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BOSE–EINSTEIN CONDENSATION
AS A DEPOSITION PHASE TRANSITION
OF QUANTUM HARD SPHERES AND NEW RELATIONS
BETWEEN BOSONIC AND FERMIONIC PRESSURES

We investigate the phase transition of Bose–Einstein particles with the hard-core repulsion in
the grand canonical ensemble within the Van der Waals approximation. It is shown that the
pressure of non-relativistic Bose–Einstein particles is mathematically equivalent to the pressure
of simplified version of the statistical multifragmentation model of nuclei with the vanishing
surface tension coefficient and the Fisher exponent 𝜏F = 5

2
, which for such parameters has the

1-st order phase transition. The found similarity of these equations of state allows us to show
that within the present approach the high density phase of Bose-Einstein particles is a classical
macro-cluster with vanishing entropy at any temperature which, similarly to the system of
classical hard spheres, is a kind of solid state. To show this we establish new relations which
allow us to identically represent the pressure of Fermi–Dirac particles in terms of pressures of
Bose–Einstein particles of two sorts.
K e yw o r d s: quantum gases, Van der Waals, equation of state, statistical multifragmentation
model, Bose–Einstein condensation, deposition phase transition.

1. Introduction

The phenomenon of Bose–Einstein (BE) condensa-
tion is, probably, one of the most striking mani-
festation of collective quantum effects [1, 2]. Due to
its great importance the phase transition (PT) of
BE condensation in the ideal gas is discussed in all
textbooks on statistical mechanics. However, it seems
that even the BE condensation in an ideal gas itself
has a number of weak points which are discussed in
details in [3]. Thus, in the wast majority of the text-
books it is written that the BE condensation of ideal
gas is the 3-rd order phase transition (see, for in-
stance, [1]), although in the famous book [2] (see the
section 12.3 for details) it is argued that the BE con-
densation is the 1-st order PT between liquid and
gas. The main question we answer here is what kind
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of PT is the BE condensation in the quantum system
with the simplest interaction, namely with the hard-
core repulsion? In all textbooks it is written that the
BE condensate is the group of particles with zero mo-
mentum. However, the question is what is it? Is it a
liquid or a solid?

In what follows we demonstrate that the pressure
of the non-relativistic BE particles with the hard-core
interaction taken in the Van der Waals (VdW) ap-
proximation can be identically reduced to the one of
the simplified version of statistical multifragmenta-
tion model (sSMM) [4] with a vanishing surface ten-
sion of the constituents (see below). This exactly solv-
able model was formulated in [5] and solved exactly
in [6–9], while its new and more realistic generaliza-
tion can be found in [10]. Although the sSMM [5–10]
lacks the Coulomb interaction between the nuclei and
the asymmetry energy of nuclei, its exact analytical
solution established both in the thermodynamic limit
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[6, 7, 10] and for finite volumes [8, 9] is able to qual-
itatively describe the main properties of the nuclear
liquid-gas PT.

The mathematical similarity between the VdW
equation of state (EoS) of BE hard spheres and the
sSMM allows us to show that the high density phase
of BE particles with hard-core repulsion is a classical
macro-cluster which, similarly to the system of clas-
sical hard-spheres, is a solid state [11, 12] and not a
liquid as it was argued in K. Huang book [2]. In our
analysis we also analyzed the pressure of Fermi-Dirac
(FD) particles with the hard-core repulsion which in
many respects is similar to the one of sSMM, al-
though it does not have the 1-st order PT. This anal-
ysis allows us to find out some new relations between
the pressures of BE and FD particles with the hard-
core repulsion, which help us to demonstrate that
the macro-cluster of BE particles is, indeed, a clas-
sical object. The found relations allow us to clearly
demonstrate under what conditions the FD particles
with the hard-core repulsion can have the first order
phase transition.

The work is organized as follows. In Sect. II we
analyze the pressure of BE and FD particles with
the hard-core repulsion in the VdW approximation
in a form convenient for the grand canonical ensem-
ble. Sect. III is devoted to discussion of the proper-
ties of the macro-cluster with the help of the BE-FD
decomposition identities which identically represent
the pressure of FD particles in terms of two BE pres-
sures. Our conclusions are given in Sect. IV.

2. BE Condensation
as the 1-st Order Phase Transition

The EoS of hard-spheres with BE or FD statistics in
the grand canonical ensemble variables under the Van
der Waals approximation for the hard-core repulsion
can be obtained either analyzing the free energy of the
Van der Waals gas in canonical ensemble [13, 14] or
more rigorously from the quantum partition function
in the grand canonical ensemble [15]. In the grand
canonical variables it has the form

𝑝± = 𝑝𝑖𝑑± (𝑇, 𝜈) ≡

≡ ±𝑇𝑔

∫︁
𝑑3𝑘

(2𝜋~)3
ln

[︂
1± exp

[︂
𝜈 − 𝑒(𝑘)

𝑇

]︂]︂
, (1)

where 𝜈 ≡ 𝜇 − 4𝑉0 𝑝±. In Eq. (1) the lower sign is
for the BE statistics, while the upper sign is for the

FD one. Here 𝑇 is temperature of the system, 𝜇 is its
chemical potential, 𝜈 is an effective chemical poten-
tial, 𝑔 is the number of spin-isospin states (degeneracy
factor), 𝑚 is the mass of particle, 𝑉0 = 4

3𝜋𝑅
3 is the

“eigen volume“ of particle, and 𝑅 is the half of the
minimal interaction range of the hard-core potential
𝑈(𝑟) of a one component system (with a single hard-
core radius)

𝑈(𝑟) =

{︂
0, |𝑟| > 2𝑅,

∞, |𝑟| ≤ 2𝑅.
(2)

More sophisticated interaction between the BE par-
ticles is considered in [3].

