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ENTROPY PRODUCTION
IN A MODEL BIOLOGICAL SYSTEM
WITH FACILITATED DIFFUSION

Expressions for the calculation of the diffusion flow and the entropy production in a model
biological system, an ideal binary solution in a plane-parallel layer under osmotic boundary
conditions and the facilitated diffusion, have been derived in the framework of the linear ther-
modynamics of irreversible processes. It is shown that the consistent consideration of the de-
pendence of the diffusion coefficient on the field variables leads to a substantial difference of
the values obtained for the substance flow and the entropy production in biological systems
from the values obtained in the framework of standard approach with a constant diffusion
coefficient.
K e yw o r d s: entropy production, facilitated diffusion, biological system, ideal solution, os-
motic boundary conditions.

1. Introduction. Entropy
Production in Systems with Diffusion

Diffusion is a process that remains extremely impor-
tant for a large variety of natural phenomena and
technologies, so nowadays it is continued to be studied
both experimentally and theoretically. The most gen-
eral equations describing diffusion processes can be
obtained by applying the basic principles of the ther-
modynamics of nonequilibrium processes [1, 2]. Ho-
wever, some approaches applied to the description
of diffusion phenomena are based on specific ideas
concerning the internal microscopic structure of the
medium. It is important to emphasize that there is
no theory at present that, on the one hand, would
be rather convenient when describing the behavior of
real systems and, on the other hand, would not pos-
sess substantial restrictions on its application [3].

Various physical approaches can be used to de-
scribe diffusion processes. There are phenomenolog-
ical theories that describe this phenomenon in the
most general form. In the general case, the mass con-
servation law written in the local form serves as a
basis for phenomenological theories taking chemical
reactions and convection into account. But the con-
servation laws form an open set of equations. So, for
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the researched system to be described completely, the
set of equations has to be closed. For this purpose, the
equations of state for a multicomponent system and
the relationships between the substance flows and the
generating thermodynamic forces are used. The lin-
ear thermodynamics of irreversible processes is based
on the assumption that, in the case of a nonequi-
librium system that is close to its equilibrium state,
any flows are linearly related to independent thermo-
dynamic forces that drive the system to the equilib-
rium state [4]. Therefore, the equations for the flows
are written as linear combinations of thermodynamic
forces with the coefficients that must be determined
empirically.

In recent decades, a general statistical theory has
been developed that substantiates the basic relation-
ships in the thermodynamics of irreversible processes
and can provide theoretical methods for the deter-
mination of the Onsager coefficients (which are phe-
nomenological by their nature). Besides that, this can
establish the application limits for the linear theory.
The theory is based on the quantum-mechanical de-
scription of an isolated many-particle system [5,6]. In
addition, rather wide-spread are theories that de-
scribe the diffusion with the help of kinetic equations
and making use of certain model concepts concerning
the structure of the matter and the interaction be-
tween the particles. It is clear that this approach is
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associated with the solution of a dynamic many-body
problem [7–9]. As a result, the most significant results
in the framework of this approach can be achieved us-
ing computer simulation methods [10, 11].

It should be emphasized that the results currently
obtained in the framework of the described approa-
ches (both experimental and theoretical) testify that
the diffusion coefficient may substantially depend on
the concentration, which cannot be taken into ac-
count when solving the classical diffusion equation in
the form of Fick’s law.

In many real systems – in particular, biologi-
cal membranes – there is the so-called facilitated
diffusion. This process can arise in a system with
a reversible chemical reaction, when the diffusing
substance (the so-called substrate) joins the carrier
(the macromolecules that are contained within the
membrane), so that there emerge the flows of both
the substrate and the substrate-carrier complex in
the system. Among the processes associated with
the facilitated diffusion, we distinguish the trans-
fer of oxygen (the substrate) through the mem-
brane by hemoglobin (the carrier) and the effect
of antibiotics on biological membranes [12, 13]. Note
that, owing to the facilitated diffusion mechanism,
the transfer rates of oxygen, alkali metal ions,
and glucose can be higher by two orders of mag-
nitude [14].

