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SYMMETRY OF THE VIBRATIONAL
STATES AND ELECTRONIC 𝜋-ORBITALS
IN A BENZENE MOLECULE C6H6. THE FINE
STRUCTURE OF SPIN-DEPENDENT SPLITTING 1

Analytical expressions and vector images have been constructed for all patterns of the normal
vibrations, including doubly degenerate ones, of a benzene molecule C6H6 using the projection
operator on the matrix elements of irreducible representations of the point symmetry group
6/𝑚𝑚𝑚 (𝐷6ℎ). The characters of representations corresponding to the symmetry of both the
electronic 𝜋-orbitals in a benzene molecule (without taking the electron spin into account) and
the projective representations of its spinor 𝜋′-orbitals are found. The representations of the
spinor 𝜋′-orbitals of a benzene molecule C6H6 belong to the projective class 𝐾1 and describe
the fine structure of spin-dependent splitting of the degenerate spinless 𝜋-orbitals, which are
revealed for the first time.
K e yw o r d s: benzene, vector and spinor representations of symmetry groups, normal-
vibration patterns, classes of symmetry-group projective representations, electronic states,
spin-dependent splitting.

1. Introduction

The benzene molecule C6H6 is a basic molecule
for aromatic hydrocarbons. Its elements of symmetry
compose the point group 6/𝑚𝑚𝑚 (𝐷6ℎ), which is the
maximum symmetry group for 𝑠𝑝2-hybridized struc-
tures with unsaturated covalent 𝜋-bonds. A large
number of works (see, e.g., works [1–5]) are devoted to
the study of vibrational spectra and normal-vibration
patterns of both the benzene molecule and its deriva-
tives. However, the available calculation results ob-
tained for the patterns of doubly degenerate vibra-
tional modes of the benzene molecule contain errors
and lots of inconsistencies.

The method of group-theoretic analysis most clear-
ly reveals the symmetric properties of the spatial
structure of the molecular quantum states. The quan-
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tum-mechanical projection-operator technique makes
it possible to determine the representations accord-
ing to which the vibrational excitations of molecules
can be classified, in particular, those of the benzene
molecule, which are considered in this work in de-
tail. With the help of this technique, one can de-
termine the patterns of normal molecular vibrations
and find projective representations corresponding to
the 𝜋-electronic states of the molecule without tak-
ing and taking the electron spin into account. Ta-
ken all together, this means the fulfillment of the
symmetrization procedure of the linear combinations
of atomic orbits (LCAO) method for the molecule
and the execution of an additional analysis concern-
ing the electron-spin influence on the energy spec-
trum of the molecular 𝜋-orbitals from the symmetry
positions.

1 This article is dedicated to the 75th anniversary of Academi-
cian L.A. Bulavin.
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The results of the symmetry analysis obtained
in this work for the electronic states in the C6H6

molecule are compared with the results of quantum
chemical calculations obtained for the energy spec-
trum of 𝜋-orbitals in this molecule.

2. Structure of a Benzene Molecule.
Symmetry of Its Vibrational Modes

In Fig. 1, the structure of the benzene molecule C6H6

and the selected orientation of the elements of the
symmetry group 6/𝑚𝑚𝑚 (𝐷6ℎ) are shown. Hollow
circles correspond to the positions of carbon atoms
C, and gray ones to the positions of hydrogen atoms
H. The numbers enumerate the positions of the C and
H atoms.

The results of the group-theoretic analysis ob-
tained for the normal vibrational modes of the C6H6

molecule are quoted in Table 1. The table gives infor-
mation on the representation characters for the dis-
placements of atoms from their equilibrium positions,
the improper translational and rotational vibrations,
and the proper vibrations, as well as the distributions
of those representations over the irreducible vector
representations and the selection rules that charac-
terize the activity of vibrations in the Raman and
infrared (IR) absorption spectra.

From Table 1, one can see that the distribution
of all vibrations of the benzene molecule C6H6 over
the irreducible representations of the 6/𝑚𝑚𝑚 (𝐷6ℎ)
group looks like

Γdis = 2𝐴+
1 + 2𝐴−

2 + 2𝐴+
3 + 2𝐴−

3 + 2𝐴+
4 +

+2𝐴−
4 + 4𝐸+

1 + 2𝐸−
1 + 2𝐸+

2 + 4𝐸−
2

or

Γdis = 2Γ+
1 + 2Γ−

2 + 2Γ+
3 + 2Γ−

3 + 2Γ+
4 +

+2Γ−
4 + 4Γ+

5 + 2Γ−
5 + 2Γ+

6 + 4Γ−
6 .

The distribution of vibrational eigenmodes is

Γvib = 2𝐴+
1 + 2𝐴−

2 +𝐴+
3 +𝐴−

3 + 2𝐴+
4 +

+2𝐴−
4 + 4𝐸+

1 + 2𝐸−
1 + 𝐸+

2 + 3𝐸−
2

or

Γvib = 2Γ+
1 + 2Γ−

2 + Γ+
3 + Γ−

3 + 2Γ+
4 +

+2Γ−
4 + 4Γ+

5 + 2Γ−
5 + Γ+

6 + 3Γ−
6 ,

Fig. 1. Structure of the benzene molecule C6H6 and the orien-
tations of the symmetry elements of the 6/𝑚𝑚𝑚 (𝐷6ℎ) group

the distribution of induced translational vibrations is

Γtr = 𝐴−
3 + 𝐸−

2 or Γtr = Γ−
3 + Γ−

6 ,

and the distribution of induced rotational vibra-
tions is

Γrot = 𝐴+
3 + 𝐸+

2 or Γrot = Γ+
3 + Γ+

6 .

3. Patterns of Normal
Vibrations of the Benzene Molecule C6H6

Let us calculate the patterns of normal vibrations
of the benzene molecule C6H6. It is easy to do in
the framework of the standard projection operator
method on the matrices of the irreducible representa-
tions of the 6/𝑚𝑚𝑚 (𝐷6ℎ) group [6], which coincide
with their characters in the case of one-dimensional
representations.