The potential 𝑈(𝑟) in Eq. (2) acts in a simplest
possible way: (i) if two particles 1 and 2, for def-
initeness, do not interact, i.e. the distance between
them is larger, than two hard-core radii 𝑅, |𝑟| > 2𝑅,
then 𝑈(𝑟) = 0 and, therefore, their total energy is the
sum of their single-particle (kinetic) energies 𝑒1 and
𝑒2; (ii) if these two particles interact, then |𝑟| = 2𝑅
and 𝑈(|𝑟| = 2𝑅) = ∞, but such configurations do
not contribute to partition (and all thermodynamic
functions), since they are suppressed by the statis-
tical operator exp

[︁
− �̂�ℎ𝑐

𝑇

]︁
due to an infinite poten-

tial energy (here �̂�ℎ𝑐 denotes the Hamiltonian of the
system). As a result, the total energy of the parti-
cles with the hard-core repulsion equals to the sum of
their single-particle (kinetic) energies and this allows
one to find the pressure (1) directly from the quan-
tum partition function. In other words, the particles
with the hard-core interaction behave similarly to an
ideal quantum gas.

This is a important property of this EoS which
leads to a well-known practical consequence, namely
that the energy per particle coincides with the one
of the ideal gas. Due to this property the sophisti-
cated equations of state with the hard-core repul-
sion, known as the hadron resonance gas model, are
very successfully used to describe the multiplicities of
hadrons [16–18] and light (anti-, hyper)nuclei [19, 20]
which are measured in the high energy nuclear colli-
sions and to get a reliable thermodynamic informa-
tion about next to the last stage of such collisions.

For further analysis it is convenient to introduce
the auxiliary functions

ℱ±(𝑝) ≡ 𝑇

𝐾max∑︁
𝑙=1

(∓1)(𝑙+1)

𝑙
𝑛𝑖𝑑
0

[︂
𝑇

𝑙
, 𝜈(𝑝)

]︂
, (3)
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and, hence, Eq. (1) becomes 𝑝± = ℱ±(𝑝±), where

𝑛𝑖𝑑
0

[︂
𝑇

𝑙
, 𝜈

]︂
=

∫︁
𝑔 𝑑3𝑘

(2𝜋~)3
𝑒

𝑙[𝜈−
√

𝑚2+k2]
𝑇 ≃

≃
∫︁

𝑔 𝑑3𝑘

(2𝜋~)3
𝑒

𝑙

[︂
𝜈−𝑚− 𝑘2

2𝑚

]︂
𝑇 = 𝑔

[︂
𝑚𝑇

2𝜋 𝑙 ~2

]︂ 3
2

𝑒
𝑙[𝜈−𝑚]

𝑇 , (4)

where the particle number density of Boltzmann
point-like particles with temperature 𝑇 and chemi-
cal potential 𝜈 is denoted as 𝑛𝑖𝑑

0 [𝑇, 𝜈] and the upper
limit of sum in Eq. (3) is 𝐾max → ∞. To avoid the un-
necessary complexity in our derivations through out
this work we regard the limit 𝐾max = 2𝐾 + 1 → ∞
strictly in this sense. For the BE statistics (sign − in
Eqs. (3)) it is not important, but it is very important
for the case of FD statistics (sign + in Eqs. (3)).

The function ℱ± in (3) is, apparently, obtained by
expanding the ln-function in Eq. (1). For large values
of 𝑙 ≫ 1 the inequality 𝑙𝑚 ≫ 𝑇 is valid for any non-
vanishing mass 𝑚 and, therefore, in this case one can
use the non-relativistic approximation in the left hand
side momentum integral in Eq. (4) and get the right
hand side expression (4). However, for convenience we
will use such an approximation for any 𝑙 ≥ 1, assum-
ing that considered temperatures are very low com-
pared to the particle mass, i.e. 𝑚 ≫ 𝑇 . Moreover, in
what follows we will always use the non-relativistic
approximation for particle energy, unless it is speci-
fied explicitly.

To make a direct comparison with the sSMM [5–
9] we explicitly write Eq. (1) for the BE statistics
(𝑎 = −1)

𝑝− = 𝑇 𝑔

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

×

×
𝐾max∑︁
𝑘=1

(−𝑎)(𝑘+1)

𝑘
5
2

exp

[︂
𝑘(𝜇−𝑚− 4𝑉0 𝑝−)

𝑇

]︂
, (5)

using Eq. (3) and the right hand side of Eq. (4). Com-
paring Eq. (5) with Eq. (15) from Ref. [6], one can
see that the pressure of BE hard spheres is math-
ematically absolutely equivalent to the sSMM with
the “volume“ 4𝑘𝑉0 of 𝑘-nucleon nuclei, with the van-
ishing surface tension of all nuclei and with the Fisher
exponent 𝜏F = 5

2 (or for the index 𝜏 ≡ 𝜏F + 3
2 = 4 in

terms of Refs. [6,7]). After an invention of the famous
Fisher droplet model [21] it became clear that all real
gases consist of the clusters of all possible size that

are made by the molecules, and the right hand side
of Eq. (5) demonstrates this for the BE particles.