One of the most striking examples illustrating the
process of facilitated diffusion is the diffusion of oxy-
gen (O2) in living organisms. It was experimentally
found that myoglobin (Mb) facilitates the diffusion
of O2 in the cell [15, 16]. A large number of works
(see, e.g., works [17, 18]) were devoted to the theo-
retical modeling and experimental study of the re-
versible binding of O2 by myoglobin and its trans-
lational diffusion in the cell. The facilitated diffu-
sion of oxygen by means of myoglobin is especially
efficient at low partial pressures of the substrate,
and its contribution to the diffusion flow depends
on the concentration gradient of the carrier-substrate
complex.

In the field of theoretical modeling of the diffusion
in membrane biological systems with reversible chem-
ical reactions, the pioneering results were obtained by
Murray in works [19,20]. In particular, several models
of membrane systems were considered, e.g., a model
with a plane-parallel membrane containing a solution
of hemoglobin or myoglobin through which the dif-

fusion occurs. The protein available in the solution
can reversibly join the substrate, for example, oxy-
gen. The developed mathematical model allows one
to find the spatial distributions of the oxygen con-
centration and the saturation function over the mem-
brane volume, as well as the concentration depen-
dences of the corresponding flows. The analysis of
the obtained results points to a substantial nonlinear-
ity in the concentration dependences of the substrate
flows through such systems. It is important to note
that there is a lack of calculations for the entropy
production and flows in a wide class of such biologi-
cal systems with a correct consideration of chemical
reactions in them.

Let us introduce the entropy source intensity 𝜎,
i.e. the entropy production per unit time per unit
volume of the system, with the help of the follow-
ing expression for the rate of entropy production in
the system [1]:

𝑑𝑖𝑆

𝑑𝑡
=

∫︁
𝑉

𝑑r𝜎. (1)

Now, let us consider a liquid or gaseous 𝑛-component
system in which diffusion processes and chemical
reactions can take place. We assume that the sys-
tem is far from the stability thresholds (the critical
points of various origins). Furthermore, we assume
that the system is not undergone the action of ex-
ternal fields. In this case, for the intensity 𝜎 of the
entropy production source, we may write [1]

𝜎=− 1

𝑇 2
J𝑞∇𝑇− 1

𝑇

𝑛∑︁
𝑘=1

J𝑘𝑇∇
𝜇𝑘

𝑇
− 1

𝑇

𝑟∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝐽𝑖𝜈𝑘𝑖𝜇𝑘,

(2)

where J𝑞 is the heat flux, 𝑇 the temperature, J𝑘 =
= 𝜌𝑘 (v𝑘 − v) is the diffusion flux relative to the cen-
ter of mass, v is the mass velocity, v𝑘 the mass veloc-
ity of the 𝑘-th component, 𝐽𝑖 the local rate of the 𝑖-th
chemical reaction, 𝜈𝑘𝑖 the stoichiometric coefficient, 𝑟
the number of chemical reactions, and 𝜇𝑘 the chemi-
cal potential of the 𝑘-th component (it is a function
of the pressure, temperature, and substance concen-
trations expressed in molar fractions 𝑥𝑘).

It is obvious that, in order to calculate the rate of
entropy production 𝜎 making use of Eq. (2), it is nec-
essary to have an expression for J𝑘. For the diffusion
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flows J𝑘, we can use the law

J𝑘 = −𝐷𝑘∇𝑥𝑘 −
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1
𝑗 ̸=𝑘

𝐿𝑘𝑖

[︃
𝑣𝑖

𝜕𝑝

𝜕𝑥𝑗
+ 𝑘𝑇

(︃
𝛿𝑖𝑗
𝑐𝑖

+

+
1

𝛾𝑖

𝜕𝛾𝑖
𝜕𝑥𝑗

)︃]︃
∇𝑥𝑗 −

𝑛∑︁
𝑖=1

𝐿𝑘𝑖𝑣𝑖
𝐾𝑇

𝜌
∇𝜌−𝐷𝑇∇𝑇, (3)

where 𝑣𝑖 is the partial molar volume of the 𝑖-th com-
ponent, 𝐾𝑇 the isothermal compression modulus,