With the help of the projection operator on the
irreducible representations of the 𝐷6ℎ group, let us
determine the symmetrized displacements or, which
is the same, the symmetry coordinates, i.e. the invari-
ant vector functions that are transformed according
to irreducible representations of the 𝐷6ℎ group. The
number of linearly independent symmetrized dis-
placements and the number of vibrational modes
are identical for each symmetry type, but the sym-
metrized displacements do not necessarily have to be
orthogonal. At the next stage, an orthogonal system
of the linear combinations of symmetrized displace-
ments is constructed for each symmetry type, and just
this system describes a pattern of normal vibrations.
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Table 1. Characters of the single-valued irreducible representations of the 6/𝑚𝑚𝑚 (𝐷6ℎ)

group, classification of normal vibrational modes of the benzene molecule over the symmetry types,
and their activity (the selection rules) in the Raman and IR absorption spectra

6/𝑚𝑚𝑚 (𝐷6ℎ) 𝑒 2𝑐3 3𝑢2 𝑐2 2𝑐6 3𝑢′
2 𝑖 2𝑖𝑐3 3𝑖𝑢2 𝑖𝑐2 2𝑖𝑐6 3𝑖𝑢′

2
𝑛dis 𝑛tr 𝑛rot 𝑛vib Selection

𝛤+
1 𝐴+

1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0 2 𝛼𝑧𝑧 , 𝛼𝑥𝑥 + 𝛼𝑦𝑦 ; 𝑖𝑎

𝛤−
1 𝐴−

1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 0 0 0 0 𝑣; 𝑖𝑎

𝛤+
2 𝐴+

2 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 0 0 0 0 𝑣; 𝑖𝑎

𝛤−
2 𝐴−

2 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1 2 0 0 2 𝑣; 𝑖𝑎

𝛤+
3 𝐴+

3 1 1 −1 1 1 −1 1 1 −1 1 1 −1 2 0 1 1 𝑣; 𝑖𝑎

𝛤−
3 𝐴−

3 1 1 −1 1 1 −1 −1 −1 1 −1 −1 1 2 1 0 1 𝜇𝑧 ; 𝑖𝑎

𝛤+
4 𝐴+

4 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 2 0 0 2 𝑣; 𝑖𝑎

𝛤−
4 𝐴−

4 1 1 −1 −1 −1 1 −1 −1 1 1 1 −1 2 0 0 2 𝑣; 𝑖𝑎

𝛤+
5 𝐸+

1 2 −1 0 2 −1 0 2 −1 0 2 −1 0 4 0 0 4 𝛼𝑥𝑥 − 𝛼𝑦𝑦 , 𝛼𝑥𝑦 ; 𝑖𝑎

𝛤−
5 𝐸−

1 2 −1 0 2 −1 0 −2 1 0 −2 1 0 2 0 0 2 𝑣; 𝑖𝑎

𝛤+
6 𝐸+

2 2 −1 0 −2 1 0 2 −1 0 −2 1 0 2 0 1 1 𝛼𝑧𝑥, 𝛼𝑧𝑦 ; 𝑖𝑎

𝛤−
6 𝐸−

2 2 −1 0 −2 1 0 −2 1 0 2 −1 0 4 1 0 3 𝜇𝑥, 𝜇𝑦 ; 𝑣

𝜒𝛤dis
36 0 −4 0 0 0 0 0 0 12 0 4

𝜒𝛤tr 3 0 −1 −1 2 −1 −3 0 1 1 −2 1
𝜒𝛤rot 3 0 −1 −1 2 −1 3 0 −1 −1 2 −1

Fig. 2. Generating basis in the form of a combined coordinate
system for determining the patterns of nondegenerate normal
vibrations of the benzene molecule

The benzene molecule C6H6 includes atoms of only
two chemical elements, carbon C and hydrogen H. As
one can see from Fig. 1, the symmetry of their ar-
rangement and the selected enumeration of the atoms
of each chemical element are absolutely identical.
Therefore, the analytical expressions for their sym-
metrized displacements will be qualitatively identi-
cal for the vibrational modes of the same symmetry
types except, in the general case, for the displacement
amplitudes.

For instance, for the vibrations of the benzene
molecule belonging to the nondegenerate symmetry
types, there are only two symmetrized displacements
(two symmetry coordinates) 𝑆1(C) and 𝑆2(H) with
the same analytical expression for each vibration
type. They differ from each other only by the atoms
belonging to that or another chemical element. In this
case, normal vibrational modes are composed of their
symmetric and antisymmetric combinations. In other
words, there are two vibrational modes of the benzene
molecule for each symmetry type of nondegenerate vi-
brations. They are defined as follows:

𝑄1 =
1√
2
[𝑆1(C) + 𝑆2(H)]

and

𝑄2 =
1√
2
[𝑆1(C)− 𝑆2(H)] .

3.1. Patterns of nondegenerate
normal vibrations of the benzene molecule

To obtain analytical expressions for the patterns
of nondegenerate normal vibrations of the benzene
molecule, it is convenient to describe the displace-
ments of atoms making use of a generating basis in
the form of a combined coordinate system. It is cre-
ated by shifting each C or H atom in the directions
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of the orthogonal unit vectors z𝑖, u𝑖, and v𝑖, where
(u𝑖,v𝑖) ‖ 𝑂𝑥𝑦, which form orthogonal right-hand
coordinate subsystems with the same directions of
the unit vectors z𝑖 along the axis 𝑂𝑧 for each 𝑖-th
atom. The total orthogonality of the combined sys-
tem of atomic displacements is determined by an ad-
ditional orthogonality condition with respect to the
atomic numbers.

In Fig. 2, such a generating basis is exhibited in
the form of a combined coordinate system for the dis-
placements of carbon atoms (as an example). Let us
introduce a similar combined coordinate system to
describe the displacements of hydrogen atoms, where
the unit vectors of the coordinate displacements of
the 𝑖-th hydrogen atom are co-directed with the unit
vectors of the coordinate displacements of the 𝑖-th
carbon atom. For the benzene molecule C6H6, the
patterns of nondegenerate normal vibrations are de-
scribed by the following analytical expressions:
for the 𝐴+