Due to the mathematical similarly to the sSMM,
using the exact solution of sSMM [6, 7, 9] one can im-
mediately conclude that Eq. (5) describes two phases:
the gaseous phase 𝑝𝑔 = 𝑝−(𝑇, ) for the low densities
defined by the inequality 𝜇 < 𝜇𝑐(𝑇 ), and high density
phase pressure 𝑝𝑠 = (𝜇−𝑚)

4𝑉0
for 𝜇 > 𝜇𝑐(𝑇 ). According

to the Gibbs criterion the PT occurs, if the pressures
of two phases are equal, i.e. 𝑝𝑔(𝑇, 𝜇𝑐) = 𝑝𝑠(𝑇, 𝜇𝑐).
This equation defines the phase equilibrium curve
𝜇 = 𝜇𝑐(𝑇 ) of the 1-st order PT.

At the PT curve 𝜇 = 𝜇𝑐(𝑇 ) the effective chemical
potential becomes

𝜈𝑐 = 𝜇𝑐 − 4𝑉0 𝑝𝑔(𝑇, 𝜇𝑐) =

= 𝜇𝑐 − 4𝑉0 𝑝𝑠(𝑇, 𝜇𝑐) ≡ 𝑚. (6)

Using this result one can identically rewrite the pres-
sure at PT curve as

𝑝𝑐− = 𝑇 𝑔

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2
𝐾max∑︁
𝑘=1

1

𝑘
5
2

=⏟ ⏞ 
𝐾max→∞

=
𝑇 𝑔

Γ
[︀
5
2

]︀ [︂ 𝑚𝑇

2𝜋~2

]︂ 3
2

∞∫︁
0

𝑡
3
2

𝑒𝑡 − 1
𝑑𝑡, (7)

where we used the integral representation of the
Riemann 𝜁

[︀
5
2

]︀
-function [22]. Here Γ(𝑧) is the usual

gamma-function which for the natural numbers 𝑛 is
defined as Γ(𝑛 + 1) = 𝑛!. Taking 𝑡 = 𝜔

𝑇 in the inte-
gral in Eq. (7), one finds the usual representation of
pressure as an integral over the particle energy 𝜔 [1].

Although the critical pressure (7) coincides with
the one obtained usually for the point-like particles
[1], the particle number density of gas 𝑛− is modified
due to the presence of hard-core interaction. Using
the particle number density of the gas of point-like
particles 𝑛𝑖𝑑

− (𝑇, 𝜈) one can write

𝑛𝑖𝑑
− (𝑇, 𝜈) ≡

𝜕𝑝𝑖𝑑− (𝑇, 𝜈)

𝜕𝜈
=

= 𝑔

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2
𝐾max∑︁
𝑘=1

1

𝑘
3
2

exp

[︂
𝑘(𝜈 −𝑚)

𝑇

]︂
, (8)

𝑛−(𝑇, 𝜈) ≡
𝜕𝑝𝑖𝑑− (𝑇, 𝜈)

𝜕𝜇
=

𝑛𝑖𝑑
− (𝑇, 𝜈)

1 + 4𝑉0𝑛𝑖𝑑
− (𝑇, 𝜈)

. (9)
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From Eq. (9) one can see that at the PT curve the
particle number density of the gas is smaller than the
particle number density of the dense phase, since

𝑛−(𝑇, 𝜈𝑐) < 𝑛𝑠 ≡
𝜕𝑝𝑠
𝜕𝜇

=
1

4𝑉0
, (10)

and, hence, for any finite temperature 𝑇 the parti-
cle number density of point-like particles 𝑛𝑖𝑑

− (𝑇, 𝜈𝑐)
is finite too. Therefore, the particle number density
of gaseous phase is smaller than the one of the high
density phase as indicated by the inequality (10). As
a result, the BE PT is of the 1-st order.

Substituting into Eqs. (8) and (9) the value 𝜈 = 𝜈𝑐
one can get the temperature of BE condensation as

𝑇BE
𝑐 =

2𝜋~2

𝑚

[︃
1

𝑔𝜁
[︀
3
2

]︀ 𝑛−

1− 4𝑉0𝑛−

]︃ 2
3

. (11)

Note that for large values of the excluded volume 𝑉0

and high particle number densities 𝑛 → 1
4𝑉0

the hard-
core repulsion may essentially increase the value of
the PT temperature and make it more realistic com-
pared to the traditional estimate obtained for the
point-like particles [1], i.e. if one takes the limit 𝑉0 →
→ 0 on the right hand side of Eq. (11).

It is necessary to stress that the above results are
generic in a sense that one can consider the effective
values of degeneracy factor 𝑔 → 𝑔eff and the one of
excluded volume 4𝑉0 → 𝑉 eff

0 which correspond to a
more realistic EoS than the VdW EoS and which is
able to reproduce the pressure of quantum particles
beyond the second virial coefficient approximation at
least in some (even in a narrow) range of thermody-
namic parameters.

Since we are also interested in analyzing the case of
FD particles, we would like to obtain the above result
using a different approach, namely without referring
to the sSMM results of Refs. [6–8]. First we consider
the limit 𝜇 → ∞ in Eq. (5) for very large, but finite
values of 𝐾max. Apparently, this limit should corre-
spond to the dense phase of our EoS. Then in this
limit 𝑉0𝑝𝑠/𝑇 ≫ 1 and for 𝜇 > 𝑚+ 4𝑉0𝑝𝑠 the leading
terms of Eq. (5) for 𝑎 = −1 can be cast as

ln

[︃
𝑝𝑠𝐾

5
2
max

𝑇𝜑(𝑇 )

]︃
≃ 𝐾max [𝜇− (𝑚+ 4𝑉0𝑝𝑠)]. (12)

Here the thermal density of the gas of classical hard
spheres is denoted as 𝜑(𝑇 ) = 𝑔

[︀
𝑚𝑇
2𝜋~2

]︀ 3
2 . In deriving

Eq. (5) we have chosen the large values of chemi-
cal potential 𝜇 > 𝜇𝑐, which are not allowed in the
thermodynamic limit, but for finite systems they can
be used [8, 9]. Now from Eq. (12) one can see that
for 𝐾max → ∞ the logarithmic correction disappears
and the pressure of dense phase 𝑝𝑠 =

𝜇−𝑚
4𝑉0

acquires a
familiar form.

