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INTERPRETATION OF THE SPIN TORQUE
SIGN CHANGE IN F/N/F STRUCTURES IN TERMS
OF A MECHANICAL ANALOGY

A useful interpretation of the spin-accumulation and spin-current distributions in magnetic
nanostructures with diffusive transfer has been discussed. A mathematically equivalent me-
chanical system was proposed that provides an intuitive understanding of the dependence of
the spin-transfer torque values on various parameters. In particular, it gives a clear explana-
tion for the sign change of the spin-transfer torque in asymmetric F/N/F structures.
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1. Introduction

The electric current flow through magnetic structures
with spatially inhomogeneous magnetization M(r)
gives rise to the emergence of torques that are pro-
portional to the current. Those torques are associated
with the spin-transfer process and are called spin-
transfer torques [1–4]. The spin-transfer phenomenon
is based on the exchange interaction 𝐽(s ·M) between
the spins s of moving electrons and the ferromagnet
magnetization M. It results in the appearance of the
torque T = 𝐽 [M× s] acting on M.

Let us imagine a nonuniformly magnetized ferro-
magnet. In the equilibrium state, the spin density of
moving electrons, ⟨s⟩, is directed along the vector
M(r) at every point r, so that T = 0. The situation
changes, if an electric current is present. The current
brings electrons to the point r from distant regions,
where their spins were oriented at a certain angle with
respect to M(r). As a result, there emerges a non-
equilibrium state with nonparallel vectors ⟨s⟩ and M,
and, accordingly, a nonzero torque T. The imbalance
degree and, hence, the torque value are proportional
to the current strength.

This physical picture can also be described in terms
of an additional angular momentum ~/2 transported
by the spin of every moving electron [1–6]. In the
framework of this approach, the torque is associated
with the parameters of the spin currents j𝑠. Let us
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consider a physically infinitesimal element in a ferro-
magnet. The spin density of moving electrons in this
element, ⟨s⟩, can change for two causes: (i) the ex-
change interaction generates a torque T𝑠, which acts
on ⟨s⟩; and (ii) the input and output spin currents do
not compensate each other, so that ⟨s⟩ changes ow-
ing to the electron transfer process. In the stationary
state, ⟨s⟩ = const, and T𝑠 must be exactly compen-
sated by the imbalance from item (ii). In a continu-
ous medium, such an imbalance is equal to the di-
vergence of the spin current. Furthermore, since the
existence of the torques T and T𝑠 is a result of the
same exchange interaction, one has T = −T𝑠 (ac-
tion and reaction are equal and opposite). As a re-
sult, the spin-transfer torque T(r) in the stationary
state is determined as the spin-current divergence at
the point r.

This work deals with nanostructures consisting of
the layers of uniformly magnetized ferromagnets (F)
and nonmagnetic normal metals (N). In such struc-
tures, the spatial change of M occurs in the form of
jumps at the interfaces between the layers of differ-
ent materials. Experimentally, the spin transfer is of-
ten observed in nano-wires about 100 nm in diameter
made of a normal metal and containing two ferromag-
netic layers (Fig. 1).

If the magnetization directions in the F-layers are
described by the unit vectors m1 and m2, then the
calculations bring about the following formulas for
the torques applied to the magnetizations of the first
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Fig. 1. Schematic diagram of a spin-transfer device

and second layers [4, 7, 8]:

T1 = −𝐼~
2𝑒

𝑔1(𝜃)[m1 × [m2 ×m1]],

T2 =
𝐼~
2𝑒

𝑔2(𝜃)[m2 × [m1 ×m2]].

(1)

Here, 𝐼 is the electric current in the wire, 𝑒 < 0
the electron charge (so that 𝐼/𝑒 = 𝑗0 is the parti-
cle flux), 𝜃 the angle between the vectors m1 and
m2, and 𝑔1,2(𝜃) are the spin-transfer “efficiency func-
tions”. The minus sign in the first formula reflects
the symmetry of the effect, namely, the fact that
a ferromagnet located upstream along the positive
current can be regarded as being located down-
stream along the negative current. Although the spin-
transfer torques arise owing to the interaction of fer-
romagnets through the motion of electrons between
them, the sum T1 +T2 ̸= 0. The total torque of the
magnetic layers does not have to vanish, because the
layers form an open system and can exchange the
torque with other wire sections.