1 symmetry,

𝑄
𝐴+

1
1 =

1

2
√
3
(uC

1 + uC
2 + uC

3 + uC
4 + uC

5 + uC
6 +

+uH
1 + uH

2 + uH
3 + uH

4 + uH
5 + uH

6 ),

𝑄
𝐴+

1
2 =

1

2
√
3
(uC

1 + uC
2 + uC

3 + uC
4 + uC

5 + uC
6 −

−uH
1 − uH

2 − uH
3 − uH

4 − uH
5 − uH

6 ),

for the 𝐴−
2 symmetry,

𝑄
𝐴−

2
1 =

1

2
√
3
(uC

1 − uC
2 + uC

3 − uC
4 + uC

5 − uC
6 +

+uH
1 − uH

2 + uH
3 − uH

4 + uH
5 − uH

6 ),

𝑄
𝐴−

2
2 =

1

2
√
3
(uC

1 − uC
2 + uC

3 − uC
4 + uC

5 − uC
6 −

−uH
1 + uH

2 − uH
3 + uH

4 − uH
5 + uH

6 ),

for the 𝐴+
3 symmetry,

𝑄
𝐴+

3
1 =

1

2
√
3
(vC

1 + vC
2 + vC

3 + vC
4 + vC

5 + vC
6 +

+vH
1 + vH

2 + vH
3 + vH

4 + vH
5 + vH

6 ),

𝑄
𝐴+

3
2 =

1

2
√
3
(vC

1 + v𝐶
2 + vC

3 + vC
4 + vC

5 + vC
6 −

−vH
1 − vH

2 − vH
3 − vH

4 − vH
5 − vH

6 ),

for the 𝐴−
3 symmetry,

𝑄
𝐴−

3
1 (𝑧 − tr.) =

1

2
√
3
(zC1 + zC2 + zC3 + zC4 + zC5 + zC6 +

+ zH1 + zH2 + zH3 + zH4 + zH5 + zH6 ),

𝑄
𝐴−

3
2 =

1

2
√
3
(zC1 + zC2 + zC3 + zC4 + zC5 + zC6 −

− zH1 − zH2 − zH3 − zH4 − zH5 − zH6 ),

for the 𝐴+
4 symmetry,

𝑄
𝐴+

4
1 =

1

2
√
3
(zC1 − zC2 + zC3 − zC4 + zC5 − zC6 +

+ zH1 − zH2 + zH3 − zH4 + zH5 − zH6 ),

𝑄
𝐴+

4
2 =

1

2
√
3
(zC1 − zC2 + zC3 − zC4 + zC5 − zC6 −

− zH1 + zH2 − zH3 + zH4 − zH5 + zH6 ),

and for the 𝐴−
4 symmetry,

𝑄
𝐴−

4
1 =

1

2
√
3
(vC

1 − vC
2 + vC

3 − vC
4 + vC

5 − vC
6 +

+vH
1 − vH

2 + vH
3 − vH

4 + vH
5 − vH

6 ),

𝑄
𝐴−

4
2 =

1

2
√
3
(vC

1 − vC
2 + vC

3 − vC
4 + vC

5 − vC
6 −

−vH
1 + vH

2 − vH
3 + vH

4 − vH
5 + vH

6 ).

The patterns of nondegenerate normal vibrations of
the benzene molecule corresponding to their analyti-
cal expressions are shown in Fig. 3.

3.2. Patterns of doubly degenerate
normal vibrations of the benzene molecule

To find the patterns of doubly degenerate normal
vibrations of the benzene molecule, we used the
matrices of two-dimensional irreducible representa-
tions that were written in the same Cartesian co-
ordinate system for all symmetry elements of the
6/𝑚𝑚𝑚 (𝐷6ℎ) group. The sets of corresponding ma-
trices for the two-dimensional irreducible representa-
tions of the 6/𝑚𝑚𝑚 (𝐷6ℎ) group for various symme-
try types are quoted in Table 2.

When constructing the patterns of doubly degen-
erate normal vibrations of the benzene molecule, the
symmetrized displacements (symmetry coordinates)
can be determined only for carbon atoms, as was
done for the nondegenerate normal vibrations. As was
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(A+
1 )1 (A+

1 )2 (A−2 )1 (A−2 )2

(A+
3 )1(z − rot.) (A+

3 )2 (A−3 )1(z − tr.) (A−3 )2

(A+
4 )1 (A+

4 )2 (A−4 )1 (A−4 )2

Fig. 3. Patterns of nondegenerate vibrations of the benzene molecule C6H6

shown above, the analytical expressions for the sym-
metrized displacements and the patterns of normal
vibrations of the hydrogen and carbon atoms are iden-
tical. When creating the symmetrized displacements
and the patterns of normal vibrations of the ben-
zene molecule for each symmetry type, they will be
added two times to the displacements and the pat-
terns of normal vibrations of carbon atoms: at first
in cophase, and then in antiphase.

Let us construct the patterns of doubly degenerate
normal vibrations of the benzene molecule C6H6. For
this purpose, as was noted above, it is enough to con-
struct the patterns of doubly degenerate normal vi-
brations only for the atoms of either of the chemical
elements that form the benzene molecule, e.g., the
carbons.

Let us begin by constructing the patterns for dou-
bly degenerate normal vibrations of the carbon atoms
with the 𝐸+

1 symmetry. One of the generating coor-
dinates, the displacement (𝑥C

1 )
′, generates the sym-

metrized displacement

(𝑆C
1,1)

𝐸+
1

1𝛼 =
1√
6

(︃
2𝑥C

1 − 1

2
𝑥C
2 −

√
3

2
𝑦C2 +

1

2
𝑥C
3 −

√
3

2
𝑦C3 −

− 2𝑥C
4 +

1

2
𝑥C
5 +

√
3

2
𝑦C5 − 1

2
𝑥C
6 +

√
3

2
𝑦C6

)︃
,

when applying the projection operator to elements of
the matrices 𝐷

𝐸+
1

11 (they are elements of the matrices
of the two-dimensional irreducible representation 𝐸+

1 ,
which are given in Table 2), and the symmetrized
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Table 2. Matrices of the two-dimensional irreducible representations of the 6/𝑚𝑚𝑚 (𝐷6ℎ) group