In order to show that the EoS (5) for 𝑎 = −1
has the 1-st order PT we examine the derivative
𝐷1𝑝− ≡ 𝑇 𝜕𝑝−

𝜕𝜌𝑖𝑑
−

. Hereafter to avoid a confusion we will
distinguish the particle number density of point-like
particles as the function given by the right hand side
of Eq. (8) and the same quantity as the independent
variable 𝜌𝑖𝑑− . The derivative 𝐷1𝑝− is more convenient
to employ for the spinodal instability point of the gas
than the derivative 𝜕𝑝−

𝜕𝑛−
, since its expression is sim-

pler. Note that appearance of the spinodal instability
point of the gas taken at the given isotherm signals
about the 1-st order PT [1]. Indeed, the expression
for 𝐷1𝑝−

𝐷1𝑝− ≡ 𝑇
𝜕𝑝−
𝜕𝜈

𝜕𝜈

𝜕𝜌𝑖𝑑−
=

[︃
𝐾max∑︁
𝑘=1

1

𝑘
3
2

exp

[︂
𝑘(𝜈 −𝑚)

𝑇

]︂]︃
×

×

[︃
𝐾max∑︁
𝑘=1

1

𝑘
1
2

exp

[︂
𝑘(𝜈 −𝑚)

𝑇

]︂]︃−1

, (13)

shows that, if the effective chemical potential 𝜈 =
= 𝜇 − 4𝑉0 𝑝− approaches the value 𝜈 = 𝑚, then the

derivative 𝜕𝜌𝑖𝑑
−

𝜕𝜈 ≡ 𝜕𝑛𝑖𝑑
−

𝜕𝜈 → ∞ diverges for 𝐾max → ∞
and, hence, in this limit 𝐷1𝑝− = 0. Thus, we have
found that the spinodal instability point of the gas of
BE hard spheres coincides with the PT curve.

Now we turn to the analysis of the FD particles
with the hard-core repulsion. For 𝜈 ≤ 𝑚 the pres-
sure of such particles 𝑝+ and its 𝜈-derivative can be
explicitly written as

𝑝+ = 𝑇 𝑔

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

×

×
𝐾max∑︁
𝑘=1

(−1)(𝑘+1)

𝑘
5
2

exp

[︂
𝑘(𝜈 −𝑚)

𝑇

]︂⃒⃒⃒⃒
𝜈=𝜇−4𝑉0 𝑝+

, (14)

𝑛𝑖𝑑
+ ≡ 𝜕𝑝+

𝜕𝜈
= 𝑔

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

×

×
𝐾max∑︁
𝑘=1

(−1)(𝑘+1)

𝑘
3
2

exp

[︂
𝑘(𝜈 −𝑚)

𝑇

]︂⃒⃒⃒⃒
𝜈=𝜇−4𝑉0 𝑝+

. (15)
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A similarity with the sSMM can be more clearly seen
for 𝜈 = 𝜇− 4𝑉0 𝑝+ → 𝑚, if in the sum (14) one adds
the even terms to the preceding odd ones

𝑝+ = 𝑇 𝑔

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

⎡⎣𝐾max−2∑︁
𝑘∈odd

exp
[︁
𝑘(𝜈−𝑚)

𝑇

]︁
𝑘

5
2

×

×

[︃
1− 𝑘

5
2

(𝑘 + 1)𝑘
5
2

exp

[︂
(𝜈 −𝑚)

𝑇

]︂]︃
+

+
exp

[︁
𝐾max(𝜈−𝑚)

𝑇

]︁
𝐾

5
2
max

⎤⎦ ≃ (16)

≃ 𝑇 𝑔

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

[︃
𝐾max−2∑︁
𝑘∈odd

5

2 𝑘
7
2

×

× exp

[︂
𝑘(𝜈 −𝑚)

𝑇
− 5

2𝑘

]︂
+

exp
[︁
𝐾max(𝜈−𝑚)

𝑇

]︁
𝐾

5
2
max

⎤⎦, (17)

where we expanded the binomial (𝑘 + 1)
5
2 keep-

ing two leading terms and approximated the ratio
𝑘

5
2 /(𝑘 + 1)

5
2 ≃ exp[− 5

2𝑘 ]. Evidently, this approxima-
tion is suited for 𝑘 ≫ 1, but for qualitative analysis
it is very convenient, since in the vicinity of PT the
main role is played by the largest cluster. Eq. (17)
shows that, apart from the term with 𝑘 = 𝐾max, in
the left vicinity of the point 𝜈 → 𝑚 − 0 the EoS for
FD particles with the hard-core repulsion is similar
to the sSMM for the clusters of the odd number of
constituents which have the Fisher exponent 𝜏F = 7

2
and a vanishing value of surface tension coefficient.

