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SPIN-POLARIZED CURRENT-DRIVEN
FERROMAGNETIC DOMAIN WALL MOTION
WITH A SKYRMION-LIKE BUILDING BLOCK

The purpose of the research is the construction of an analytic model for the description of a
spin-polarized current-driven ferromagnetic domain wall motion with a skyrmion-like building
block. The motion velocity of the ferromagnetic domain wall with a skyrmion-like building block
is found as a function of the driving torques and an external magnetic field strength.
K e yw o r d s: ferromagnet, domain wall, skyrmion-like building block, spin-polarized current.

1. Introduction

Recently, domain walls in ferromagnetic nanosized
samples have been an urgent object of researches as
promising carriers of information bits for applications
in magnetic memory devices [1]. Moreover, the do-
main wall in a ferromagnet can have the simplest
defect-free structure such as a “transverse” wall or
include vortices and other topological defects such as
a “vortex” wall. Among a wide variety of magnetic
topological objects, the following are most distingui-
shed as “building blocks” in the internal structure
of domain walls: vortex, antivortex, bimeron, Bloch
line, and Bloch point.

In magnets, the Bloch lines divide the surface of
a domain wall into two subdomains and significantly
affect the properties of domain walls. Numerous stud-
ies have been devoted to the construction of magnetic
memory devices based on Bloch lines [2, 3]. To date,
the Bloch lines in ferromagnets with high uniaxial
anisotropy are the most studied [4]. The correspond-
ing studies began much earlier in weakly anisotropic
films [5], and modern achievements in this direction
are described in [6]. The Bloch lines are observed re-
gardless of the sign of the magnetic anisotropy con-
stant in cubic ferromagnets [7,8]. A theoretical model
of Bloch lines in weak ferromagnets was proposed in
[9]. Local bends were observed in the Bloch lines mov-
ing at high speeds in yttrium orthoferrite, and they
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were associated with the movement of vortices along
the domain wall [10].

The Bloch point is one of the examples of point
topological defects in domain walls and was first pro-
posed in [11, 12]. The defining property of the Bloch
point is that it represents the topological singularity
of the magnetization field, and one can find all pos-
sible directions of the magnetization vector on the
sphere with infinitely small radius centered at the
Bloch point. Unlike other topological spin textures
such as magnetic skyrmions and vortices, the Bloch
points have a unique feature – the local magnetiza-
tion at the Bloch point completely disappears. This
was experimentally confirmed in yttrium ferrite gar-
net crystals, micron-thick garnet films, and magne-
tic cylindrical wire based on static measurements
[13–15].

It was shown in [11] that the structure of the Bloch
point is mainly determined by the exchange energy.
Later in [12], the specific energy was calculated, and it
was shown that its value is topologically invariant. A
family of magnetization textures with local rotation
angle 𝛾 (in the azimuthal direction) was considered in
[12], and it was found that minimizing the magneto-
static energy selects a specific angle 𝛾 ≈112∘ [12]. In
order to study the region near the singular point, the
Landau magnetic energy [16] was included in [17],
and the neglect of a magnetostatic energy was jus-
tified. As a result, it was shown that the magnitude
of the magnetization vector increases linearly with
the radial distance from the center. The magnetiza-
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tion field of the Bloch point was calculated with re-
gard for the exchange energy, Landau magnetic en-
ergy, and magnetostatic energy in [18]. The Bloch
point in the domain wall of a ferromagnet is charac-
terized by a topological (skyrmionic) charge 𝑞 = ±1
[19]. There are the infinite number of Bloch point con-
figurations. However, there are three main possible
configurations of the Bloch point, namely, a hedgehog
configuration in which the magnetization distribution
around the Bloch point is spherically symmetric, and
the magnetization vector is directed away from the
Bloch point (diverging Bloch point 𝑞 = +1) or to the
Bloch point (converging Bloch point 𝑞 = −1), vor-
tex or antivortex (𝑞 = +1 or −1) and spiral (𝑞 = +1
or −1) configurations, which are obtained by the 90∘
and 180∘ rotations of the magnetization of a simi-
lar configuration, respectively [20–22]. Direct obser-
vation of the stabilized structures of Bloch points
with a skyrmion charge 𝑞 = +1, namely, hedgehog-
like, vortex, and spiral configurations, is reported
in [19]. The in-plane and out-of-plane magnetization
components were observed using the magnetic trans-
mission soft X-ray microscopy MTXM [19], and the
corresponding structures were determined based on a
numerical micromagnetic simulation [19].