𝑒 𝑐3 𝑐23 (𝑢2)1 (𝑢2)2 (𝑢2)3

𝐸+
1

(︃
1 0

0 1

)︃ (︃
− 1

2
−

√
3
2√

3
2

− 1
2

)︃ (︃
− 1

2

√
3

2

−
√
3

2
− 1

2

)︃ (︃
1 0

0 −1

)︃ (︃
− 1

2
−

√
3

2

−
√
3

2
1
2

)︃ (︃
− 1

2

√
3

2√
3
2

1
2

)︃

𝐸−
1

(︃
1 0

0 1

)︃ (︃
− 1

2
−

√
3
2√

3
2

− 1
2

)︃ (︃
− 1

2

√
3
2

−
√
3

2
− 1

2

)︃ (︃
1 0

0 −1

)︃ (︃
− 1

2
−

√
3

2

−
√
3

2
1
2

)︃ (︃
− 1

2

√
3

2√
3
2

1
2

)︃

𝐸+
2

(︃
1 0

0 1

)︃ (︃
− 1

2
−

√
3
2√

3
2

− 1
2

)︃ (︃
− 1

2

√
3

2

−
√
3

2
− 1

2

)︃ (︃
1 0

0 −1

)︃ (︃
− 1

2
−

√
3

2

−
√
3

2
1
2

)︃ (︃
− 1

2

√
3

2√
3
2

1
2

)︃

𝐸−
2

(︃
1 0

0 1

)︃ (︃
− 1

2
−

√
3
2√

3
2

− 1
2

)︃ (︃
− 1

2

√
3

2

−
√
3

2
− 1

2

)︃ (︃
1 0

0 −1

)︃ (︃
− 1

2
−

√
3

2

−
√
3

2
1
2

)︃ (︃
− 1

2

√
3

2√
3
2

1
2

)︃

𝑐2 𝑐56 𝑐6 (𝑢′
2)1 (𝑢′

2)2 (𝑢′
2)3

𝐸+
1

(︃
1 0

0 1

)︃ (︃
− 1

2
−

√
3

2√
3

2
− 1

2

)︃ (︃
− 1

2

√
3

2

−
√
3

2
− 1

2

)︃ (︃
1 0

0 −1

)︃ (︃
− 1

2
−

√
3

2

−
√
3

2
1
2

)︃ (︃
− 1

2

√
3
2√

3
2

1
2

)︃

𝐸−
1

(︃
1 0

0 1

)︃ (︃
− 1

2
−

√
3

2√
3

2
− 1

2

)︃ (︃
− 1

2

√
3

2

−
√
3

2
− 1

2

)︃ (︃
1 0

0 −1

)︃ (︃
− 1

2
−

√
3

2

−
√
3

2
1
2

)︃ (︃
− 1

2

√
3
2√

3
2

1
2

)︃

𝐸+
2

(︃
−1 0

0 −1

)︃ (︃
1
2

√
3

2

−
√

3
2

1
2

)︃ (︃
1
2

−
√
3

2√
3

2
1
2

)︃ (︃
−1 0

0 1

)︃ (︃
1
2

√
3

2√
3

2
− 1

2

)︃ (︃
1
2

−
√
3
2

−
√
3

2
− 1

2

)︃

𝐸−
2

(︃
−1 0

0 −1

)︃ (︃
1
2

√
3

2

−
√

3
2

1
2

)︃ (︃
1
2

−
√
3

2√
3

2
1
2

)︃ (︃
−1 0

0 1

)︃ (︃
1
2

√
3

2√
3

2
− 1

2

)︃ (︃
1
2

−
√
3
2

−
√
3

2
− 1

2

)︃

𝑖 𝑖𝑐3 𝑖𝑐23 𝑖(𝑢2)1 𝑖(𝑢2)2 𝑖(𝑢2)3

𝐸+
1

(︃
1 0

0 1

)︃ (︃
− 1
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Fig. 4. Symmetrized displacements (𝑎) and patterns of doubly
degenerate normal vibrations (𝑏) of the 𝐸−

2 symmetry in the
benzene molecule

displacement

(𝑆C
2,1)

𝐸+
1

1𝛽 =
1

2

(︃
− 1

2
𝑥C
2 −

√
3

2
𝑦C2 − 1

2
𝑥C
3 +

√
3

2
𝑦C3 +

1

2
𝑥C
5 +

+

√
3

2
𝑦C5 +

1

2
𝑥C
6 −

√
3

2
𝑦C6

)︃
,

when projecting on elements of the matrices
𝐷

𝐸+
1

12 . The other generating coordinate, the displace-
ment (𝑦C1 )

′, generates the symmetrized displacement

(𝑆C
1,2)

𝐸+
1

2𝛼 =
1

2

(︃
−
√
3

2
𝑥C
2 +

1

2
𝑦C2 +

√
3

2
𝑥C
3 +

1

2
𝑦C3 +

√
3

2
𝑥C
5 −

− 1

2
𝑦C5 −

√
3

2
𝑥C
6 − 1

2
𝑦C6

)︃
,

when projecting on elements of the matrices 𝐷
𝐸+

1
21 ,

and the symmetrized displacement

(𝑆C
2,2)

𝐸+
1

2𝛽 =
1√
6

(︃
2𝑦C1 +

√
3

2
𝑥C
2 − 1

2
𝑦C2 +

√
3

2
𝑥C
3 +

1

2
𝑦C3 −

− 2𝑦C4 −
√
3

2
𝑥C
5 +

1

2
𝑦C5 −

√
3

2
𝑥C
6 − 1

2
𝑦C6

)︃
.

when projecting on elements of the matrices 𝐷
𝐸+

1
22 .

The vector images of the above-indicated sym-
metrized displacements of the symmetry 𝐸+

1 are il-
lustrated in Fig. 4, 𝑎. It is easy to see that the com-
ponents of the doubly degenerate normal vibrational
modes of the benzene molecule with the symmetry
𝐸+

1 , which are formed by the atoms of only one of
the chemical elements, e.g., carbon, are as follows:

(𝑄C
1𝛼)

𝐸+
1 =

1√
2
[(𝑆C

1,1)
𝐸+

1
1𝛼 + (𝑆C

1,2)
𝐸+

1
2𝛼 ] =

=
1√
6
(𝑥C

1 − 𝑥C
2 + 𝑥C

3 − 𝑥C
4 + 𝑥𝐶

5 − 𝑥C
6 ),

(𝑄C
1𝛽)

𝐸+
1 =

1√
2
[(𝑆C

2,1)
𝐸+

1

1𝛽 + (𝑆C
2,2)

𝐸+
1

2𝛽 ] =

=
1√
6
(𝑦C1 − 𝑦C2 + 𝑦C3 − 𝑦C4 + 𝑦C5 − 𝑦C6 ),

(𝑄C
2𝛼)

𝐸+
1 =

1√
2
[(𝑆C

1,1)
𝐸+

1
1𝛼 − (𝑆C

1,2)
𝐸+

1
2𝛼 ] =

=
1√
6
(2𝑥C

1 + 𝑥C
2 −

√
3𝑦C2 − 𝑥C

3 −
√
3𝑦C3 −

− 2𝑥C
4 − 𝑥C

5 +
√
3𝑦C5 + 𝑥C

6 +
√
3𝑦C6 ),

(𝑄C
2𝛽)

𝐸+
1 =

1√
2
[(𝑆C

1,1)
𝐸+

1

1𝛽 − (𝑆C
1,2)