Apparently, from Eqs. (14) and (17) one can also
derive Eq. (12) and establish the pressure of dense
phase 𝑝𝑠 = 𝜇−𝑚

4𝑉0
similarly to the case of BE parti-

cles. However, the derivative

𝜕𝜌𝑖𝑑+
𝜕𝜈

≡ 𝜕2𝑝+
𝜕𝜈2

=
𝑔

𝑇

[︂
𝑚𝑇

2𝜋~2

]︂ 3
2

×

×
𝐾max∑︁
𝑘=1

(−1)(𝑘+1)

𝑘
1
2

exp

[︂
𝑘(𝜈 −𝑚)

𝑇

]︂
, (18)

with respect to the effective chemical potential 𝜈 =
= 𝜇 − 4𝑉0 𝑝+ is finite for 𝜈 = 𝑚, since, in con-
trast to the case of BE particles, the sum staying

in Eq. (18) converges in the limit 𝐾max → ∞. In-
deed, with the help of integral representation of the
Riemann 𝜁-function [22] for 𝜈 = 𝑚 one finds

∞∑︁
𝑘=1

(−1)(𝑘+1)

𝑘
1
2

=
1

Γ
[︀
1
2

]︀ ∞∫︁
0

𝑡−
1
2

𝑒𝑡 + 1
𝑑𝑡 ≃ 0.6049, (19)

and, therefore, the derivative 𝐷1𝑝+ ≡ 𝑇 𝜕𝑝+

𝜕𝜌𝑖𝑑
+

does not
vanish for 𝜈 = 𝑚 and, hence, there is no 1-st order
PT in this case.

In our opinion this is a very simple and good ex-
ample that the presence of a macro-cluster with the
finite probability in a finite system is a necessary, but
not a sufficient condition of the 1-st order PT exis-
tence in such a system. We believe this is an impor-
tant message to be taken into account by the authors
of Refs. [23,24] who consider the presence and gradual
disappearance of the macro-cluster as a signal of the
1-st order nuclear liquid-gas PT in finite systems. The
whole point is that in finite systems the macro-cluster
of maximal size can appear as the metastable state of
finite probability not only for the 1-st order PT, but
also for the 2-nd order PT or even for the cross-over
[8, 9]. The present analysis once more shows one that
for vanishing surface tension coefficient the value of
the Fisher exponent 𝜏F defines the PT order [9].

One can readily check that all the results on PT
existence remain valid, if one uses the relativistic ex-
pression for particle energy, i.e. if one makes a re-
placement 𝑚 + 𝑘2

2𝑚 →
√
𝑚2 + 𝑘2. However, in this

case the BE condensation does not look mathemat-
ically identical to the sSMM and, hence, the corre-
sponding analysis is not made here.

3. Decomposition Identity
between Bosonic and Fermionic Pressures

Apart from the formal difference between the EoS of
the BE and FD particles we would like to understand
(i) whether our interpretation of the appearance of
classical macro-clusters is correct, and (ii) under what
circumstances the appearance of macro-cluster can be
associated with the 1-st order PT in the system of FD
particles. Indeed, an absence of the 1-st order PT in
the EoS of FD particles with the hard-core repulsion
may question the validity of our hypothesis about
the existence of classical macro-clusters and, there-
fore, one may think that BE condensation leads to an
appearance of quantum macro-cluster with BE statis-
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tics, while the quantum macro-cluster with FD statis-
tics cannot be formed due to some reason, namely due
to the Pauli blocking principle.

To demonstrate the validity of our hypothesis we
consider a peculiar mathematical identity between
the BE and FD pressures which we call a BE-FD
decomposition identity

−𝑇𝑔

∫︁
𝑑3𝑘

(2𝜋~)3
ln

[︁
1− exp

[︁
𝜈−

√
𝑚2+𝑘2

𝑇

]︁]︁
⏟  ⏞  

𝑝𝐵(𝜈𝑇 ,𝑚,𝑔)

≡

≡ 𝑇𝑔

∫︁
𝑑3𝑘

(2𝜋~)3

⎧⎪⎪⎪⎨⎪⎪⎪⎩ln
[︁
1 + exp

[︁
𝜈−

√
𝑚2+𝑘2

𝑇

]︁]︁
⏟  ⏞  

𝑝F(𝜈𝑇 ,𝑚,𝑔)

−

−1

8
ln
[︁
1− exp

[︁
2𝜈−

√
4𝑚2+𝑘2

𝑇

]︁]︁
⏟  ⏞  

𝑝𝐵(2𝜈𝑇 ,2𝑚,2−3𝑔)

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (20)

which will help us to understand the appearance of a
classical macro-cluster for BE and FD statistics. The
fact that now we do not use the non-relativistic ap-
proximation to the particle energy is not important.

The BE-FD decomposition identity (20) can be ob-
tained in the following sequence of steps: first we note
that

ln

[︃
1− exp

[︃
2𝜈 −

√
4𝑚2 + 4𝑘2

𝑇

]︃]︃
≡

≡ ln

[︃
1 + exp

[︃
𝜈 −

√
𝑚2 + 𝑘2

𝑇

]︃]︃
+

+ ln

[︃
1− exp

[︃
𝜈 −

√
𝑚2 + 𝑘2

𝑇

]︃]︃
. (21)

Next one can integrate Eq. (21) over 𝑑3𝑘 with the
degeneracy factor 𝑔 and change a particle momentum
on the left hand side of Eq. (21) as 2𝑘 → 𝑘 and in
the momentum integral to get a multiplier 1

8 . Finally,
interchanging the positions of integrals for lighter and
heavier bosons one arrives at Eq. (20).