The efficiency functions depend on the electron
transport mode, the material parameters, and the
device geometry. Their dependence on the angle 𝜃
has been considered in many publications. In the
first studies, these functions were taken to be posi-
tive. The following arguments were presented in favor
of this assumption. When electrons from the first fer-
romagnetic layer F1 fly into the normal slab, they are
spin-polarized along the vector m1. Afterward, when
they reach the layer F2, their spins have to rotate by
the angle 𝜃 (on average) with respect to the direction
of the vector m2. The necessity for the spins to rotate
makes it difficult for electrons to cross the interface
and thus increases the interface resistance. The other
flip of this effect is that the current from an exter-
nal source must induce torques that would change
the orientation of the magnetizations in the direc-

tion corresponding to the resistance reduction, i.e.,
it would bring m2 closer to m1

1. The T2 torque di-
rection agrees with such a consideration provided the
condition 𝑔2 > 0 holds.

However, the later calculations [9–11] showed that
an unexpected deviation from this conclusion arises
even in the framework of the diffusion model: for
asymmetric structures with the layers F1 and F2

made from different materials, the function 𝑔(𝜃) can
change the sign. This result is used in various projects
dealing with the generation of magnetization preces-
sion by means of a direct current [10, 12, 13]. The
calculations in the diffusion regime are simple ide-
ologically, but often produce long and cumbersome
algebraic expressions. In this connection, there arises
the need for the understanding of the alternating-sign
character of 𝑔(𝜃) at the qualitative level. In this work,
we demonstrate how the alternating-sign behavior of
the efficiency function can be intuitively interpreted
with the help of a mechanical analogy and how such
an approach allows the sign of the efficiency func-
tion to be determined without carrying out detailed
calculations.

2. Diffusion-Transfer Model

2.1. Bulk equations

In structures where the electron mean free path is
much shorter than the thicknesses of the layers (see
Fig. 1), the transport processes have a diffusive char-
acter. Furthermore, if the electric current is uniform
over the nano-wire cross-section, then all physical pa-
rameters will depend only on the 𝑥-coordinate reck-
oned along the wire. The ferromagnetic layers are de-
scribed by two diffusion coefficients, 𝐷↑ and 𝐷↓, for
electrons with spins oriented in parallel (spin-up) and
antiparallel (spin-down) to the vector m. The nor-
mal layer is described by a single diffusion coefficient
𝐷N common for all electrons. In an infinite ferro-
magnetic wire, the electric current from an external
source generates the spin current j𝑠 = 𝑝𝑗0m, where
𝑝 = (𝐷↑ −𝐷↓)/(𝐷↑ +𝐷↓) is the spin polarization of
the current, and 𝑗0 is the particle flux. If the prob-

1 The logic of this conclusion reminds the logic used while con-
sidering a rubber tube through which water is pumped under
pressure. Since we know that it would be easier for water to
pass through a tube with a larger diameter, we may conclude
that the pumping has to stretch the tube diameter. In other
words, we come to the Le Chatelier–Brown principle.
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lem is one-dimensional, all currents flow along the
𝑥-axis. Therefore, 𝑗0 is a scalar and j𝑠 a vector in the
spin space.

At the interfaces between the layers, the electric
current also induces a non-equiulibrium accumulation
of the spin, 𝛿s [14, 15], with 𝛿s = ⟨s⟩ in a normal
metal and 𝛿s = ⟨s⟩ − seq in a ferromagnet, where
seq is the nonzero spin density at equilibrium. Let us
consider the case of strong ferromagnets, where the
splitting 𝐽 of the energy bands of the spin-up and
spin-down electrons has the same order of magnitude
as the Fermi energy 𝜀F. In this case, the vectors seq
and 𝛿s in the bulk of ferromagnets are always oriented
in parallel to the vector m [8, 16, 17].

If a spin current with an arbitrary polarization falls
on the N/F interface from the normal-metal side,
then the relaxation of its polarization direction to
m occurs in a near-interface zone with the thickness
𝜆𝐽 ∼ ~𝑣F/𝐽 . In the case 𝐽 ∼ 𝜀F, this thickness is nar-
rower than the electron mean free path length. As a
result, in the diffusion approximation, the relaxation
of the spin current component perpendicular to m
is described by the boundary conditions rather than
bulk equations. It is important to emphasize that the
condition of a strong ferromagnet, i.e. 𝐽 ∼ 𝜀F, and
the resulting rapid ordering of the spins in the m-
direction do not require the spin current to be almost
completely polarized, 𝑝 → 1. The current polariza-
tion is determined not only by the band splitting 𝐽,
but also by the velocities and the scattering parame-
ters of spin-up and spin-down electrons. Therefore, it
can be low even in strong ferromagnets. Vice versa,
the limit 𝑝 → 0 does not imply a transition from fer-
romagnet to normal metal.