𝐸+
1

2𝛽 ] =

=
1√
6
(−2𝑦C1 −

√
3𝑥C

2 − 𝑦C2 −
√
3𝑥C

3 + 𝑦C3 +

+2𝑦C4 +
√
3𝑥C

5 + 𝑦C5 +
√
3𝑥C

6 − 𝑦C6 ).
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The vector images of the carbon components of the
patterns for doubly degenerate normal vibrations of
the symmetry 𝐸+

1 are depicted in Fig. 4, 𝑏.
Now, let us proceed to the construction of a pat-

terns for doubly degenerate normal vibrations of car-
bon atoms in the benzene molecule with the sym-
metries 𝐸−

1 and 𝐸+
2 . Each carbon atom of the ben-

zene molecule forms only one symmetric displace-
ment with the components 𝛼 and 𝛽 for doubly de-
generate normal vibrations of the symmetries 𝐸−

1

and 𝐸+
2 . Therefore, the analytical expressions for the

symmetrized displacements with the components 𝛼
and 𝛽 for the symmetries 𝐸−

1 and 𝐸+
2 coincide with

the analytical expressions for the components 𝛼 and
𝛽 of their patterns for doubly degenerate normal vi-
brations. They look like as follows:

∙ for the 𝐸−
1 symmetry,(︀

𝑄C
𝛼

)︀𝐸−
1 =

(︀
𝑆C
1,2

)︀𝐸−
1

𝛼
=

1

2
(zC2 − zC3 + zC5 − zC6 )

(obtained by projecting the generating coordinate,
the displacement (𝑧C1 )

′, on the elements of the ma-
trix 𝐷

𝐸−
1

21 ) and(︀
𝑄C

𝛽

)︀𝐸−
1 =

(︀
𝑆C
2,2

)︀𝐸−
1

𝛽
=

=
1√
6
(2zC1 − zC2 − zC3 + 2zC4 − zC5 − zC6 )

(obtained by projecting the generating coordinate,
the displacement (𝑧C1 )

′, on the elements of the ma-
trix 𝐷

𝐸−
1

22 );
∙ and for the 𝐸+

2 symmetry,(︀
𝑄C

𝛼

)︀𝐸+
2 (𝑥−rot.) =

1

2
(−zC2 − zC3 + zC5 + zC6 )

(obtained by projecting the generating coordinate,
the displacement (𝑧C1 )

′, on the elements of the ma-
trix 𝐷

𝐸+
2

21 ) and(︀
𝑄C

𝛽

)︀𝐸+
2 (𝑦−rot.) =

1√
6
(2zC1 + zC2 − zC3 − 2zC4 −

− zC5 + zC6 )

(obtained by projecting the generating coordinate,
the displacement (𝑧C1 )

′, on the elements of the ma-
trix 𝐷

𝐸+
2

22 ).
The vector images of the carbon components of the

patterns for doubly degenerate normal vibrations of

Fig. 5. Patterns of doubly degenerate normal vibrations of
the 𝐸−

1 (top panel) and 𝐸+
2 (bottom panel) symmetries in the

benzene molecule

the benzene molecule with the symmetries 𝐸−
1 and

𝐸+
2 are shown in Fig. 5 (panel 𝑎 for the vibrations of

the symmetry 𝐸−
1 , and panel 𝑏 for the vibrations of

the symmetry 𝐸+
2 ). The components of the patterns

for the doubly degenerate normal vibrations of the
benzene molecule of the symmetries 𝐸−

1 and 𝐸+
2 are

the sums and the differences of the patternss for the
doubly degenerate normal vibrations of the carbon
and hydrogen atoms, which possess identical analyt-
ical expressions.

Now let us determine the patterns for the doubly
degenerate normal vibrations of the carbon atoms in
the benzene molecule with the symmetry 𝐸−

2 . One of
the generating coordinates, the displacement (𝑥C

1 )
′,

generates the symmetrized displacements

(︀
𝑆C
1,1

)︀𝐸−
2

1𝛼
=

1√
6

(︂
2𝑥C

1 +
1

2
𝑥C
2 +

√
3

2
𝑦C2 +

1

2
𝑥C
3 −

−
√
3

2
𝑦C3 + 2𝑥C

4 +
1

2
𝑥C
5 +

√
3

2
𝑦C5 +

1

2
𝑥C
6 −

√
3

2
𝑦C6

)︂
,

when applying the projection operator to the ele-
ments of the matrices 𝐷

𝐸−
2

11 (they are elements of the
matrices of the two-dimensional irreducible represen-
tation 𝐸−

2 , which are given in Table 2), and the sym-
metrized displacement

(︀
𝑆C
2,1

)︀𝐸−
2

1𝛽
=

1

2

(︂
1

2
𝑥C
2 +

√
3

2
𝑦C2 − 1

2
𝑥C
3 +

√
3

2
𝑦C3 +

+
1

2
𝑥C
5 +

√
3

2
𝑦C5 − 1

2
𝑥C
6 +

√
3

2
𝑦C6

)︂
,
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Fig. 6. Symmetrized displacements (𝑎) and patterns of doubly
degenerate normal vibrations (𝑏) of the 𝐸−

2 symmetry in the
benzene molecule

when projecting on the elements of the matrices
𝐷

𝐸−
2

12 . The other generating coordinate, the displace-
ment (𝑦C1 )

′, generates the symmetrized displacement

(︀
𝑆C
1,2

)︀𝐸−
2

2𝛼
=

1

2

(︂√
3

2
𝑥C
2 − 1

2
𝑦C2 +

+

√
3

2
𝑦C3 +

1

2
𝑦C3 +

√
3

2
𝑥C
5 − 1

2
𝑦C5 +

√
3

2
𝑥C
6 +

1

2
𝑦C6

)︂
,

when projecting on the elements of the matrices 𝐷𝐸−
2

21 ,
and the symmetrized displacement

(︀
𝑆C
2,2

)︀𝐸−
2

2𝛽
=

1√
6

(︂
2𝑦C1 −

√
3

2
𝑥C
2 +

1

2
𝑦C2 +

√
3

2
𝑥C
3 +

1

2
𝑦C3 +

+2𝑦C4 −
√
3

2
𝑥C
5 +

1

2
𝑦C5 +

√
3

2
𝑥C
6 +

1

2
𝑦C6

)︂
,

when projecting on the elements of the matrices 𝐷𝐸−
2

22 .
The vector images of those symmetrized displace-

ments with the symmetry 𝐸−
2 are exhibited in

Fig. 6, 𝑎. It is easy to see that the components of the
degenerate normal vibrational modes of the benzene
molecule with the symmetry 𝐸−

2 , which are formed
by the atoms of only one of the chemical elements,
e.g., carbon atoms, are as follows:(︀
𝑄C