Eq. (20) shows one that for the given values of 𝑇
and 𝜈 the pressure of ideal gas of bosons (the up-
per line of Eq. (20)) of mass 𝑚 and degeneracy 𝑔
can be identically decomposed into the sum of two
terms. The first pressure corresponds to the ideal gas

of fermions with same mass and degeneracy (the first
term on the right hand side of Eq. (20)), while the
second pressure describes the bosons with the dou-
ble mass and double charge (and the double excluded
volume 𝑉0, if 𝜈 = 𝜇− 4𝑉0𝑝 accounts for the effects of
hard-core repulsion as above), but with the reduced
degeneracy 𝑔

8 . Then the heavy bosons may be inter-
preted as “pairs” of fermions.

Applying the BE-FD decomposition identity (20)
(𝑛 − 1) times to the pressure 𝑝𝐵

(︀
2𝜈𝐵

𝑇 , 2𝑚, 2−3𝑔
)︀

of
“pairs”, one can identically extract the contribution
of bosonic macro-cluster (𝑛 ≫ 1) with the mass 2𝑛𝑚,
the charge 2𝑛 and the degeneracy 2−3𝑛𝑔 from the
pressure of bosons of mass 𝑚, charge 1 and degen-
eracy 𝑔 and get the following useful relation

𝑝𝐵

(︁𝜈𝐵
𝑇

,𝑚, 𝑔
)︁
≡ 𝑝𝐵

(︂
2𝑛𝜈𝐵
𝑇

, 2𝑛𝑚, 2−3𝑛𝑔

)︂
+

+
𝑛−1∑︁
𝑘=0

𝑝F

(︂
2𝑘𝜈𝐵
𝑇

, 2𝑘𝑚, 2−3𝑘𝑔

)︂
, (22)

where 𝑝F

(︁
2𝑘𝜈𝐵

𝑇 , 2𝑘𝑚, 2−3𝑘𝑔
)︁

denotes the pressure of

auxiliary fermions with the mass 2𝑘𝑚, the charge 2𝑘

and degeneracy 2−3𝑘𝑔. For low temperatures 𝑇 ≪ 𝑚
one can safely use the non-relativistic approximation
for the energy of particle. Applying the identity (22)
to the gas pressure of bosons 𝑝− of the EoS consid-
ered in the preceding section, i.e. for 𝜈𝐵 ≤ 𝜈𝑐, one can
immediately conclude that for 𝜈𝐵 < 𝑚 the effective
chemical potential of the bosonic macro-cluster on the
right hand side of Eq. (22) is (𝜈𝐵 −𝑚)2𝑛 → −∞ for
𝑛 ≫ 1 and, hence, such a macro-cluster does not ex-
ist for 𝜈𝐵 < 𝑚. It is evident, that the bosonic macro-
cluster on the right hand side of Eq. (22) does not
exist for 𝜈𝐵 = 𝑚 as well, since for 𝑛 ≫ 1 its degener-
acy 2−3𝑛𝑔 → 0 vanishes. Apparently, this argument
is valid for the case 𝜈𝐵 < 𝑚 as well. Therefore, in the
whole gaseous phase and at the condensation curve
of the EoS of BE particles with the hard-core repul-
sion considered in the preceding section the bosonic
macro-cluster is absent, i.e. for 𝜈𝐵 ≤ 𝑚 one finds

𝑝𝐵

(︁𝜈𝐵
𝑇

,𝑚, 𝑔
)︁
=

∞∑︁
𝑘=0

𝑝F

(︂
2𝑘𝜈𝐵
𝑇

, 2𝑘𝑚, 2−3𝑘𝑔

)︂
, (23)

that the pressure of BE particles can be identically
written as an infinite sum of the pressures of FD
particles with certain masses, charges and degenera-
cies. In the preceding section it was shown that the
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pressure of FD particles with the hard-core repulsion
does not have the 1-st order PT and, thus, in the ther-
modynamic limit there is no fermionic macro-cluster
for each pressure staying on the right hand side of
Eq. (23). However, the pressure of BE particles stay-
ing on the left hand side of Eq. (23) demonstrates the
1-st order PT of the BE condensation. Therefore, the
only possible explanation out of this apparent contra-
diction is that the BE condensation leads to an ap-
pearance of the classical macro-cluster which is the
sum of individual classical macro-clusters generated
by the set of fermionic pressures that are staying on
the right hand side of Eq. (23).

Now it is appropriate to discuss the properties of
the dense phase of BE hard spheres within the VdW
approximation. Since the pressure of dense phase
𝑝𝑠 = 𝜇−𝑚

4𝑉0
does not depend on the temperature ex-

plicitly, then the entropy density of dense phase 𝑠𝑠 =
𝜕𝑝𝑠

𝜕𝑇 = 0 is zero at any temperature, while the particle
number density of this phase is 𝑛𝑠 =

𝜕𝑝𝑠

𝜕𝜇 = 1
4𝑉0

. Fur-
thermore, from the thermodynamic identity

𝜀𝑠 = 𝑇𝑠𝑠 + 𝜇𝑛𝑠 − 𝑝𝑠 =
𝑚

4𝑉0
(24)

one can see that the energy density 𝜀𝑠 of the dense
phase, indeed, corresponds to the particles at rest
which have the highest possible density within the
adopted approximation. Therefore, similarly to the
case of classical hard spheres it is more appropriate to
call this phase as the solid state [11,12] (since there is
not attraction between the particles and the surface
tension coefficient is zero). Furthermore, it seems it
is more appropriate to consider the BE condensation
of particles with the hard-core repulsion as the depo-
sition PT from a gas to a solid. Of course, one has to
remember that, on the other hand, it is a condensate
of hard spheres with a vanishing momentum.