It is known [9, 18, 19] that the diffusive accumu-
lation of the spin in ferromagnets and normal met-
als can be characterized by the splitting of chemi-
cal potentials of electrons with spins up and down
with respect to the direction 𝛿s, 𝜇𝑠 = 𝜇↑ − 𝜇↓. It is
convenient to describe this splitting using the vector
𝜇𝑠 = 𝜇𝑠m, where the unit vector m coincides with
m1,2 in the ferromagnets and is directed along 𝛿s in
the normal metal. In the diffusion approximation, the
particle flux and the spin current are determined by
the gradients of 𝜇𝑠 and the electrochemical potential
𝜇0 as follows: in a ferromagnet,

𝑗0 = −(𝐷↑ +𝐷↓)

[︂
∇𝑥𝜇0 + 𝑝

∇𝑥𝜇𝑠

2

]︂
,

j𝑠 = −(𝐷↑ +𝐷↓)

[︂
𝑝∇𝑥𝜇0 +

∇𝑥𝜇𝑠

2

]︂
m, (2)

and, in a normal metal,

𝑗0 = −𝐷N∇𝑥𝜇0,

j𝑠 = −𝐷N
∇𝑥𝜇𝑠

2
.

(3)

Since the current 𝑗0 is constant at any point of the
one-dimensional structure, we can rewrite the expres-
sion for the spin current in a ferromagnet in the form

j𝑠 =

(︂
𝑝𝑗0 −𝐷F

∇𝑥𝜇𝑠

2

)︂
m, (4)

where 𝐷F = 4𝐷↑𝐷↓/(𝐷↑ +𝐷↓).
The distribution of spin accumulations in each layer

is determined by the transport-relaxation equation –

𝑑𝜇𝑠

𝑑𝑡
+

1

𝜌
div j𝑠 = −𝜇𝑠

𝜏
,

where 𝜏 is the spin relaxation time for the given ma-
terial, 𝜌 = 𝑑𝑠/𝑑𝜇𝑠 is a coefficient associated with
the densities of states for two spin directions, and
j𝑠 is defined by formulas (3) and (4). In the one-
dimensional stationary case (to within we restrict our-
selves below),

1

𝜌

𝑑j𝑠
𝑑𝑥

= −𝜇𝑠

𝜏
. (5)

Hence, the problem of finding the spin currents be-
comes completely separated from the problem con-
cerning the electric potential distribution. The for-
mer is reduced to the solution of Eq. (5) with the
corresponding boundary conditions at the interfaces
between the layers.

2.2. Boundary Conditions

If an electric current runs through a multilayer struc-
ture, the behavior of the potential 𝜇0 at the interfaces
depends on the ratio between the interface resistance
and the resistivity of the material in each layer. In
particular, if the interface resistance is low, the ap-
proximation of a continuous electric potential across
the interface can be used. In this approximation, the
current passing through a “transparent” interface does
not induce a 𝜇0-jump across it.

At first glance, the case of spin transfer seems to be
quite different. Since the perpendicular component of
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Fig. 2. Dependences 𝑗𝑠(𝑥) and 𝜇𝑠(𝑥) in the F/N contact. The
arrows in the lower panel demonstrate forces that act on the
point 𝜇𝑠(0) in the mechanical analogy

the spin current is fully absorbed at the N/F inter-
face, it seems hardly possible to use an approxima-
tion, where the spin potential jumps across the in-
terfaces could be neglected. However, the boundary
conditions consistently derived from the microscopic
model for the N/F contact [16,17] show that the limit
of a transparent interface does exist in this case as
well. In this limit, the potentials 𝜇0 and 𝜇𝑠 are contin-
uous. The situation is analogous to the case of electri-
cal charge transfer. The difference consists in that it is
the spin current j𝑠 that becomes discontinuous at the
interfaces. This result has no analog for electrical cir-
cuits, where the discontinuity of an electric current is
prohibited by the charge conservation law. In the spin
case, a certain analog of the current continuity condi-
tion exists for interfaces that can be modeled with a
static spin-dependent potential. If the interface does
not have an associated magnetic moment, i.e. an ad-
ditional magnetic degree of freedom, then the com-
ponent of the spin current j𝑠 · m, which is parallel
to the magnetization vector, has no jump. Such in-
terfaces are called “spin-inactive”. It should be noted
that the interfaces can be spin-inactive only for the
parallel component of j𝑠. The N/F interfaces with a
strong ferromagnet are always spin-active for the per-
pendicular spin-current component.

In works [9–11], it was shown that two continuity
conditions

𝜇𝑠|N = 𝜇𝑠|F, (6)

(j𝑠 ·m)|N = (j𝑠 ·m)|F (7)

are enough to completely determine the currents in
all layers. In this case, no boundary conditions are
imposed on the perpendicular components of the spin
current, and they can be found automatically from
the bulk equations.

