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SQUARE ROOTS OF KEPLER
ELLIPSES, ELECTRONS AND RYDBERG
ATOMS IN A MAGNETIC FIELD

Young Kepler’s daring ideas on the structure of the Solar system are applied to the analysis
of planetary distances in the exoplanetary system HD 10180. Using Zhukovsky’s transforma-
tion, the essence of the spinor regularization of Kepler’s problem is explained as extracting the
square root of an ellipse and using a Kepler eccentric anomaly instead of the usual time. The
achievements of Kharkiv radio astronomers in the search for radio recombination lines of
Rydberg carbon atoms at the UTR-2 radio telescope are considered. A generalized spinor reg-
ularization of the Kepler problem is used to analyze the energy spectra of Rydberg hydrogen
atoms in a magnetic field.
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Le nez de Cléopâtre: s’il eût été plus court,
tout la face de la terre aurait changé.

Blaise PASCAL, 1669

Cleopatra’s nose: if it had been shorter, the
whole face of the Earth would have changed.

Blaise PASCAL, 1669

1. Introduction

Science and education in Ukraine are going through a
really tough time. The prophecy of the German physi-
cist and philosopher Georg Christoph Lichtenberg
(1742–1799) has come true: “Nowadays we every-
where seek to propagate wisdom: who knows whether
in a couple of centuries there may not exist univer-
sities for restoring the old ignorance.” [1] Certainly,
G.C. Lichtenberg was writing about European Uni-
versities. But here is an opinion of Piotr Nowak, a
philosophy professor of Bia lystok University, about
a reformation of today’s Polish Universities taken
from his book with the expressive title “Nurturing
troglodytes” [2]: “There are at least two latent goals
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of the University reforms. The first is to divert young
and talented youth from intellectual work, from read-
ing and writing books, and teaching for the benefit
of quasibusiness activity, which is reduced to collect-
ing money for an enterprise earlier known as Uni-
versity. The second goal, a more demonic one, which
agrees with the trend of global changes, is to con-
sistently undermine the instinct of freedom, which
means to create definite conditions to exchange aca-
demic freedom (and freedom in general) for material
welfare”. In September 2000, an outstanding mathe-
matician V.I. Arnold speaking at the Dubna confer-
ence was very optimistic: “We 1, are lagging behind
the progressive societies as usual. Everywhere science
and culture are being destroyed, more slowly, though,
in this country than elsewhere, and this may mean
that there still is some hope that we could preserve
our established cultural level longer than the so-called
more developed countries ” [3]. It looks like we have

1 Apparently, with the word “we” V.I. Arnold referred not only
to Russia, but also to all post-Soviet space.
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managed to catch up with “progressive societies”, and
we are even ahead of them in some innovations. A bit
of good news is that this brought us to the commu-
nity of “progressive societies”, the status we have long
been dreaming about.

We may be even more encouraged, if we turn to the
history of science and history as a whole, which recon-
cile us “with imperfection of apparent course of events
as with common phenomenon in all centuries” [4].

In January 1610, aiming a self-made optical tele-
scope into the sky, Galileo Galilei saw many new and
extremely interesting objects including Jupiter’s four
satellites (Galileo called them planets, but later on,
his friend Johannes Kepler called them satellites). In
his letter to Johannes Kepler (in una lettera a Gio-
vanni (!) Keplero) of August, 19, 1610 [5], Galileo
complains about the most prominent Padua profes-
sors who “despite being repeatedly invited, were reluc-
tant to look neither at the planets, nor at the Moon,
nor at the telescope” . Galileo is asking Kepler, “What
is to be done? Whose side to take, Democritus’ or
Heraclitus’?” (Quid igitur agendum? cum Democrito
aut cum Heraclito standum?), and decides to support
Democtritus 2: “My dear Kepler, let us laugh at a
great human stupidity!” (Volo, mi Keplere, ut ridea-
mus insignem vulgi stultitiam!)