A mathematical similarity with the exact solution
of sSMM allows one to reliably interpret the BE
condensation of hard spheres as the 1-st order PT
in which the gas condenses into a classical macro-
cluster of the size 4𝑉0𝐾max with 𝐾max → ∞ in the
thermodynamic limit. Hence, at the PT curve there
should exist the phase boundary. As it was shown
above, formally, a macro-cluster corresponds to the
term 𝑘 = 𝐾max in the expression for pressure 𝑝−
in Eq. (5). Therefore, formally a macro-cluster can
be considered as a single classical particle which is
at rest. From Eq. (5) one can see that its statistical

weight is the Boltzmann one. Such an interpretation
is similar to the sSMM [6,7] with the difference that in
the sSMM a macro-cluster is a droplet of liquid which
has the non-vanishing surface tension below the criti-
cal temperature [4,6,7,10] and a finite entropy which
vanishes at 𝑇 = 0 only.

Moreover, considering the EoS (5) with the effec-
tive values of 𝑔 → 𝑔eff and 4𝑉0 → 𝑉 eff

0 which allow
one at least in the narrow range of thermodynamic
parameters to reproduce the realistic EoS of quantum
particles at high densities close 0.45/𝑉0−0.55/𝑉0 and
sufficiently high temperature 𝑇 for which the effects of
quantum statistics are not important, one should still
have the BE condensation PT on the one hand. On
the other hand, this should be the region of the depo-
sition phase transitions for the classical hard spheres
[11, 12]. Thus, we again should conclude that at high
temperature 𝑇 the BE condensation of quantum hard
spheres should match with the deposition PT of the
classical hard spheres.

Coming back to the ideal gas of BE particles one
should consider the limit 𝑉0 → 0 in all formulas
above. In this limit the high density state has infi-
nite particle number density and, hence, it is inac-
cessible. However, for any infinitesimally small eigen-
volume 𝑉0 our conclusions about the deposition PT
remain valid and, therefore, the whole argumentation
of K. Huang in Ref. [2] about the BE condensation as
the 1-st order PT is correct. Only the K. Huang in-
terpretation of this PT as a gas-liquid one seems to
be inconsistent with the modern interpretation of the
PT of hard spheres.

At the moment it is not clear, if it is just a coin-
cidence that at low pressures the real gases of mono-
and diatomic molecules with BE statistics, except
for the helium-4 for pressures below 25 atm., indeed,
demonstrate the deposition PT under cooling. Maybe
a more realistic EoS of quantum particles can resolve
this problem.

It is remarkable that the BE-FD decomposition
identity (20) allows one to establish another impor-
tant interpretation. The right hand side of the iden-
tity (20) corresponds to pressure of a mixture of the
ideal gases of fermions and their pairs (which are the
bosons) with the same degeneracy, but with the dou-
ble mass and double charge, which are taken with
the wight 1/8. The left hand side of the identity (20)
shows that such a mixture should experience the 1-
st order PT of BE condensation. From the famous
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work of L.N. Cooper [25] it is known that the pair-
ing of fermions can, indeed, happen under not very
restrictive conditions leading to the BE condensa-
tion of fermionic pairs and the BE-FD decomposition
identity (20) illustrates such a possibility for a mix-
ture discussed above. However, for the appearing of
Cooper pairs the fermions must have an attraction,
which is absent in the EoS discussed here.

It is evident that the identity (21) is valid for any
dimension 𝐷 = 1, 2, 3, ... . Introducing the pressures
of BE particles (sign −) and FD particles (sign +)
of mass 𝑚 that have the chemical potential 𝜈 and
temperature 𝑇 one can write

𝑝𝐷±(𝑇, 𝜈,𝑚) ≡

≡ ±𝑇𝑔

∫︁
𝑑𝐷𝑘

(2𝜋~)𝐷
ln

[︂
1± exp

[︂
𝜈 − 𝑒𝑚(𝑘)

𝑇

]︂]︂
, (25)

where 𝑒𝑚(𝑘) ≡
√
𝑚2 + 𝑘2. Using the expression (25)

one can generalize the BE-FD decomposition identity
(20) to the dimension 𝐷 for the fractional mass and
charge values as

𝑝𝐷− (𝑇, 𝜈,𝑚) ≡

≡ 2𝐷𝑝𝐷−

(︁
𝑇,

𝜈

2
,
𝑚

2

)︁
− 2𝐷𝑝𝐷+

(︁
𝑇,

𝜈

2
,
𝑚

2

)︁
. (26)

For the chargeless and massless particles, i.e. for 𝜈 =
= 0 and 𝑚 = 0, the BE-FD decomposition identity
(26) gives us the following relation between the BE
and FD momentum integrals

𝑝𝐷− (𝑇, 0, 0) ≡ 2𝐷

2𝐷 − 1
𝑝𝐷+ (𝑇, 0, 0) ⇒ (27)

⇒
∞∫︁
0

𝑥𝐷 𝑑𝑥

𝑒𝑥 − 1
=

2𝐷

2𝐷 − 1

∞∫︁
0

𝑥𝐷 𝑑𝑥

𝑒𝑥 + 1
, (28)

which for 𝐷 = 3 leads to a well-known identity
∞∫︁
0

𝑥3 𝑑𝑥

𝑒𝑥 − 1
=

8

7

∞∫︁
0

𝑥3 𝑑𝑥

𝑒𝑥 + 1
=

𝜋4

15
. (29)

Note, however, that Eq. (28) follows from Eq. (27) af-
ter integrating the pressures of massless and charge-
less particles over the angles, first, and, then, after
integrating them over 𝑑𝑘𝐷 by parts.