3. Mechanical Analogy

3.1. F/N contact

In order to introduce necessary concepts into consid-
eration, let us at first consider the well-known case
of a single F/N contact with a spin-inactive inter-
face located at the point 𝑥 = 0 between two semiin-
finite F and N layers [14]. The spin accumulation is
determined by Eqs. (4) and (5)/ref), the value of 𝑗0,
and the potentials 𝜇𝑠 at the left and right sides of
the interface. As was discussed in Introduction, the
spin accumulation occurs only near the interface. At
large distances from the interface, the spin accumula-
tion tends to zero, so that 𝜇𝑠(±∞) = 0. The value of
𝜇𝑠(0) has to be found from the continuity conditions
for the parallel component of the spin current across
the interface.

At the F/N contact, both the spin accumulation
and the spin current are parallel to the F-layer mag-
netization at every point: 𝜇𝑠(𝑥) = 𝜇𝑠(𝑥)m and
j𝑠 = 𝑗𝑠(𝑥)m. The solutions of Eq. (5) look like

𝜇𝑠(𝑥) = 𝜇𝑠(0) exp

(︂
𝑥

𝑙F

)︂
(𝑥 < 0),

𝜇𝑠(𝑥) = 𝜇𝑠(0) exp

(︂
− 𝑥

𝑙N

)︂
(𝑥 > 0),

where 𝑙 =
√︀
𝐷𝜏/(2𝜌) is the spin diffusion distance for

the given material. The boundary condition (7) takes
the form

𝑝𝑗0 −𝐺F𝜇𝑠(0)−𝐺N𝜇𝑠(0) = 0, (8)

where the definition 𝐺 = 𝐷/(2𝑙) is used for every
layer.

The plots of the dependences 𝜇𝑠(𝑥) and 𝑗𝑠(𝑥) are
shown in Fig. 2. Their shapes can be understood on
the basis of the following mechanical analogy. Let us
suppose that the curves 𝜇𝑠(𝑥) are elastic cords, and
the external force 𝑝𝑗0 is applied upward to their con-
nection point 𝜇𝑠(0). The elasticity of the cords causes
the appearance of the counteracting forces 𝐺F𝜇𝑠(0)
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and 𝐺N𝜇𝑠(0), which are proportional to the connec-
tion point deviation from the equilibrium position
𝜇𝑠(0) = 0. Then Eq. (8) can be regarded as a bal-
ance condition for the external force and the elastic
reaction forces. In the mechanical analogy, the quan-
tities 𝐺 play the role of cord stiffness. They contain
information about the spin system properties. For ex-
ample, they are proportional to 1/𝑙, so that the re-
duction of 𝑙, i.e. the growth of spin relaxation, dimin-
ishes the deviation of the connecting point from the
equilibrium, i.e. decreases the spin accumulation.

Note that, in the case of N/F contact (the particle
flux is directed from N to F), Eq. (7) takes the form

−𝑝𝑗0 −𝐺F𝜇𝑠(0)−𝐺N𝜇𝑠(0) = 0 . (9)

According to the mechanical analogy, the external
force drags the point 𝜇𝑠(0) downward.

By applying the rules of the mechanical anal-
ogy described above to the F/N and N/F contacts,
we can easily understand the results obtained for
the collinear structures F/N/F and N/F/N. In those
structures, external forces at the interface drag the
connecting points of elastic cords in opposite direc-
tions (Fig. 3).

3.2. Noncollinear structure

Now, let us consider one of the simplest structures
with the alternating-sign function 𝑔(𝜃), namely, the
structure N/F1/N/F2/N with 𝑙 → 0 in the normal
external electrodes [9]. As follows from the results of
the previous section, the latter condition provides
the equality 𝜇𝑠 = 0 at the boundaries N/F1 and
F2/N. The values 𝜇𝑠(𝑥1) = 𝜇1 and 𝜇𝑠(𝑥2) = 𝜇2 at
the interfaces F1/N (𝑥 = 𝑥1) and N/F2 (𝑥 = 𝑥2) are
determined from conditions (7). The solutions of the
stationary equation (5) within each of the F and N
layers have the form

𝜇𝑠(𝑥) = A exp
(︁
−𝑥

𝑙

)︁
+B exp

(︁𝑥
𝑙

)︁
,

where the constants A and B are determined by the
vectors 𝜇𝑠(𝐿) and 𝜇𝑠(𝑅) at the left and right, respec-
tively, boundaries of the layer. As a result, the vector
𝜇𝑠(𝑥) in each layer lies in the plane determined by
the corresponding vectors 𝜇𝑠(𝐿) and 𝜇𝑠(𝑅). The rel-
evant calculations were carried out in works [9, 11]
(see Appendix 4). Here, let us proceed to the inter-
pretation of the results obtained in the cited works