1𝛼

)︀𝐸−
2 (𝑥− tr.) =

1√
2
[(𝑆C

1,1)
𝐸−

2
1𝛼 + (𝑆C

1,2)
𝐸−

2
2𝛼 ] =

=
1√
6
(𝑥C

1 + 𝑥C
2 + 𝑥C

3 + 𝑥C
4 + 𝑥C

5 + 𝑥C
6 ),(︀

𝑄C
1𝛽

)︀𝐸−
2 (𝑦 − tr.) =

1√
2
[(𝑆C

2,1)
𝐸−

2

1𝛽 + (𝑆C
2,2)

𝐸−
2

2𝛽 ] =

=
1√
6
(𝑦C1 + 𝑦C2 + 𝑦C3 + 𝑦C4 + 𝑦C5 + 𝑦C6 ),(︀

𝑄C
2𝛼

)︀𝐸−
2 =

1√
2
[(𝑆C

1,1)
𝐸−

2
1𝛼 −(𝑆C

1,2)
𝐸−

2
2𝛼 ] =

1√
6
(2𝑥C

1 −𝑥C
2 +

+
√
3𝑦C2 −𝑥C

3 −
√
3𝑦C3 +2𝑥C

4 −𝑥C
5 +

√
3𝑦C5 −𝑥C

6 −
√
3𝑦C6 ),(︀

𝑄C
2𝛽

)︀𝐸−
2 =

1√
2
[(𝑆C

2,1)
𝐸−

2

1𝛽 − (𝑆C
2,2)

𝐸−
2

2𝛽 ] =

=
1√
6
(−2𝑦C1 +

√
3𝑥C

2 + 𝑦C2 −
√
3𝑥C

3 +

+ 𝑦C3 − 2𝑦C4 +
√
3𝑥C

5 + 𝑦C5 −
√
3𝑥C

6 + 𝑦C6 ).

The vector images of the carbon components of the
patterns for the doubly degenerate normal vibrations
of the symmetry 𝐸−

2 are shown in Fig. 6, 𝑏. As was
said above in connection with the other symmetry
types, it is easy to obtain the components of the pat-
terns for the doubly degenerate normal vibrations of
the benzene molecule with the symmetry 𝐸−

2 : they
are the sums and the differences of the analytically
identical components of the patternss for the doubly
degenerate normal vibrations of the carbon and hy-
drogen atoms.

36 ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 1



Symmetry of the Vibrational States and Electronic 𝜋-Orbitals

4. Symmetry and Energy Structure
of the Electronic States of 𝜋-Orbitals
in the Benzene Molecule C6H6. Fine
Structure of Spin-Dependent Splitting

The symmetry of the electronic states of 𝜋-orbitals
without taking and taking the electron spin into ac-
count can be determined following the method of
works [7,8], which corresponds to a practical applica-
tion of the LCAO method. According to this method,
the characters of the equivalence representation of 𝜋-
orbitals in the benzene molecule are determined at
first, i.e. the equivalence representation of the atoms
possessing the electronic 𝜋-orbitals (the unsaturated
covalent bonds of C atoms that arise as a result of
the 𝑠𝑝2-hybridization of their electronic states).

Table 3 demonstrates the characters of the equiv-
alence representation 𝐷eq for all atoms in the ben-
zene molecule, the representation of the polar vec-
tor Γr, the representation characters for the dis-
placements of all atoms in the benzene molecule,
Γdis = 𝐷eq. ⊗ Γr, and the equivalence represen-
tation for 𝜋-orbitals, (𝐷eq)C (the equivalence rep-
resentation for only carbon atoms C possessing 𝜋-
orbitals). Table 3 also quotes the characters of the
representation that characterizes the symmetry of 𝜋-
orbital in the 6/𝑚𝑚𝑚 group (the representation of
the polar vector Γ𝑧 directed along the axis 𝑂𝑧) and
gives, as was done in work [2], the representation char-
acters for all 𝜋-orbitals of the benzene molecule with-
out taking the electron spin into account (the repre-
sentation Γ𝜋 = (𝐷eq)C ⊗ Γ𝑧).

In Table 4, the expansion of the Γ𝜋-representation
in the irreducible vector representations of the
6/𝑚𝑚𝑚 (𝐷6ℎ) group is presented. It is a practical
procedure that implements the LCAO method with-
out taking the electron spin into account. As one can
see,

Γ𝜋 = 𝐴−
3 +𝐴+

4 + 𝐸−
1 + 𝐸+

2

or

Γ𝜋 = Γ−
3 + Γ+

4 + Γ−
5 + Γ+

6 .

That is, the representation of all 𝜋-orbitals is
expanded in two one-dimensional representations,
𝐴−

3 (Γ
−
3 ) and 𝐴+

4 (Γ
+
4 ), and two two-dimensional rep-

resentations, 𝐸−
1 (Γ−

5 ) and 𝐸+
2 (Γ+

6 ). This means that
if the electron spin is not taken into account, the
𝜋-orbitals are divided into two nondegenerate or-

bitals, 𝐴−
3 and 𝐴+

4 , and two doubly degenerate ones,
𝐸−

1 and 𝐸+
2 .

It was shown in works [7, 8] (see Table 4 in work
[7] and Table 1 in work [8]) that if the electron spin
is taken into account, the electronic states can
be classified according to the irreducible projective
representations of the projective class 𝐾1 of the
6/𝑚𝑚𝑚 (𝐷6ℎ) group. Those representations are quo-
ted in Table 5. The primed representation notations
mean that the electron spin was taken into account.

As was done in work [7], to determine the represen-
tation of the electronic 𝜋-orbitals taking the electron
spin into account (the representation of 𝜋′-orbitals),
Γ ′
𝜋, the formula

Γ ′
𝜋 = (𝐷eq)𝐶 ⊗ Γ ′

𝑧

will be used. Here, the representation Γ ′
𝑧 describing

the symmetry of the 𝜋-orbital taking the electron spin
into account (the spinor 𝜋′-orbital) is given by the
formula

Γ ′
𝑧 = Γ𝑧 ⊗𝐷+

1/2,

where Γ𝑧 is the irreducible representation in the
6/𝑚𝑚𝑚 (𝐷6ℎ) group for a vector directed along the
𝑂𝑧-axis (this vector characterizes the symmetry of
the 𝜋-orbital not taking the electron spin into ac-
count), and 𝐷+

1/2 is the even two-dimensional (spinor)
representation of the rotation group characterizing
the symmetry of an electron with the total-moment
quantum number 𝑗 = 1/2.