𝐷𝑘 =

𝑛∑︁
𝑖=1

𝐿𝑘𝑖

[︂
𝑣𝑖

𝜕𝑝

𝜕𝑥𝑘
+ 𝑘𝑇

(︂
𝛿𝑖𝑘
𝑐𝑖

+
1

𝛾𝑖

𝜕𝛾𝑖
𝜕𝑥𝑘

)︂]︂
is the diffusion coefficient of the 𝑘-th component,

𝐷𝑇 =

𝑛∑︁
𝑖=1

𝐿𝑘𝑖 (𝑝𝑣𝑖𝛾𝑉 − 𝑠𝑖) + 𝐿𝑘𝑞

is the Soret coefficient, 𝛾𝑉 is the thermal pressure
coefficient, and 𝑠𝑖 the partial molar entropy of the 𝑖-
th component. For the chemical potential of the 𝑖-th
component, 𝜇𝑖, the following expression was used:

𝜇𝑖 (𝑇, 𝜌, 𝑥1, ..., 𝑥𝑛) =

= 𝜇𝑖0 (𝑇, 𝜌) + 𝑘𝑇 ln𝑥𝑖𝛾𝑖 (𝑇, 𝜌, 𝑥1, ..., 𝑥𝑛), (4)

where 𝜇𝑖0 is the chemical potential of the pure sub-
stance, and 𝛾𝑖 the coefficient of activity of the 𝑖-th
component. The account for only the entropy con-
tribution to the change in the chemical potential of
the 𝑖-th component (the term ln𝑥𝑖) corresponds to
the ideal solution approximation. For the theoretical
determination of the other term (the case of non-
ideal solutions), the known approximations of the reg-
ular solution are used, such as the Margules, van
Laar, Scatchard–Hamer, and other approximations
[21, 22]. Then, the general expression for the entropy
production can be written in the form
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𝑇 2
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}︃
. (5)

The obtained expression makes it possible to calculate
the entropy production in systems with chemical reac-
tions and the diffusion, including the facilitated one.

2. Stationary Diffusion and Entropy
Production in a Plane-Parallel Pore

Let us apply the obtained general equation (5) to de-
scribe the process of entropy production in a mem-
brane biological system. By a membrane, we mean
a plane-parallel layer of a substance confined in be-
tween two semipermeable walls. Note that when con-
structing the membrane model, the Murray model
for the diffusion of oxygen in the hemoglobin and
myoglobin solutions [15, 19] was taken as a ba-
sis. Reversible chemical reactions are possible in the
system. However, unlike the approach developed by
Murray and Wittenberg [23], information about those
reactions is taken into account via the activity coef-
ficient 𝛾. Such a consideration of chemical reactions
allows the term 1

𝑇

∑︀𝑟
𝑖=1

∑︀𝑛
𝑘=1 𝐽𝑖𝜈𝑘𝑖𝜇𝑘 to be not con-

sidered in the explicit form [24].
Let us consider the process of stationary diffu-

sion in a two-component solution located in a plane-
parallel membrane with the distance 𝑙 confined be-
tween two semipermeable walls. It is evident that

𝑑𝐽1
𝑑𝑡

= 0 (6)

in this case. We also assume that the system is not af-
fected by external forces. The temperature gradients
are absent as well. Such a model adequately describes
the behavior of a large number of biological systems
[19]. In this case, the membrane only contains the
substrate (component 1) diffusing through it and the
carrier (component 2) responsible for the realization
of the facilitated diffusion regime [16].

Let us introduce such a coordinate system that its
axis 0𝑧 be perpendicular to the surfaces that confine
the system and are located at the coordinates 𝑧 = 0
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and 𝑧 = 𝑙. Since substance 2 (carriers) always remains
within the membrane, we have

𝐽2(0) = 𝐽2(𝑙) = 0. (7)

Besides that, we assume that a gradient of the con-
centration of substance 1 is maintained in the sys-
tem. Namely, the substrate concentrations are con-
stant at the system boundaries, so that the boundary
conditions look like{︂
𝑥1(𝑧 = 0) = 𝑥0,

𝑥1(𝑥 = 𝑙) = 𝑥𝑙,
(8)

where 𝑥0 > 𝑥𝑙 > 0.
The stationary character of the diffusion process

allows the order of the differential equation describ-
ing the diffusion process to be correctly reduced by
one. At the same time, this condition fits well to
plenty of physical phenomena. Note that the pro-
cesses of entropy production in native wildlife are
stationary.