Fig. 3. Dependences 𝑗𝑠(𝑥) and 𝜇𝑠(𝑥) in the collinear struc-
tures F/N/F and N/F/N. The lower panels demonstrate that,
in the mechanical analogy, the directions of the forces acting on
the cord-connecting points depend on the arrangement order
of the N and F layers along the 𝑗0-current flow

Fig. 4. Hodographs of 𝜇𝑠(𝑥) and j𝑠(𝑥)

in the mechanical analogy framework. In principle,
the vector quantities 𝜇𝑠(𝑥) could be illustrated in
a three-dimensional figure. But since 𝜇𝑠(𝑥) in each
layer varies in a fixed plane, it is enough to consider a
two-dimensional hodograph of the motion of the point
𝜇𝑠. In the case of a structure with two ferromagnets,
the entire hodograph lies in the plane of the vectors
m1 and m2 (Fig. 4, upper panel). In the ferromag-
netic layers, the point 𝜇𝑠(𝑥) moves along the vec-
tors m1 and m2. In the layer of a normal metal, the
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trajectory 𝜇𝑠(𝑥) connects the points 𝜇1 and 𝜇2. The
boundary conditions (7) at the points 𝑥1 and 𝑥2 read

[j𝑠(F1)− j𝑠(N1)] ·m1 = 0,

[j𝑠(N2)− j𝑠(F2)] ·m2 = 0,
(10)

where the arguments F1, N1, N2, and F2 denote the
points 𝑥1 − 0, 𝑥1 +0, 𝑥2 − 0, and 𝑥2 +0, respectively.

Now, let us proceed to the description of a mechan-
ical analogy in the noncollinear case. In this case, the
role of elastic cords is played by the hodograph lines
in each layer. The cords in the normal metal and two
ferromagnets are connected at two moving points, 𝜇1

and 𝜇2, which can slide along the straight lines m1

and m2 without friction. Let us imagine those points
to be small rings encircling the m1 and m2 axes. The
axes should be imagined as spaced apart a short dis-
tance from each other, so that the rings could pass
freely through their “intersection” point. As one can
see from Fig. 4, the cords in the ferromagnetic layers
form straight lines between the coordinate origin and
the points 𝜇1,2, whereas the cord in a normal metal
is drawn with a certain sag between the points 𝜇1

and 𝜇2. In the mechanical analogy, the spin currents
j𝑠 play the role of the forces with which the cords act
on the connecting rings. Indeed, according to formula
(3), the spin current in the normal interval is directed
tangentially to the hodograph, just like the tension
of the elastic cord. The cord departing from the ring
as the 𝑥-coordinate grows acts on the ring with the
force −j𝑠, whereas the cord approaching the ring as
the 𝑥-coordinate grows acts on the ring with the force
+j𝑠. Since the motion of the rings is confined to the
straight lines, only the force components in the direc-
tions m1 and m2 (Fig. 4, upper panel) should balance
in equilibrium, which brings about conditions (10).

When considering the spin current in the ferromag-
nets in more detail, one can see that it consists of two
terms, e.g., 𝑗𝑠(𝐹1) = 𝑝1𝑗0 − �̃�1𝜇1 (the quantity �̃�1 is
defined in Appendix I). Analogously to the collinear
case, the term proportional to the electric current
generates an external force that pulls the ring away
from the equilibrium position. The second term de-
scribes an elastic reaction force that returns the ring
back to the equilibrium position; in other words, it
diminishes the spin accumulation (Fig. 4, the inset
in the upper panel). As one can see, in the case of
mechanical analogy, only the forces generated by the
electric current in the system can disturb the system

from the equilibrium state, which completely corre-
sponds to the physical scenario of the process.

The analogy with the balance of forces can also be
extended on Eq. (5) describing the cord shape in the
normal metal. Being rewritten in the form

−𝑑j𝑠
𝑑𝑥

− 𝜌

𝜏
𝜇𝑠 = 0,

it is interpreted as the balance between the cord ten-
sion forces and the distributed gravitational force ap-
plied to each of its infinitesimal elements and directed
toward the coordinate origin. It is this gravitational
force that results in the “sag” of the cord in a normal
metal, which can be observed in Fig. 4. Since it is
inversely proportional to 𝜏 , the hodograph of 𝜇𝑠(𝑥)
becomes a straight line extending from the point 𝜇1

to the point 𝜇2 in the absence of a spin relaxation in
the normal layer (𝜏 → ∞).