Applying the identity (26) to its right hand side 𝑛
times, one obtains another identity

𝑝𝐷− (𝑇, 𝜈,𝑚) ≡ 2𝐷𝑛𝑝𝐷−

(︁
𝑇,

𝜈

2𝑛
,
𝑚

2𝑛

)︁
−

−
𝑛∑︁

𝑘=1

2𝐷𝑘𝑝𝐷+

(︁
𝑇,

𝜈

2𝑘
,
𝑚

2𝑘

)︁
. (30)

For 𝑛 ≫ ln
[︀
max

(︀
𝜈
𝑇 ;

𝑚
𝑇

)︀]︀
with the help of identity (27)

one can establish an approximative relation

𝑝𝐷− (𝑇, 𝜈,𝑚) ≃ 2𝐷(𝑛+1)

2𝐷 − 1
𝑝𝐷+

(︁
𝑇,

𝜈

2𝑛
,
𝑚

2𝑛

)︁
−

−
𝑛∑︁

𝑘=1

2𝐷𝑘𝑝𝐷+

(︁
𝑇,

𝜈

2𝑘
,
𝑚

2𝑘

)︁
, (31)

which again relates the pressures of BE and FD par-
ticles. Note that Eqs. (25), (26), (30) and (31) are
valid for the particles with the hard-core repulsion,
i.e. for 𝜈 = 𝜇 − 2(𝐷−1)𝑉𝐷 𝑝𝐷− (𝑇, 𝜈,𝑚), where the
eigenvolume of particles in the 𝐷-dimensional space
is denoted as 𝑉𝐷.

4. Conclusions

In this work we reconsider the VdW equation of state
of BE particles with the hard-core repulsion in the
grand canonical ensemble. Our analysis shows that
the pressure of non-relativistic BE particles is mathe-
matically equivalent to the one of the exactly solv-
able model with the 1-st order PT known as the
sSMM. The EoS of BE particles corresponds to the
sSMM with the vanishing surface tension coefficient
and the Fisher exponent 𝜏F = 5

2 . Such a similarity
allows us to show that within the present approach
the high density phase of BE particles is a classical
macro-cluster with vanishing entropy at any temper-
ature which, similarly to the system of classical hard
spheres and due to an absence of attraction between
the particles, is a kind of solid state. Considering the
limit of very small eigenvolume of BE particles we
argue that the ideal gas of BE particles has the 1-st
order PT as it was suggested by K. Huang in his fa-
mous textbook [2] a long time ago, but, in contrast to
our conclusions, K. Huang suggested that this is the
gas to liquid PT [2].

To explicitly demonstrate that a macro-cluster with
the BE statistics does not exist in this EoS we inves-
tigate some peculiar relations between the pressures
of BE and FD particles, the BE-FD decomposition
identities, showing that under some conditions the
pressure of FD particles can be identically rewritten
in terms of two BE pressures. Moreover, we establish
an exact representation of the pressure of BE parti-
cles of mass 𝑚, charge 1 and degeneracy 𝑔 as a series
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of pressures of FD particles with the masses 2𝑘𝑚, the
charge 2𝑘 and degeneracy 2−3𝑘𝑔, where 𝑘 are positive
natural numbers. These new relations help us to cor-
rectly interpret the properties of a high density phase
of BE particles with hard-core repulsion.

In fact, here we establish a principally new look at
the problem of BE condensation. Of course, the con-
sidered model is oversimplified, but now one can use
all the achievements of the SMM [4–7, 10] and intro-
duce the surface part 𝜎(𝑇 )𝑘

2
3 of the free energy of 𝑘-

particle clusters (here 𝜎(𝑇 ) is the temperature depen-
dent coefficient of surface tension). Such a modifica-
tion will make model more realistic, since the surface
part of free energy partly accounts for the short range
attraction between the constituents like it is done in
the full SMM. Note that in this case, however, the
modified right hand side of Eq. (5) cannot be already
reduced to the pressure of point-like particles 𝑝−(𝑇, 𝜈)
with the shifted chemical potential 𝜈 = 𝜇− 4𝑉0𝑝−.
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К.О.Бугаєв, О.I. Iваницький,
Б.Є. Гринюк, I.П.Якименко

КОНДЕНСАЦIЯ БОЗЕ–ЕЙНШТЕЙНА
КВАНТОВИХ ТВЕРДИХ СФЕР ЯК ФАЗОВИЙ
ПЕРЕХIД ОСАДЖЕННЯ ТА НОВI СПIВВIДНОШЕННЯ
МIЖ ТИСКАМИ БОЗОНIВ ТА ФЕРМIОНIВ

Р е з ю м е

У великому статистичному ансамблi вивчено фазовий пе-
рехiд Бозе–Ейнштейнiвських частинок iз вiдштовхуванням
твердого кору у наближеннi Ван дер Ваальса. Показано,
що тиск нерелятивiстських Бозе–Ейнштейнiвських части-

нок є математично еквiвалентним тиску спрощеної стати-
стичної моделi мультифрагментацiї ядер iз нульовим коефi-
цiєнтом поверхневого натягу та фiшерiвською експонентою
𝜏F = 5

2
. Така модель має фазовий перехiд 1-го роду для цих

значень параметрiв. Знайдена еквiвалентнiсть цих рiвнянь
стану дозволила нам показати, що у даному пiдходi фаза
з високою щiльнiстю являє собою класичний макрокластер
iз нульовою ентропiєю за довiльних температур, який, ана-
логiчно системi класичних твердих сфер, є твердим тiлом.
Щоб з’ясувати цей факт, ми отримали новi спiввiдношен-
ня, якi дозволили нам тотожно представити тиск фермiонiв
через тиск бозонiв двох сортiв.
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