Furthermore, in the framework of the proposed
model, we may neglect crossed processes, such as the
thermodiffusion, because their contributions are sev-
eral orders of magnitude smaller than those of direct
processes in liquid systems [25]. In this case, the dif-
fusion is driven exclusively by the chemical poten-
tial gradients of the components. Therefore, all non-
diagonal elements in the matrix of phenomenological
coefficients 𝐿𝑖𝑘 can be put equal to zero. The diagonal
elements will be denoted as 𝐿𝑖.

Since the diffusion is considered in a membrane
with semipermeable walls, osmotic phenomena must
appear in such a system. In other words, the depen-
dence of chemical potentials on the pressure must
be taken into consideration, which was marked for
the first time in work [26]. Those osmotic phenomena
(namely, the pressure gradient that arises in the sys-
tem) make it possible to explain the mechanism giv-
ing rise to the absence of substance diffusion between
the semipermeable walls of the membrane, although
the concentration gradient does exist. In this case, we
obtain the following expression for the substrate flux:

𝐽1 = −2𝑘𝐿1
𝑑𝑥1

𝑑𝑧

{︃[︂
1

𝑥1
+

𝜕

𝜕𝑥1
ln 𝛾1

]︂
+

+
𝑣10 + 𝑘𝑇 𝜕

𝜕𝑝 ln 𝛾1

𝑣20 + 𝑘𝑇 𝜕
𝜕𝑝 ln 𝛾2

[︂
1

1− 𝑥1
− 𝜕

𝜕𝑥1
ln 𝛾2

]︂}︃
. (9)

By comparing the obtained expression for the sub-
strate flux with Fick’s law, we can write the following
expression for the diffusion coefficient 𝐷 (𝑇, 𝑝, 𝑥1):

𝐷(𝑇, 𝑝, 𝑥1) = 2
𝐿1

𝑇

⎧⎨⎩
(︂
𝜕𝜇1

𝜕𝑥1

)︂
−

(︁
𝜕𝜇1

𝜕𝑝

)︁
(︁
𝜕𝜇2

𝜕𝑝

)︁ (︂𝜕𝜇2

𝜕𝑥1

)︂⎫⎬⎭ =

= 2𝑘𝐿1

{︃[︂
1

𝑥1
+

𝜕

𝜕𝑥1
ln 𝛾1

]︂
+

+
𝑣10 + 𝑘𝑇 𝜕

𝜕𝑝 ln 𝛾1

𝑣20 + 𝑘𝑇 𝜕
𝜕𝑝 ln 𝛾2

[︂
1

1− 𝑥1
− 𝜕

𝜕𝑥1
ln 𝛾2

]︂}︃
. (10)

This formula demonstrates an essential dependence
of the diffusion coefficient on the thermodynamic pa-
rameters of the system and the thermal equation of
state. It is evident that, in the case of stationary dif-
fusion in a binary solution, we can write the following
ultimate expression for the entropy production:

𝜎 = 𝐿1 (2𝑘)
2

(︂
𝑑𝑥1

𝑑𝑧

)︂2{︃[︂
1

𝑥1
+

𝜕

𝜕𝑥1
ln 𝛾1

]︂
−

−
𝑣10 + 𝑘𝑇 𝜕

𝜕𝑝 ln 𝛾1

𝑣20 + 𝑘𝑇 𝜕
𝜕𝑝 ln 𝛾2

[︂
𝜕

𝜕𝑥1
ln 𝛾2 −

1

1− 𝑥1

]︂}︃2

. (11)

In order to calculate the substance flow and the en-
tropy production with the help of expression (9), it
is necessary to know the dependence of the activity
coefficients on the pressure and concentration. It is
known that the activity coefficient is associated with
the peculiarities in the equation of state. Therefore,
in accordance with Shakhparonov’s ideas [27], we may
assume that its account will enable us to model possi-
ble reversible chemical reactions as a specific kind of
intermolecular interaction [28]. In particular, as was
shown in works [28, 29], there is a possibility to simu-
late chemical reactions by considering the changes of
thermodynamic parameters.

In work [30], it was demonstrated that, in the gen-
eral case, the results obtained with the help of the
perturbation theory applied to an isobaric-isothermal
ensemble can be used to determine the dependence of
the activity coefficients on the pressure and concen-
tration. The explicit form of this dependence is often
determined by the model of regular solutions and the
Margules, van Laar, and Scatchard–Hamer empirical
equations.