“Vortex” or “topological” domain walls with integer
topological charges, as well as integer or fractional
winding numbers of volume vortices and edge defects,
are observed, for example, in ferromagnetic nanowires
and nanorings [1]. The dynamics of a domain wall in
a ferromagnet depends on the topological charge of
the vortices in its structure. The movement of the
domain wall leads to the creation, propagation, and
annihilation of such defects.

The interest in the dynamics of magnetic vortices
and Bloch points is also associated with the discov-
ery of the fast magnetization reversal of the core of
a magnetic vortex by alternating external influences
(magnetic field [23] or spin current [24]). The numer-
ical micromagnetic simulation of the magnetization
reversal of a vortex core [25] showed that the mech-
anism of annihilation of vortex-antivortex pairs [26]
requires the mediation of a magnetization singular-
ity: the “magnetic monopole” or, in other words, the
Bloch point [21].

At the same time, the vast majority of theoretical
studies of the internal structure of domain walls in
ferro- and antiferromagnets are based on a numeri-
cal micromagnetic modeling. However, the results of

analysis of exact analytic solutions of the Landau–Lif-
shitz equations in ferro- and antiferromagnets have
shown [27] that there can exist the infinite num-
ber of magnetic textures under the same boundary
conditions for the magnetization vector (as well as
the antiferromagnetism vector), which obviously rep-
resents the problem for a numerical micromagnetic
simulation.

In a number of works [28,29], the Landau–Lifshitz–
Gilbert–Slonczewski equation was successfully used
to describe the dynamics of a domain wall in a free
ferromagnetic layer during its long-scale translational
motion along this layer in the case of the spin-po-
larized current flowing perpendicularly to the layers
of the layered ferromagnet/nonmagnetic metal/ferro-
magnet structure under the assumption that the “bal-
listic conditions” are fulfilled [30].

In this work, we will obtain a 3D exact dynamic
solution of the Landau–Lifshitz–Gilbert–Slonczewski
equation in a ferromagnet with uniaxial magnetic
anisotropy, which describes the motion of a domain
wall with a skyrmion-like building block in the in-
ternal structure under the influence of an external
magnetic field and a spin current. The solution is
obtained for an infinite ferromagnet. However, this
result is naturally applicable to the free layer of a
layered system ferromagnet/nonmagnetic metal/fer-
romagnet under the condition that the characteristic
scale of a skyrmion-like building block, as a compo-
nent of the internal structure of the domain wall, is
much less than the thickness of the free layer. The last
condition is well satisfied for skyrmions with sizes of
the order of several nm, which are especially popular
as promising carriers of information for spintronics.

2. Theory and Calculation

Let us consider a ferromagnet with uniaxial magnetic
anisotropy and magnetization M, |M| = 𝑀0, where
the absolute value of the magnetization is equal to
𝑀0 = const. The expression for the magnetic energy
of a ferromagnet and the equation of magnetization
dynamics can be written in terms of the angular vari-
ables that are introduced in the standard way:

𝑀𝑥 = 𝑀0 sin 𝜃 cos𝜙,

𝑀𝑦 = 𝑀0 sin 𝜃 sin𝜙, 𝑀𝑧 = 𝑀0 cos 𝜃,
(1)

where 𝜃 and 𝜙 are the polar and azimuth angles for
the magnetization, and 𝑀𝑥, 𝑀𝑦, and 𝑀𝑧 are the
Cartesian components of the magnetization vector.
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The magnetic energy of a ferromagnet has the form