Galileo continued deriding “the human stupidity”.
In 1623 he wrote [6]: “Concerning the Copernicus’ hy-
pothesis, we, Catholics, are happy to be salvaged from
delusion and healed from blindness by the heavenly
wisdom”. Everybody knows what his derision resulted
in: the 1633 inquisition trial, the most disgraceful
case in the history of the Catholic Church, which im-
peded the development of Italian science for a long
time. Still we can also find some relief: eventually,
the Italian science revived, which is strong evidence
that destructive capacities of human stupidity
are luckily not unlimited.

What is to follow. Section 2 will feature the life sto-
ries of Tycho Brahe and Kepler, which will inevitably
make us Heraclite’s supporters. Section 3 will show
how almost insane ideas of 25-year-old Kepler about
the structure of the Solar system can be applied to
the exoplanetary system discovered in 2010 and lo-
cated at a distance of 127 light years from the Solar
system. In Section 4, we will find a square root out

2 Unlike Democritus, Heraclitus thought that human stupidity
should be weeped for.

of an ellipse and learn that it is also an ellipse. It
is called a “spinor regularization of the Kepler prob-
lem,” and it simplifies this problem greatly. In Sec-
tion 5, we will discuss the achievements of Kharkiv
radio astronomers in the search for the radiolines of
Rydberg carbon atoms using an UTR-2 radio tele-
scope. The last Section 6 will be devoted to proper-
ties of the movement of hydrogen atoms in a stable
homogeneous magnetic field, in Fock–Darwin quan-
tum dots, and under quantum Hall effect. We will
also analyze the energy spectra of Rydberg hydrogen
atoms in a magnetic field using a generalization of the
spinor regularization of the Kepler problem, when the
square root is found not of planets’ orbits but rather
of classical orbits of highly excited electrons. In the
Appendix, we will discuss several problems pertaining
to the innovations following the recent (2019) radical
reform of the SI system.

2. Tycho Brahe and Johannes Kepler

Unlike Cleopatra, whose nose was capable of changing
the face of the Earth, the famous Danish astronomer
Tycho Brahe did not have a nose at all 3. Actually,
Tycho did have a nose until he was 22, but in 1567 a
student Tycho Brahe lost it after a quarrel with his
friend caused by different viewpoints on some math-
ematical problem. After a sword duel, Tycho Brahe
had to wear an artificial nose made of wax (or a gold
and silver alloy), which was quite uncomfortable. The
loss of his nose, though, provided him with a lucky
opportunity to give up any aristocratic convention-
alities and completely devote himself to astronomy,
which was considered disgraceful, at that time, for a
respected person from a noble family.

Frederick II, the then king of Denmark, duly fa-
vored Brahe’s noble family. In June 1565, when cross-
ing the bridge, the king suddenly fell from his horse
into the cold water. The king could not swim and
started to drown. The admiral Jørgen Brahe plunged
into the river, saved the king, but in a few days died of
pneumonia. Tycho Brahe was thought to be the ad-
miral’s son. In fact, he was Jørgen Brahe’s nephew,
but when Tycho was about one year old, his un-
cle, who was childless but really wealthy, kidnapped
the child from his brother Otto and adopted Ty-
cho. After his uncle’s death, Tycho acquired a big

3 One can find quite a few sad facts about Tycho Brahe and
Johannes Kepler in the books [7–10].
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legacy and went on to study in European Universi-
ties. In 1571, Tycho’s own father died and his wealth
increased. This is all worth noting, because Tycho
Brahe spent almost all his fortune on important astro-
nomical research. (In the same year of 1571, Johannes
Kepler was born. And 29 years later in Prague, the
fate – remember Cleopatra’s nose! – brought Ty-
cho Brahe and Kepler together for a short while,
which caused groundbreaking changes to the face
of astronomy, because it was Kepler who was des-
tined to make Tycho Brahe’s priceless scientific legacy
everlasting.)