Thus, making use of Eqs. (9) and (11), it is possible
to calculate the substance flow and the entropy pro-
duction in a binary solution located in a plane-parallel
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Fig. 1. Dependences of the normalized flow − 𝑙
2𝑘𝐿1

𝐽1 on the
quantity 𝑥0 − 𝑥𝑙 in the ideal solution model for various values
of the ratio 𝑣10/𝑣20 = 0.01 (1 ), 0.2 (2 ), and 0.5 (3 ). The con-
centration at the right boundary of the membrane 𝑥𝑙 = 10−1

Fig. 2. Dependences of the normalized flow − 𝑙
2𝑘𝐿1

𝐽1 on the
quantity 𝑥0 − 𝑥𝑙 in the ideal solution model for various values
of the ratio 𝑣10/𝑣20 = 0.01 (1 ), 0.5 (2 ), and 1.0 (3 ). The con-
centration at the right boundary of the membrane 𝑥𝑙 = 10−4

pore, if we specify the interaction between the parti-
cles in the solution (i.e. the solution type) and the
character of possible chemical reactions making use
of the activity coefficient.

3. Entropy Production
in a Plane-Parallel Pore
in the Case of Ideal Solution

Let us consider the case of ideal solution. In this
model, the contribution of the entropy factors given
to thermodynamic potentials at the mixing dominates
over that of energy ones, so that the latter can be
neglected. Then, the activity coefficient is identically
equal to unity and, after the integration, the expres-
sion for the substrate flow takes the form

𝐽1 = −2𝑘𝐿1

𝑙

(︂
ln

𝑥𝑙

𝑥0
− 𝑣10

𝑣20
ln

1− 𝑥𝑙

1− 𝑥0

)︂
. (12)

In Figs. 1 and 2, the dependences of the normalized
flow of the substance diffusing through the membrane
on the concentration difference between the bound-
aries, 𝑥0−𝑥𝑙, are shown for various ratios between the
partial volumes of the solution components and for
two values of 𝑥𝑙. The presented results demonstrate
a substantial nonlinear dependence of the flow on the
value of the difference 𝑥0 − 𝑥𝑙. Recall that they were
obtained in the case of ideal solution, i.e. considering
only the entropy contribution to the variation of the
thermodynamic potential at the mixing.

The analysis of the presented results testifies that,
for small values of the difference 𝑥0 − 𝑥𝑙 (in partic-
ular, 𝑥0 − 𝑥𝑙 < 0.1 for the data shown in Fig. 1
and 𝑥0 − 𝑥𝑙 < 0.01 for the data shown in Fig. 2),
the observed dependence of the flow is almost lin-
ear. However, as the difference 𝑥0 − 𝑥𝑙 grows, the
dependence 𝐽1 (𝑥0 − 𝑥𝑙) considerably deviates from
the linear one, and the stabilizing effect takes place,
i.e. the flow begins to depend weakly on the concen-
tration difference between system’s boundaries. The
presented data also demonstrate that if the ratio be-
tween the partial molar volumes of the substance dif-
fusing through the membrane and the solvent de-
creases, an essential enhancement of the stabilizing
effect is observed with the growth of the concentra-
tion difference between the membrane boundaries.

In the case of facilitated diffusion of a biologi-
cally active substance through membranes (e.g., the
hemoglobin-assisted diffusion of oxygen), the ratio
𝑣10/𝑣20 is extremely small. Furthermore, the con-
centration of the transferred substance at the right
boundary of the system is maintained at a rather
low level in most cases, so the biological transport
is described by curve 1 in Fig. 2. In this case, the
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Fig. 3. Dependences of the normalized diffusion flow on the
quantity 𝑥0 − 𝑥𝑙 calculated for 𝑣10/𝑣20 = 0.01: in the ideal
solution model (1 ) and at 𝐷 = const (2 ). The concentration
at the right boundary of the membrane 𝑥𝑙 = 10−4

flow remains almost constant within the physiologi-
cally relevant variation interval of the concentration
difference 𝑥0 − 𝑥𝑙. Such behavior corresponds to the
specific features of the facilitated diffusion in biolog-
ical systems.

