
k ̸= k′ provided a free gas modeling of the LSM dis-
tribution. The points k = k′ must be excluded in the
formalism of the second order of perturbation the-
ory. On default, however, these exclusive states com-
monly append to the formalism presuming the limit
k → k′ evaluates the effect that does not depend on
the locations of magnetic ions. From this standpoint,
the space averaging of the RKKY interaction (16) re-
sults in its homogeneous part, which appears as a sup-
plement to the indirect interaction in the limit k → k′

coinciding with the effective Hamiltonian (8) of the
first-order interaction. In other words, the molecular
field treatment of the RKKY interaction produces the
same result that can be obtained by considering only
the first order in CIEI. However, this is not the case
for more advanced theories that involve a randomiz-
ing of the local exchange fields at particular LSM lo-
cations [14, 15] or utilize a dispersionless band struc-
ture [13], which violates the smallness of the exchange
constant 𝛽𝑁0 compared to the bandwidth 𝑊 → 0.

In addition, the present paper appends the pre-
vious analyzes with particular second-order effects

stemmed from the difference of the lattice gas and
ideal gas distributions for LSM in DMS.
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Ю.Г.Семенов С.М.Рябченко

НАБЛИЖЕННЯ МОЛЕКУЛЯРНОГО ПОЛЯ
В ТЕОРIЇ ФЕРОМАГНIТНОГО ФАЗОВОГО ПЕРЕХОДУ
В РОЗБАВЛЕНИХ МАГНIТНИХ НАПIВПРОВIДНИКАХ

У цiй роботi педагогiчного характеру викладено порiвняль-
ний аналiз двох загальних пiдходiв, що описують ферома-
гнiтний фазовий перехiд у розбавлених магнiтних напiв-

провiдниках (DMS), з точки зору наближення поля Вейс-
са. Припускаючи скiнчену спiнову поляризацiю домiшкових
магнiтних iонiв, ми розглядаємо обмiнну взаємодiю цих ма-
гнiтних iонiв i вiльних носiїв заряду напiвпровiдника в пер-
шому порядку теорiї збурень i отримуємо однорiдне моле-
кулярне поле Вейсса, яке поляризує спiни носiїв. У свою
чергу, ця спiнова поляризацiя вiльних носiїв створює ефе-
ктивне поле, яке може стабiлiзувати спiнову поляризацiю
DMS нижче критичної температури 𝑇C. Трактування такої
самоузгодженої спонтанної намагнiченостi DMS може здiй-
снюватися з точки зору спiн-спiнової взаємодiї мiж магнi-
тними iонами, незалежної вiд вiдстанi мiж ними i нескiнчен-
но малої в термодинамiчнiй границi. З iншого боку, враху-
вання додатково ефектiв обмiнної взаємодiї магнiтних iонiв
i вiльних носiїв заряду у другому порядку теорiї збурень
описує поле Вейсса в термiнах непрямої спiн-спiнової взає-
модiї Рудермана–Кiттеля–Касуя–Йосиди, яка осцилює i не
зникає при скiнчених мiжiонних вiдстанях при скiнченiй
концентрацiї носiїв. Обидва пiдходи приводять до однако-
вої температури Кюрi 𝑇C у випадку некорельованого одно-
рiдного випадкового розподiлу локалiзованих спiнових мо-
ментiв по об’єму зразка. Ми обговорюємо походження та-
кого збiгу та показуємо, коли це не так у iнших бiльш ре-
алiстичних моделях DMS зi скiнченою електропровiднiстю
(концентрацiєю носiїв струму).

Ключ о в i с л о в а: розбавленi магнiтнi напiвпровiдники,
феромагнiтне впорядкування, наближення середнього по-
ля, РККI взаємодiя.
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