In 1576, the King of Denmark Frederick II, who
valued sciences and arts, found out that Tycho Brahe
was going to permanently move to Germany and build
an observatory there. The King immediately sum-
moned Tycho Brahe from Germany and he made an
effort to persuade Tycho to stay in Denmark. In ad-
dition, Frederick II granted him the island of Hven
and helped to build on it the Uraniborg observa-
tory, the best one at that time. Over 20 years Ty-
cho worked hard making numerous astronomical ob-
servations, which extreme accuracy was incredible
given the fact that the optical telescope had not
yet been invented. Interestingly, Frederick II con-
tributed 100,000 thalers for Uraniborg’s construc-
tion, almost as much as Tycho Brahe did. Actually,
100,000 thalers was a really big sum of money. For in-
stance, at the end of the 16th century, Johannes Ke-
pler, then the teacher at a protestant school in Graz,
was paid 200 guldens (≃171 thalers) and Galileo
Galilei, the professor of Padua University, earned 180
florines (≃180 thalers) 4.

After the death of Frederick II, his son Christian
IV became the King of Denmark and reigned for 59
years. Christian IV was notable for his courage and
wit, he waged wars, developed the trade, built towns
and ships, but he didn’t have the slightest idea why
he, and Denmark in general, needed astronomy and
proud, independent, and arrogant Tycho Brahe. The
King forbade Tycho Brahe to continue his observa-
tions and research. He deprived Tycho Brahe of the

4 In 1599, a year before Giordano Bruno was burned in Rome,
the Venetian senate received a denunciation in respect of
immorality of professor Galileo, who lived together with an
unmarried Venetian woman. The verdict of the Venetian sen-
ate astonished the informant: taking into account the newly
discovered facts, professor Galileo should not be paid 180
florins, but rather twice as much, i.e. 360 florins [11].

island of Hven, the observatory, and the estates which
had been granted by Frederick II. Deeply offended,
Tycho Brahe sold out everything still left, and on
April, 29, 1597, he abandoned Uraniborg and the is-
land of Hven never to return. In spring of 1599, after
long wanderings, Tycho Brahe reached Prague, the
capital of the Holy Roman Empire, where the Em-
peror Rudolf II welcomed him with royal honors. Un-
fortunately, Tycho Brahe did not live in Prague for
a long time. On October, 13, 1601, during a lengthy
and lavish dinner with a noble party, “he put polite-
ness before his health” (as noted by J. Kepler in the
Diary of Observations kept by Tycho Brahe). As a re-
sult, Tycho Brahe developed a severe ischuria 5 and a
terrible fever caused by it. “On October 24, his delir-
ium ceased for several hours; nature conquered and
he expired peacefully among the consolations, prayers
and tears of his people. So from this date, the series
of celestial observations was interrupted, and his own
observations of thirty-eight years have come to the
end”, this was Kepler’s final note in Tycho Brahe’s
Diary of Observations [12].

After Tycho Brahe’s death, the invaluable scien-
tific treasures – the results of all of his observa-
tions – appeared in possession of Johannes Kepler,
who was invited to Prague by Tycho Brahe as his
assistant. In 1597, Kepler sent his book Mysterium
cosmographicum (The secret of the world) [13]
to Tycho Brahe and Galileo Galilei, thereby intro-
ducing himself to them. J. Kepler did a tremendous
work thoroughly analyzing Tycho Brahe’s long-term
observations over the planet Mars. It is this analy-
sis that brought Kepler to a discovery of the three
laws of planetary motion. In 1607 in Heidelberg, Ke-
pler published Astronomia nova (New astronomy)
[14], where he formulated two laws of planetary
motion:

I. A planet moves in an elliptic orbit, having the
Sun as one of the foci.

II. A straight line joining the planet to the Sun
sweeps out equal areas in equal lengths of time.

In 1619, Harmonices Mundi (Harmony of the
world) [15] was published by Kepler. It featured Ke-
pler’s third law:

III. The squares of the orbital periods of the planets
are directly proportional to the cubes of the major
axes of their elliptic orbits.