Figure 3 exhibits the dependences of the normal-
ized diffusion flow on the 𝑥0 − 𝑥𝑙 value calculated for
𝑣10/𝑣20 = 0.01 and in the case of the constant dif-
fusion coefficient. One can see that at small 𝑥0 − 𝑥𝑙

values, a substantial increase of the facilitated diffu-
sion flow is observed: the flow ratio reaches a value
of about 110 at 𝑥0 − 𝑥𝑙 = 10−2, being of about 15
at 𝑥0 − 𝑥𝑙 = 10−1. The stabilizing effect manifests
itself well with the further increase of the difference
𝑥0 − 𝑥𝑙: when 𝑥0 − 𝑥𝑙 changes from 0.2 to 0.7, the
facilitated flow grows by about 17%, whereas the flow
with the constant diffusion coefficient, expectedly, by
about 250%.

The obtained expression (12) for the diffusion flow
makes it possible, using formula (11), to find an ex-
pression for the entropy production in the case con-
cerned:

𝜎 =
(2𝑘)

2
𝐿1

𝑙2

(︂
ln

𝑥𝑙

𝑥0
− 𝑣10

𝑣20
ln

1− 𝑥𝑙

1− 𝑥0

)︂2
. (13)

In Figs. 4 and 5, the dependence of the entropy pro-
duction on the concentration difference between the

Fig. 4. Dependences of the normalized entropy production
𝑙2

(2𝑘)2𝐿1
𝜎 on the quantity 𝑥0 − 𝑥𝑙 in the ideal solution model

for various values of the ratio 𝑣10/𝑣20 = 0.01 (1 ), 0.2 (2 ), and
0.5 (3 ). The concentration at the right boundary of the mem-
brane 𝑥𝑙 = 10−1

Fig. 5. Dependences of the normalized entropy production
𝑙2

(2𝑘)2𝐿1
𝜎 on the quantity 𝑥0 − 𝑥𝑙 in the ideal solution model

for various values of the ratio 𝑣10/𝑣20 = 0.01 (1 ), 0.5 (2 ), and
1.0 (3 ). The concentration at the right boundary of the mem-
brane 𝑥𝑙 = 10−4

boundaries, 𝑥0 − 𝑥𝑙, is shown for various ratios be-
tween the partial volumes of the solution components
and for two 𝑥𝑙-values. The presented results point to
a substantial deviation of the entropy production be-
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Fig. 6. Dependences of the normalized entropy production
𝑙2

(2𝑘)2𝐿1
𝜎 on the quantity 𝑥0−𝑥𝑙 calculated for 𝑣10/𝑣20 = 0.01:

(1) in the ideal solution model and (2 ) at 𝐷 = const. The con-
centration at the right boundary of the membrane 𝑥𝑙 = 10−4

Fig. 7. Oxygen flow in the aqueous hemoglobin solution as
a function of the oxygen concentration at the left membrane
boundary: (1 ) facilitated diffusion according to the results of
Murray’s calculations [19], (2 ) diffusion flow, (3 ) Wittenberg’s
experimental results [16]

havior from the quadratic dependence on the quantity
𝑥0−𝑥𝑙 (the latter should have been expected accord-
ing to the general expressions).

The analysis of the presented results testifies that,
for small values of the quantity 𝑥0−𝑥𝑙 (𝑥0−𝑥𝑙 < 0.1

for the data shown in Fig. 4 and 𝑥0 − 𝑥𝑙 < 0.01 for
the data shown in Fig. 5), an almost quadratic de-
pendence of the entropy production is observed. Ho-
wever, as the difference 𝑥0−𝑥𝑙 grows, the dependence
𝜎 (𝑥0 − 𝑥𝑙) starts to deviate substantially from the
quadratic one, and the stabilizing effect takes place,
i.e. the entropy production begins to depend weakly
on the concentration difference between the bound-
aries of the system. As one may expect from the anal-
ysis of the results obtained for the flows, the presented
data testify that the decrease of the ratio between
the partial molar volumes of the substance diffusing
through the membrane and the solvent brings about
a substantial enhancement of the stabilizing effect,
when the concentration difference between the mem-
brane boundaries increases.

As was said above, in the case of facilitated diffu-
sion of a biologically active substance through mem-
branes, the ratio 𝑣10/𝑣20 is extremely small. As a re-
sult, the entropy production remains almost constant
within the physiologically relevant variation interval
of the concentration difference 𝑥0 − 𝑥𝑙. Such a be-
havior also corresponds to the specific features of the
facilitated diffusion in biological systems.