Note also that the stationary transport equation
(5) and the boundary conditions (6) and (7) can be
obtained by finding the extremum of the functional

𝑆 =
∑︁
𝛼

∫︁ [︂
1

𝐷𝛼

(︂
𝑝𝛼𝑗0 −𝐷𝛼

∇𝑥𝜇𝑠

2

)︂2
+

𝜌𝛼𝜇
2
𝑠

𝜏𝛼

]︂
𝑑𝑥 (11)

on the class of continuous functions 𝜇𝑠(𝑥) with the re-
striction 𝜇𝑠(𝑥) ‖ m in the ferromagnets. In Eq. (11),
the summation is carried out over all layers (sub-
script 𝛼), and the integration is performed along each
layer. The parameters 𝑝𝛼, 𝐷𝛼, 𝜏𝛼, and 𝜌𝛼 are con-
stant within each layer and depend on its material.
From the viewpoint of diffusion transport, this re-
sult can be considered as a variant of the principle of
minimum entropy production in a weakly nonequilib-
rium system. From the viewpoint of mechanical anal-
ogy, the first term in the integrand corresponds to the
elastic energy of the cord, and the second one to the
energy associated with the distributed gravitational
force.

In general, the mechanical analogy allows the be-
havior of F/N/F structures to be interpreted at a
qualitative level and the results of analytic calcula-
tions to be predicted. Let us demonstrate this state-
ment by the example of the properties of spin-transfer
torques.

3.3. Spin-transfer torques and
alternating-sign efficiency function

The spin-transfer torque T is determined by the spin-
current jump Δj𝑠 at the interface between the ferro-
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magnetic and normal layers as T = (~/2)Δj𝑠 [4]. Ac-
cording to the boundary conditions (7) and formu-
las (1), the jumps Δj𝑠 and the torques T are per-
pendicular to the ferromagnet magnetization. In the
structure N/F1/N/F2/N, the jumps occur only at the
interfaces F1/N and N/F2. Then we obtain

Δj𝑠1 = j𝑠(𝐹1)− j𝑠(𝑁1) = 𝑗𝑠(𝐹1)m1 − j𝑠(𝑁1),

Δj𝑠2 = j𝑠(𝑁2)− j𝑠(𝐹2) = j𝑠(𝑁2)− 𝑗𝑠(𝐹2)m2.
(12)

Due to the discontinuities of the spin current, the
hodograph of the vector j𝑠(𝑥) consists of separate
segments (Fig. 4, lower panel). The segment corre-
sponding to the normal layer is a curve connecting
the points j𝑠(𝑁1) and j𝑠(𝑁2) with a sag directed to-
ward the coordinate origin. The greater the relax-
ation, the larger the sags of the hodographs of 𝜇𝑠(𝑥)
and j𝑠(𝑥), and, simultaneously, the smaller the spin
current jumps at the interfaces. In the opposite limit,
when the spin relaxation decreases to zero, the hodo-
graph of 𝜇𝑠(𝑥) approaches a straight line, and the
hodograph of j𝑠(𝑥) transforms into a point, i.e., the
spin current in the layer becomes constant.

The directions of the Δj𝑠-jumps in the hodograph
of j𝑠(𝑥) depend on the location of the vectors j𝑠(𝑁1)
and j𝑠(𝑁2) relative to the m1,2 lines. The position
of those vectors in Fig. 4 corresponds to the positive
values of 𝑔1 and 𝑔2.

Now let us consider a situation with substantially
different properties of the ferromagnets F1 and F2

(Fig. 5). From the viewpoint of mechanical analogy,
the asymmetry means that the rings connecting the
elastic cords, 𝜇1 and 𝜇2, are dragged away from
the coordinate origin by different forces, 𝑝1𝑗0m1 and
−𝑝2𝑗0m2. The reaction forces −�̃�1𝜇1 and −�̃�2𝜇2 are
also different (see Appendix 4). An example of such a
situation is shown in Fig. 5 (upper panel). Here, the
force −𝑝2𝑗0m2 applied to the ring 𝜇2 was so large
that, being transmited through the normal metal
cord, it had dragged the ring 𝜇1 to the negative side
of the m1 axis. At the same time, the orientation
of the tangent line to the N-hodograph at the point
𝜇2 changed: now it passes below the line m2. The
corresponding hodograph of j𝑠(𝑥) is shown in Fig. 5
(lower panel). One can see that the direction of Δj𝑠2
changed, and now the magnetization m2 is repelled
from m1. In other words, 𝑔2 < 0. Note that, at the
moment when 𝜇1 becomes equal to zero, the relative
arrangement of j𝑠(𝑁1) and m1 and, hence, the direc-

Fig. 5. Hodographs of 𝜇𝑠(𝑥) and j𝑠(𝑥) in the case 𝑔2 < 0

tion of Δj𝑠1 do not change, i.e., the sign of 𝑔2 remains
positive.