5 Ischuria, from ancient Greek 𝜄𝜎𝜒𝜔 𝑜𝜐𝜌𝑜𝜈 , – urine retention.
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Incredible assiduity and conditions Kepler had to
work in are really impressive. The calculations that
helped Kepler to discover the third law occupied
seven thick volumes. Each calculation about 10 pages
long was reproduced 70 times [16]. This hard labor
was performed by a person with poor health and
poor sight, who had to compose endless calendars and
horoscopes to feed his family. After Tycho Brahe’s
death, J. Kepler was appointed the Emperor’s math-
ematician at the court of the Emperor Rudolf II with
annual salary of 500 guldens. During his life, Ke-
pler saw three Emperors, all of whom truly respected
Kepler. What he also saw was that the Emperor’s
treasury was always empty. The Emperor’s 30-year
debt to Kepler amounted to 12,694 guldens. In ad-
dition, J. Kepler spent several years of his life prov-
ing his mother’s innocence, who was accused of be-
ing a witch and sorceress. Kepler lived his final two
years in the town of Sagan serving as Herzog von Wal-
lenstein’s court astrologist. In autumn 1630, astride
his old worn-out nag, he headed from Sagan (now
Żagań, Poland) through Nuremberg to the town of
Regensburg in order to find the Emperor Ferdinand II
there and once again remind him of the long-standing
debt. Kepler did not find the Emperor, but, having
ridden 600 km, he caught a cold on his way and on
November, 15, 1630, he died leaving his wife and four
little children in complete poverty. Kepler had sold
his old weary nag for 2 florins [10].

In a 1930 article devoted to the 300th anniversary
of Johannes Kepler’s death, Albert Einstein wrote on
Kepler’s discovery of the three laws of planetary mo-
tion [17]: “Our admiration for this splendid man is ac-
companied by another feeling of admiration and rever-
ence, the object of which is no man but the mysterious
harmony of nature into which we are born. The an-
cients already devised the lines exhibiting the simplest
conceivable form of regularity. Among these, next to
the straight line and the circle, the most important
were the ellipse and the hyperbola. We see the last
two embodied – at least very nearly so – in the orbits
of the heavenly bodies.

It seems that the human mind has first to con-
struct forms independently before we can find them
in things. Kepler’s marvelous achievement is a par-
ticularly fine example of the truth that knowledge can-
not spring from experience alone but only from the
comparison of the inventions of the intellect
with observed fact”.

3. Kepler’s Mysterium
Сosmographicum and Exoplanetary
System HD 10180

Wolfgang Pauli (1900–1958) met Carl Gustav Jung
(1875–1961) in 1930. Their friendly relations and per-
sonal correspondence would last until Pauli’s death
[18]. This friendship significantly enriched the out-
look of them both: Jung started to write about pho-
tons and wave-particle duality, while Pauli, in turn,
got interested in Jung’s archetype theory and psy-
chology of scientific creativity. This explained Pauli’s
keen interest in the personality of J. Kepler. In March
1950, Pauli delivered the lecture “The Influence of
Archetypal Ideas on the Scientific Theories of Kepler”
before a small audience in Princeton. Abraham Pais
attended that lecture [19]. The only thing Pais re-
membered about the event was that Einstein was also
present there but fell asleep to the sound of Pauli’s
words 6. Pauli explained in his lecture 7, that “Ke-
pler’s three famous laws of planetary motion, upon
which Newton based his theory of gravitation (1687),
were not what he was originally seeking. A true spir-
itual descendant of the Pythagoreans, he was fasci-
nated by the old idea of the music of the spheres
and was always trying to find harmonious propor-
tions, in which for him all beauty lay. He attached
the utmost importance to the geometric claiming that
its theorems “have been in the spirit of God since
eternity”. His basic principle was “Geometria est
archetypus pulchritudinis mundi” (Geometry is
the archetype of the beauty of the world).” Pauli also
reported that, according to Kepler, “the image of the
triune God is in the spherical surface ... the human
mind bears the same relation to the perfect Divine
Mind as does the circle to the sphere ... This picture
of the relationship between the human mind and the
Mind Divine fits very well with the interpretation of
knowledge, already touched upon, as a “matching” of

6 It was difficult not to fall asleep during that lecture or re-
member its ideas. The participants appeared in a quandary
of Pavlov’s dog, which was taught to wag his tail or run away
with his tail between his legs depending on the kind of ellipse
he saw: vertical or horizontal. But when it saw a circle, the
dog immediately fell asleep.