𝑊 = 𝑀2
0

∫︁
𝑑r

{︂
𝛼ex

2

{︂[︂
𝜕𝜃

𝜕𝑥𝑖

]︂2
+

+ sin2 𝜃

[︂
𝜕𝜙

𝜕𝑥𝑖

]︂2}︂
+

𝛽

2
sin2 𝜃 − 𝐻0

𝑀0
cos 𝜃

}︂
, (2)

where 𝛼ex is the nonuniform exchange constant
(𝛼ex > 0), 𝛽 is the uniaxial magnetic anisotropy con-
stant, H0 is an external magnetic field strength di-
rected along the OZ axis, and the integration in (2)
is taken over the volume of a ferromagnet.

The Landau–Lifshitz–Gilbert–Slonczewski equa-
tion for a ferromagnet has the form

𝜕M

𝜕𝑡
= − |𝑔|

[︀
M×Heff

]︀
+

+
𝛼𝐺

𝑀0

[︂
M× 𝜕M

𝜕𝑡

]︂
+ |𝑔|T, (3)

where T = T‖ +T⊥ is the spin-transfer torque, i.e.,
the torque induced upon the magnetization by a spin-
polarized current flowing through the ferromagnet,

T‖ = − 𝑎𝐽
𝑀0

[M× [M×m𝑝]],

T⊥ = 𝑏𝐽 [M×m𝑝],

|𝑔| is the gyromagnetic ratio, 𝛼𝐺 is the damping fac-
tor, Heff is the effective field, Heff = − 𝛿𝑊

𝛿M , 𝑎𝐽 and
𝑏𝐽 are the driving torques, and m𝑝 is the unit vector
along the polarization of the current.

The Landau–Lifshitz–Gilbert–Slonczewski equa-
tion for a ferromagnet can be written in terms of the
angular variables [28, 29]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(4)

The Landau–Lifshitz–Gilbert–Slonczewski equa-
tion can be simplified considering the spin-torque po-
larization along the OZ axis 𝑚𝑝

𝑥 = 𝑚𝑝
𝑦 = 0,𝑚𝑝

𝑧 = ±1:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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,
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.

(5)

It is possible to obtain the following equations for
the magnetization dynamics substituting the ener-
gy of a ferromagnet with uniaxial magnetic anisotro-
py into the system of Landau–Lifshitz–Gilbert–Slon-
czewski equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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.

(6)

3. Results and Discussion

The equations for the magnetization dynamics have
the following exact dynamic solution:⎧⎨⎩
𝜙 = 𝑛𝛼+ 𝑣𝜙𝑡+ 𝛼0,

tg
𝜃

2
= exp

(︂
𝑧 − 𝑣𝑡

𝛿
+ 𝑛 ln

𝑟

𝑟0

)︂
,

(7)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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+
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𝐺)

(𝑎𝐽 − 𝛼𝐺𝑏𝐽)

}︂
,

𝛿 =

√︂
𝛼ex

𝛽
,

(8)

𝑛 is an arbitrary integer number, 𝛼0 is an arbitrary
initial phase, 0 ≤ 𝛼0 ≤ 2𝜋, 𝛿 is the constant with
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the dimension of length which characterizes a domain
wall thickness, 𝑟 is a radius vector in the plane XOY,
𝑟0 is the characteristic size of a skyrmion-like building
block, and 𝛼 is the azimuth angle of the radius vector.

In particular at 𝑛 = 0, solution (7) describes the
motion of a domain wall of the new type with an
oscillating azimuth angle 𝜑. This peculiarity distin-
guishes solution (7) from solutions of the Walker type
with constant azimuth angle 𝜑. The motion of a do-
main wall of type (7) can be carried out both due
to the external magnetic field and the spin-polarized
current in a plane geometry of the type used in
[28, 29]. In this case, solution (7) at 𝑛 = 0, which
was obtained formally for an infinite medium, exactly
satisfies the boundary conditions for the magnetiza-
tion vector at the interface for any thickness of the
plane layer, which satisfies the conditions of appli-
cability of the Landau–Lifshitz–Gilbert–Slonczewski
equation.