In Fig. 6, the dependences of the normalized en-
tropy production on the difference 𝑥0 − 𝑥𝑙 are shown
for 𝑣10/𝑣20 = 0.01 and the case of the constant dif-
fusion coefficient. One can see that at small 𝑥0 − 𝑥𝑙

values, a substantial increase of the entropy produc-
tion is observed in the facilitated diffusion case: the
entropy production ratio reaches a value of about
1.1 × 104 at 𝑥0 − 𝑥𝑙 = 10−2, whereas it is of about
5×102 at 𝑥0−𝑥𝑙 = 10−1. The stabilizing effect man-
ifests itself well with the further increase of the dif-
ference 𝑥0−𝑥𝑙: when 𝑥0−𝑥𝑙 changes from 0.2 to 0.7,
the entropy production grows by about 50% at the fa-
cilitated diffusion, whereas the entropy production at
the constant diffusion coefficient expectedly increases
by about 1100%.

Figure 7 demonstrates the dependences of the total
oxygen flux in the aqueous hemoglobin solution as a
function of the oxygen concentration at the left mem-
brane boundary provided that the oxygen concentra-
tion at the right boundary is constant (i.e., actually
as a function of the oxygen concentration gradient),
which were obtained theoretically by Murray [19] and
experimentally by Wittenberg [16]. Murray’s results
were obtained by explicitly accounting for the pres-
ence of reversible chemical reactions in the system,
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namely, by constructing a solution for the asymptotic
expansion of a singularly perturbed equation of the
diffusion type in the zeroth-order approximation. A
comparison of our results (Fig. 2) with the data pre-
sented in Fig. 7 testifies that the approach with the
account for reversible chemical reactions with regard
for the physicochemical characteristics of the solu-
tion, where the diffusion process takes place, brings
about results that are in good qualitative and quan-
titative agreement with the literature data obtained
both experimentally and theoretically. In particular,
a substantial growth of the facilitated diffusion flow
is observed at small 𝑐0-values, whereas a consider-
able stabilizing effect is well-pronounced at larger 𝑐0-
values.

4. Conclusions

1. The formula obtained for the diffusion coefficient
demonstrates its strong dependence on the solution
concentration, which is mainly determined by the
thermal equation of state of the system.

2. While describing the process of facilitated dif-
fusion in biological systems, there is no need to ex-
plicitly consider the presence of reversible chemical
reactions. The correct account for the concentration
dependence of the diffusion coefficient leads to results
that are qualitatively similar to those obtained, when
the chemical reactions are considered explicitly.

3. The results obtained for the entropy production
testify to the existence of a stabilizing effect in bio-
logical systems. If the concentration gradient of the
diffusing substance changes, the entropy production
changes within narrower limits as compared with the
results obtained for a constant diffusion coefficient.

4. The entropy contributions to the variation of
thermodynamic potentials at the mixing play an im-
portant role in the change of the character of entropy
production in biological systems.
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Д.А. Гаврюшенко, К.В.Черевко, Л.А.Булавiн

ПРОДУКУВАННЯ ЕНТРОПIЇ
В МОДЕЛЬНIЙ БIОЛОГIЧНIЙ СИСТЕМI
В ПРОЦЕСI ПОЛЕГШЕНОЇ ДИФУЗIЇ

Отримано вирази для визначення потоку речовини, що ди-
фундує, та продукування ентропiї в модельнiй бiологiчнiй
системi – плоскопаралельному шарi з осмотичними грани-
чними умовами за наявностi процесiв дифузiї для бiнарного
iдеального розчину в рамках лiнiйної термодинамiки незво-
ротних процесiв. Показано, що послiдовне врахування за-
лежностi коефiцiєнта дифузiї вiд польових змiнних призво-
дить до суттєвої вiдмiнностi залежностi потоку речовини
та продукування ентропiї в бiологiчнiй системi вiд значень,
отриманих в рамках загальновживаного пiдходу зi сталим
коефiцiєнтом дифузiї.

Ключ о в i с л о в а: продукування ентропiї, полегшена ди-
фузiя, бiологiчна система, iдеальний розчин, осмотичнi гра-
ничнi умови.
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