In our example, the “drag” of the ring 𝜇1 takes
place owing to the growth of the force −𝑝2𝑗0m2. On
the other hand, it can also occur due to a reduction
of the counteracting force −�̃�2𝜇2. In this case, the
ring 𝜇2 would also further away from the equilibrium
position and pull the ring 𝜇1 behind itself by means
of the normal metal cord.

4. Conclusions

The mechanical analogy allows the behavior of the
diffusion system to be predicted on the basis of qual-
itative considerations. For example, it becomes evi-
dent that if the angle 𝜃 between the magnetizations
m1 and m2 exceeds 90∘, no force directed along −m2

would be capable of dragging the point 𝜇1 through
zero, because the component of such a force on m1

is positive (here, we assume 𝑗0 > 0). Accordingly, the
change of the 𝑔2-sign is possible, only if 0 6 𝜃 < 𝜋/2,
in accord with the formulas obtained in works [9, 11]
(see Appendix II). The mechanical analogy makes it
also evident that, in the case 0 6 𝜃 < 𝜋/2, a suffi-
ciently large polarization 𝑝1 will change the sign of 𝑔1
without changing the sign of 𝑔2.

Finally, it becomes obvious that two efficiency
functions cannot change their signs simultaneous-
ly. Indeed, for the sign of 𝑔 to change, it is neces-
sary to drag the corresponding ring through the point,
where the axes intersect. In the mechanical analogy,
the both external forces act on the rings in the direc-
tions away from the equilibrium positions. Therefore,
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if the asymmetry increases, at least one of the rings
will shift in the direction of the applied force, but not
opposite to it 2.

In diffusive structures consisting of more than two
ferromagnetic elements, the behavior of the spin ac-
cumulation is represented by a planar hodograph
in each normal-metal layer and by a linear hodo-
graph along the magnetization axis in each ferromag-
netic layer. In structures with noncoplanar magneti-
zations, there may be situations in which the planes
of hodographs of normal layers are different. But
this complication does not prevent all hodographs
to be simultaneously presented in two-dimensional
diagrams like Figs. 4 and 5. The fact is that the
planes of the hodographs of two normal layers sep-
arated by a ferromagnetic gap always possess a com-
mon line; it is the axis of ferromagnet magnetiza-
tion. Therefore, a three-dimensional hodograph of a
multilayer structure can always be “folded” into a
flat one.

The mechanical analogy continues to be valid for
multilayer structures, because the balance of imagi-
nary forces applied to the connecting points between
the elastic cords will be preserved at each interface
between the layers. Of course, as the number of ele-
ments in the system increases, a possibility to intu-
itively find the shape of a balanced mechanical con-
figuration for the cords decreases. Nevertheless, even
in this case, the graphical interpretation of the an-
alytic or numerical solutions in the hodograph form
remains to be a useful way of visualization, and the
mechanical analogy can make it easy to understand
the response of a system to small variations of its
parameters.

The work was supported in the framework of the
NSF grant DMR-0847159.

APPENDIX I
Distribution of Spin Accumulation
and Spin Current

In this appendix, the results of calculations for the
N/F1/N/F2/N structure are presented. The thicknesses of the
ferromagnetic layers F1 and F2 equal 𝑑1 and 𝑑2, respectively,

2 One may ask what will happen in the case of negative spin
polarization, 𝑝 < 0 or 𝐷↑ < 𝐷↓, in either or both layers.
Unfortunately, it will only result in the overdetermination of
the direction of the corresponding vector m to the opposite
one.

and the thickness of the normal gap between them is 𝑑N. The
spin diffusion distances are 𝑙1 and 𝑙2 in the ferromagnets and
𝑙N in the normal layer. In the external normal electrodes, the
spin diffusion distance is assumed to tend to zero, so that the
spin accumulation equals zero at the interfaces with them. At
the F1/N (at 𝑥 = 𝑥1) and N/F2 (at 𝑥 = 𝑥2) interfaces, the
spin accumulation is denoted as 𝜇1 and 𝜇2, respectively. The
function 𝜇(𝑥) is given by the following formulas: in F1 (at
𝑥1 − 𝑑1 < 𝑥 < 𝑥1),

𝜇(𝑥) =
𝜇1 sinh

𝑥−(𝑥1−𝑑1)
𝑙1

sinh 𝑑1
𝑙1

;

in N (at 𝑥1 < 𝑥 < 𝑥2),

𝜇(𝑥) =
𝜇1 sinh

𝑥2−𝑥
𝑙N

+ 𝜇2 sinh
𝑥−𝑥1
𝑙N

sinh 𝑑N
𝑙N

;

and in F2 (at 𝑥2 < 𝑥 < 𝑥2 + 𝑑2),

𝜇(𝑥) =
𝜇2 sinh

(𝑥2+𝑑2)−𝑥
𝑙2

sinh 𝑑2
𝑙2

.