Table 6 contains the characters of the projec-
tive representation 𝐷+

1/2, the representations Γ𝑧 and

(𝐷eq)𝐶 , and the projective representations Γ ′
𝑧 and

Γ ′
𝜋. The lower part of Table 6 demonstrates the char-

acters of the direct products of the representations
for the spinless orbitals in the benzene molecule with
the representation 𝐷+

1/2, which determines the spin
(spinor) orbitals of the C6H6 molecule corresponding
to its indicated spinless orbitals.

For instance, from Tables 5 and 6, one can see
that if the electron spin is taken into account, the
nondegenerate spinless orbital Γ−

3 (𝐴−
3 ) of the ben-

zene molecule transforms into the spinor doubly de-
generate orbital Γ−

8 ((𝐸′
2)

−), and the nondegenerate
spinless orbital Γ+

4 (𝐴+
4 ) into the doubly degenerate

spin orbital Γ+
7 ((𝐸′

1)
+). If the spin-orbit interaction

is taken into consideration, each of the doubly de-
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Table 3. Characters of the equivalence representation of the atoms
in the benzene molecule, 𝐷eq, the representation of the polar vector Γr, the representation of all atomic
displacements in the benzene molecule, Γdis, the equivalence representation of the carbon atoms
in the benzene molecule, (𝐷eq)C, the representation of the 𝜋-orbital symmetry in the 6/𝑚𝑚𝑚 group
(the representation of the polar vector Γ𝑧 directed along the 𝑂𝑧-axis), and the representation
of the 𝜋-orbitals of the benzene molecule without talking the electron spin into account, Γ𝜋

6/𝑚𝑚𝑚 (𝐷6ℎ) 𝑒 2𝑐3 3𝑢2 𝑐2 2𝑐6 3𝑢′
2 𝑖 2𝑖𝑐3 3𝑖𝑢2 𝑖𝑐2 2𝑖𝑐6 3𝑖𝑢′

2

𝐷eq 12 0 4 0 0 0 0 0 0 12 0 4
𝛤r 3 0 −1 −1 2 −1 −3 0 1 1 −2 1

𝛤dis = 𝐷eq ⊗ 𝛤r 36 0 −4 0 0 0 0 0 0 12 0 4
(𝐷eq)C 6 0 2 0 0 0 0 0 0 6 0 2

𝛤𝑧 1 1 −1 1 1 −1 −1 −1 1 −1 −1 1
𝛤𝜋 = (𝐷eq)C ⊗ 𝛤𝑧 6 0 −2 0 0 0 0 0 0 −6 0 2

Table 4. Expansion of the representation of the 𝜋-orbitals of the benzene
molecule without taking the electron spin into account (the representation of Γ𝜋

on the irreducible vector representations of the 6/𝑚𝑚𝑚 (𝐷6ℎ) group

6/𝑚𝑚𝑚 (𝐷6ℎ) 𝑒 2𝑐3 3𝑢2 𝑐2 2𝑐6 3𝑢′
2 𝑖 2𝑖𝑐3 3𝑖𝑢2 𝑖𝑐2 2𝑖𝑐6 3𝑖𝑢′

2
𝑛𝛤𝜋

𝛤+
1 𝐴+

1 1 1 1 1 1 1 1 1 1 1 1 1 0
𝛤−
1 𝐴−

1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 0
𝛤+
2 𝐴+

2 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 0
𝛤−
2 𝐴−

2 1 1 1 −1 −1 −1 −1 −1 −1 1 1 1 0
𝛤+
3 𝐴+

3 1 1 −1 1 1 −1 1 1 −1 1 1 −1 0
𝛤−
3 𝐴−

3 1 1 −1 1 1 −1 −1 −1 1 −1 −1 1 1
𝛤+
4 𝐴+

4 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 1
𝛤−
4 𝐴−

4 1 1 −1 −1 −1 1 −1 −1 1 1 1 −1 0
𝛤+
5 𝐸+

1 2 −1 0 2 −1 0 2 −1 0 2 −1 0 0
𝛤−
5 𝐸−

1 2 −1 0 2 −1 0 −2 1 0 −2 1 0 1
𝛤+
6 𝐸+

2 2 −1 0 −2 1 0 2 −1 0 −2 1 0 1
𝛤−
6 𝐸−

2 2 −1 0 −2 1 0 −2 1 0 2 −1 0 0

𝜒𝛤𝜋 6 0 −2 0 0 0 0 0 0 −6 0 2

Table 5. Characters of the two-valued projective
representations of the projective class 𝐾1 of the 6/𝑚𝑚𝑚 (𝐷6ℎ) group

Projec-
tive
class

Notation of
irreducible
projective

representation

6/𝑚𝑚𝑚 (𝐷6ℎ)

𝑒 𝑐3 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝑖𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′

2

𝐾1 (𝛤 ′)+1 (𝛤+
7 ) (𝐸′

1)
+ 2 1 −1 0 0

√
3 −

√
3 0 2 1 −1 0 0

√
3 −

√
3 0

(𝛤 ′)−1 (𝛤−
7 ) (𝐸′

1)
− 2 1 −1 0 0

√
3 −

√
3 0 −2 −1 1 0 0 −

√
3

√
3 0

(𝛤 ′)+2 (𝛤+
8 ) (𝐸′

2)
+ 2 1 −1 0 0 −

√
3

√
3 0 2 1 −1 0 0 −

√
3

√
3 0

(𝛤 ′)−2 (𝛤−
8 ) (𝐸′

2)
− 2 1 −1 0 0 −

√
3

√
3 0 −2 −1 1 0 0

√
3 −

√
3 0

(𝛤 ′)+3 (𝛤+
9 ) (𝐸′

3)
+ 2 −2 2 0 0 0 0 0 2 −2 2 0 0 0 0 0

(𝛤 ′)−3 (𝛤−
9 ) (𝐸′

3)
− 2 −2 2 0 0 0 0 0 −2 2 −2 0 0 0 0 0
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Table 6. Characters of the equivalence representation of atoms in the benzene molecule, 𝐷eq,
the representation of the polar vector Γr, the representation of all atomic displacements in the benzene
molecule, Γdis, the equivalence representation of the carbon atoms in the benzene molecule, (𝐷eq)C,
the representation of the 𝜋-orbital symmetry in the 6/𝑚𝑚𝑚 group (the representation of the polar
vector Γ𝑧 directed along the 𝑂𝑧-axis), and the representation of the 𝜋-orbitals of the benzene
molecule without talking the electron spin into account, Γ𝜋