When 𝑛 ̸= 0, solution (7) describes the stationary
motion of a complex domain wall. The skyrmion as a
domain wall building block can be of any topological
charge 𝑛 (𝑛 is equal to both the skyrmion charge and
the skyrmion winding number), any size 𝛿, and any
initial helicity 𝜒 = 𝛼0

𝑛 . The analytic model describes
the temporary oscillations of the skyrmion helicity
from zero to 𝜒 = 2𝜋

𝑛 . This means that, during the
period of such oscillations 𝑇 = 2𝜋

𝑣𝜙
, the skyrmion type

is transforming from the Néel type at 𝛼0 = 0, 𝛼0 = 𝜋,
𝛼0 = 2𝜋 to the intermediate type at arbitrary 𝛼0 ̸=
̸= 0, 𝛼0 ̸= 𝜋, 𝛼0 ̸= ±𝜋

2 , 𝛼0 ̸= 2𝜋, then to the Bloch
type 𝛼0 = ±𝜋

2 , and then again to the Néel type.
Solution (7) can be realized also in another geom-

etry, for example, at the passing of a spin-polarized
current directly through a cylindrical ferromagnetic
sample or through a conducting system on the sur-
face of a ferromagnetic cylinder (wire). Solution (7)
can also be imagined as a domain wall with the rever-
sal of the magnetization in it along the OZ axis, but
not of the cylindrical shape, but of a more complex
funnel-shaped structure. There is the reversal of the
magnetization in the wall but the skyrmion-like inter-
nal structure changes with the coordinate 𝑟 in each
transverse section. The experimental implementation
of such a configuration is, in principle, possible with-
out switching on the spin-polarized current, for exam-
ple, if an external magnetic field of the correspond-
ing direction is applied to the ends of a cylindrical
ferromagnet of finite height. Then the magnetization

distribution with a structure similar to solution (7) is
possible in the sample.

4. Conclusions

The obtained exact dynamic solution (7), (8) of the
Landau–Lifshitz–Gilbert–Slonczewski equation in a
ferromagnet with uniaxial magnetic anisotropy de-
scribes the spin-polarized current-driven ferromag-
netic domain wall motion with a skyrmion-like build-
ing block. There is the linear dependence of its mo-
tion velocity 𝑣 on the driving torques and the ex-
ternal magnetic field strength according to expres-
sion (7). The new exact analytical solution (7), (8)
differs from the numerical or analytic solutions pre-
sented in the literature by the oscillating time depen-
dence of the azimuthal angle of the magnetization
vector. This is a reflection of the fact that there is
no uniqueness theorem for solutions of the Landau–
Lifshitz equation. For example, specific examples of
the existence of an infinite set of exact analytic so-
lutions of the Landau–Lifshitz equation in a specific
sample were presented under the same boundary con-
ditions in paper [31]. The temporary oscillations of
the skyrmion-like building block type from the Néel
to Bloch one during the domain wall motion are pre-
dicted according to formula (7). The period of oscil-
lations is 𝑇 = 2𝜋

𝑣𝜙
.
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РУХ ФЕРОМАГНIТНОЇ ДОМЕННОЇ
СТIНКИ IЗ ВБУДОВАНИМ СКIРМIОНОМ
ПIД ДIЄЮ СПIН-ПОЛЯРИЗОВАНОГО СТРУМУ

Р е з ю м е

Мета дослiдження – побудова аналiтичної моделi для опи-
су руху феромагнiтної доменної стiнки зi скiрмiон-подiбним
блоком у її внутрiшнiй структурi пiд впливом спiн-поля-
ризованого струму. Визначено швидкiсть руху феромагнi-
тної доменної стiнки зi скiрмiон-подiбним блоком як фун-
кцiю рушiйних сил та напруженостi зовнiшнього магнiтного
поля.
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