Taking the definition 𝐺 = 𝐷/(2𝑙) for each layer into account,
the following expressions for the spin currents are obtained: in
F1 (at 𝑥1 − 𝑑1 < 𝑥 < 𝑥1),

j𝑠(𝑥) = 𝑝1𝑗0 −𝐺1

𝜇1 cosh
𝑥−(𝑥1−𝑑1)

𝑙1

sinh 𝑑1
𝑙1

,

in N (at 𝑥1 < 𝑥 < 𝑥2),

j𝑠(𝑥) = 𝐺N

𝜇1 cosh
𝑥2−𝑥
𝑙N

− 𝜇2 cosh
𝑥−𝑥1
𝑙N

sinh 𝑑N
𝑙N

,

and in F2 (at 𝑥2 < 𝑥 < 𝑥2 + 𝑑2),

j𝑠(𝑥) = 𝑝2𝑗0 +𝐺2

𝜇2 cosh
(𝑥2+𝑑2)−𝑥

𝑙2

sinh 𝑑2
𝑙2

.

At the F1/N and N/F2 interfaces,

j𝑠(𝐹1) = 𝑝1𝑗0 − �̃�1(𝑑1)𝜇1,

j𝑠(𝑁1) = �̃�N(𝑑N)

(︂
𝜇1 −

1

ch 𝑑N/𝑙N
𝜇2

)︂
,

j𝑠(𝑁2) = �̃�N(𝑑N)

(︂
1

ch 𝑑N/𝑙N
𝜇1 − 𝜇2

)︂
,

j𝑠(𝐹1) = 𝑝2𝑗0 + �̃�2(𝑑2)𝜇2.

(13)

where the notation �̃�(𝑑) = 𝐺 coth(𝑑/𝑙) was used.
Using expressions (13) and boundary conditions (7), the fol-

lowing formulas are obtained for the spin accumulation at the
interfaces:(︂
𝜇1

𝜇2

)︂
=

𝑗0

Det

⃒⃒⃒⃒
𝐴2 −𝐵 cos 𝜃

𝐵 cos 𝜃 −𝐴1

⃒⃒⃒⃒ (︂
𝑝1
𝑝2

)︂
, (14)

where

𝐴1 = �̃�1(𝑑1) + �̃�N(𝑑N) > 0,

𝐴2 = �̃�2(𝑑2) + �̃�N(𝑑N) > 0,

𝐵 =
�̃�N(𝑑N)

cosh 𝑑N
𝑙N

> 0,Det = 𝐴1𝐴2 −𝐵2 cos2 𝜃.
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APPENDIX II
Spin-Transfer Torques

The spin current jumps are determined by formulas (12). Sub-
stituting relations (13) into them, the following expressions are
obtained:

Δj𝑠1 =
𝐺N(𝑑N)

cosh 𝑑N
𝑙N

𝜇2 [m1 × [m2 ×m1]],

Δj𝑠2 =
𝐺N(𝑑N)

cosh 𝑑N
𝑙N

𝜇1 [m2 × [m1 ×m2]].

All we need to do is to substitute 𝜇1 and 𝜇2 from formulas (14).
To analyze the behavior of the efficiency functions, at first,

we should prove the inequalities 0 < 𝐵 < 𝐴1,2. Using them, we
can show that the signs of 𝑔1,2 change from positive to negative,
if the condition cos 𝜃 > 0 and either of the inequalities

𝑝2

𝑝1
>

𝐴2

𝐵 cos 𝜃
> 1 ⇒ 𝑔2 < 0,

𝑝2

𝑝1
<

𝐵 cos 𝜃

𝐴1
< 1 ⇒ 𝑔1 < 0.

(15)

are satisfied simultaneously. Conditions (15) demonstrate that
two efficiency functions cannot change their signs simultane-
ously. For one of them to change its sign, it is necessary that
a certain threshold of the structural asymmetry has to be ex-
ceeded.
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IНТЕРПРЕТАЦIЯ ЗНАКОЗМIННОГО
СПIН-ТРАНСФЕРНОГО МОМЕНТУ В F/N/F
СТРУКТУРАХ ЗА ДОПОМОГОЮ
МЕХАНIЧНОЇ АНАЛОГIЇ

Р е з ю м е

Обговорюється зручна iнтерпретацiя розподiлу спiнового
накопичення та спiнових струмiв у магнiтних наностру-
ктурах з дифузiйним переносом. Запропоновано механiчну
аналогiю, яка дозволяє на якiсному рiвнi зрозумiти мiру
впливу рiзних параметрiв на величину спiн-трансферних
моментiв i наочно пояснює знакозмiннiсть спiн-трансфер-
ного моменту в асиметричних F/N/F структурах.
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