6/𝑚𝑚𝑚 (𝐷6ℎ) 𝑒 𝑐3 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝑖𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′

2

𝛤𝑧 1 1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1
(𝐷eq)C 6 0 0 2 0 0 0 0 0 0 0 0 6 0 0 2
𝛤 ′
𝑧 = 𝛤𝑧 ⊗𝐷+

1/2
2 1 −1 0 0 −

√
3

√
3 0 −2 −1 1 0 0

√
3 −

√
3 0

𝛤 ′
𝜋 = (𝐷eq)C ⊗ 𝛤 ′

𝑧 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝛤−
3 (𝐴−

3 )⊗𝐷+
1/2

2 1 −1 0 0 −
√
3

√
3 0 −2 −1 1 0 0

√
3 −

√
3 0

𝛤+
4 (𝐴+

4 )⊗𝐷+
1/2

2 1 −1 0 0
√
3 −

√
3 0 2 1 −1 0 0

√
3 −

√
3 0

𝛤−
5 (𝐸−

1 )⊗𝐷+
1/2

4 −1 1 0 0
√
3 −

√
3 0 −4 1 −1 0 0 −

√
3

√
3 0

𝛤+
6 (𝐸+

2 )⊗𝐷+
1/2

4 −1 1 0 0 −
√
3

√
3 0 4 −1 1 0 0 −

√
3

√
3 0

generate spinless orbitals Γ−
5 (𝐸−

1 ) and Γ+
6 (𝐸+

2 ) be-
comes split into two components, which are doubly
degenerate spinor orbitals. Namely, the doubly de-
generate spinless orbital Γ−

5 (𝐸−
1 ) becomes split into

two doubly degenerate spinor orbitals Γ−
7 ((𝐸′

1)
−)

and Γ−
9 ((𝐸′

3)
−), and the doubly degenerate spinless

orbital Γ+
6 (𝐸+

2 ) into two doubly degenerate spinor
orbitals Γ+

8 ((𝐸′
2)

+) and Γ+
9 ((𝐸′

3)
+). This result is

important for the experimental studies of both the
benzene molecule itself and the complexes with its
participation [9].

A schematic diagram illustrating the transforma-
tions of the spinless orbitals of the C6H6 molecule into
its spinor orbitals, as well as the corresponding man-
ifestations of the spin-dependent fine structure and
the symmetry of the spinless orbital splitting in this
molecule, when the electron spin is taken into account
is shown in Fig. 7. The right panels demonstrate the
corresponding distribution maps of the electron wave
function in a vicinity of the molecular skeleton for
each spinor 𝜋′-orbital of the benzene molecule, which
were calculated with the help of the Gaussian-09 soft-
ware [10].

It is important to note that if the electron spin is
taken into account, the energy spectrum of the 𝜋′-
orbitals in the benzene molecule C6H6 forms all six,
without exceptions, spinor orbitals that are feasible
according to the symmetry of the projective class 𝐾1

of the 6/𝑚𝑚𝑚 (𝐷6ℎ) group. Furthermore, each of the
symmetry types in the projective class 𝐾1 reveals it-
self only once in the electronic energy spectrum of the
𝜋′-orbitals of the benzene molecule.

Fig. 7. Schematic diagrams of the spin-dependent splittings
of the electronic 𝜋′-orbitals in the benzene molecule (left pan-
els) and the maps of the corresponding wave functions (right
panels)

According to the results of quantum chemical cal-
culations obtained by the Gaussian-09 software [10],
the magnitudes of the spin-dependent splittings equal
1–2 meV. This value agrees well with the estimates
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made for the energy of the spin-orbit interaction in
the carbon atoms (also about 1–2 meV) [11]. It is
also of interest to attract attention to that the cal-
culated energy distance between the binding spinor
orbital Γ−

8 ((𝐸′
2)

−) and the anti-binding spinor or-
bital Γ+

7 ((𝐸′
1)

+) in the carbon skeleton of the ben-
zene molecule is about 24 eV, which is close to an
energy distance of about 19 eV between the valence
and conduction bands at the point Γ in the Brillouin
zone of single-layer graphene [12].

5. Conclusions

Making use of the quantum-mechanical projection
operator, the analytical expressions and vector im-
ages for the patterns of all normal vibrations of the
benzene molecule, including doubly degenerate ones,
have been obtained for the first time. The charac-
ters of the equivalence representation for the car-
bon atoms in the benzene molecule are determined
and used to calculate the representation characters
of the electronic 𝜋-orbitals in the benzene molecule
without taking the electron spin into account and
the projective representation characters of the pro-
jective class 𝐾1 characterizing the symmetry of the
electronic 𝜋′-orbitals taking the electron spin into ac-
count. It is shown for the first time that the account
for the electron spin leads to the appearance of a
spin-dependent splitting in the electronic states of the
benzene molecule. The magnitudes of those splittings
equal about 1–2 meV because of the low spin-orbit in-
teraction energy of the carbon atoms.
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В.О. Губанов, А.П.Науменко,
Д.В. Гринь, Л.А.Булавiн

СИМЕТРIЯ КОЛИВАЛЬНИХ
СТАНIВ ТА ЕЛЕКТРОННИХ 𝜋-ОРБIТАЛЕЙ
МОЛЕКУЛИ БЕНЗЕНУ C6H6. ТОНКА
СТРУКТУРА СПIНЗАЛЕЖНИХ РОЗЩЕПЛЕНЬ

Iз застосуванням оператора проектування на елементи
матриць незвiдних представлень точкової групи симетрiї
6/𝑚𝑚𝑚 (𝐷6ℎ) молекули бензену C6H6 побудовано аналi-
тичнi вирази та векторнi зображення форм всiх її нормаль-
них коливань, у тому числi двократно вироджених. Зна-
йдено характери представлень, що вiдповiдають симетрiї
𝜋-електронних орбiталей молекули бензену без урахування
спiну електрона та проективних представлень її спiнорних
𝜋′-орбiталей. Представлення спiнорних 𝜋′-орбiталей моле-
кули бензену C6H6 належать проективному класу 𝐾1 та
описують тонку структуру вперше встановлених спiнзале-
жних при врахуваннi спiну електрона розщеплень станiв,
вироджених без врахування спiну 𝜋-орбiталей.

Ключовi слова: бензен, векторнi та спiнорнi представлен-
ня груп симетрiї, форми нормальних коливань, класи про-
ективних представлень груп симетрiї, спiнзалежне розще-
плення електронних станiв.
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