7 Pauli gave the same lecture twice more, in February and
March 1948, at the Society of Psychologists in Zurich (see
[18]). The lecture was based on his rather large, later pub-
lished essay [20].
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external impressions with pre-existent inner im-
ages”, i.e. archetypes.

To support this idea, Pauli cited Kepler: “To know
is to compare that which is externally perceived
with inner ideas (externum sensile cum ideis
internis conferre)and to judge that it agrees with
them”. The understanding of the inner ideas on the
arrangement of the Solar system and the World as a
whole as devised by the God was the major goal of
Kepler’s life. He believed that to some extent he had
succeeded.

As a new teacher of mathematics and astron-
omy, the 23-year-old Kepler appeared in a protestant
school in Graz in 1594. Kepler was deeply convinced
that implicit harmony of the world existed and he
was passionate about Copernicus’ study not yet for-
bidden. Kepler tried to figure out the geometric struc-
ture of the Solar system. The insight that dawned on
him on July, 19, 1595 was overwhelming: the number
of planets in the Solar system is six , (other planets
were unknown at that time), the number of spaces be-
tween them is five , the number of regular polyhedra,
the perfect Platonian bodies, is also only five ! The
God, a great geometrician, could not help but use this
coincidence when he created the Solar system! Kepler
started a long and thorough work that resulted in
publishing his book Mysterium cosmographicum
in Tubingen in 1596. In this book, Kepler provided a
detailed explanation of his theory, whose main idea
was formulated as follows:

“Earth is the measure of all orbits. Let us circum-
scribe it with a dodecahedron. A sphere circumscribed
around the dodecahedron is the sphere of Mars. Let us
circumscribe the sphere of Mars with a tetrahedron. A
sphere circumscribed around the tetrahedron is the
sphere of Jupiter. Let us circumscribe the sphere of
Jupiter with a cube. A sphere circumscribed around
the cube is the sphere of Saturn. Let us inscribe an
icosahedron into the sphere of Earth. A sphere in-
scribed in it is a sphere of Venus. Let us inscribe an
octahedron in the sphere of Venus. A sphere inscribed
in it is the sphere of Mercury”.

According to Kepler’s calculations,

𝑅Earth/𝑅Venus = 𝑅Mars/𝑅Earth =

=
√

3 ×
√︁

5 − 2
√

5 = 1.258409,

𝑅Venus/𝑅Mercury = 𝑅 Saturn/𝑅 Jupiter =

=
√

3 = 1.732051,

𝑅 Jupiter/𝑅Mars = 3.

Kepler was lucky. Immediately evident was some
agreement with parameters of planetary orbits, which
Kepler found in Nicolaus Copernicus’ book “On the
revolution of heavenly spheres” (1543). To improve
the agreement, Kepler had to add some “thickness”
to the geometric spheres, in which he inscribed the
regular polyhedra. Kepler’s model was really imper-
fect, with the nature implying that the planets did not
move in circular orbits and the Sun was not the center
of the planetary orbits. This was just the beginning
of Kepler’s hard way to the discovery of the three
laws, the most important laws for the development of
celestial mechanics, which eventually got his name.

Approximate agreement of Kepler’s model with
reality can be explained by the fact that the distances
from the planets to the Sun and the planets’ orbital
periods are known [21] to approximately obey geo-
metric progression with definite coefficients. In ad-
dition, the success of Kepler’s model resulted from
the fact that it was true for the Solar system and for
the time Kepler lived at. We will later see that, in an-
other exoplanetary system, where there is no life and
there was no Kepler, the law of geometric progres-
sion does work, while Kepler’s model does not, since
the geometric progression coefficients are different
there.

Kepler realized that the relation of the radii of cir-
cumscribed and inscribed spheres are equal for an
icosahedron and a dodecahedron (1.258), for a cube
and an octahedron (1.732), while, for a tetrahedron,
this relation is the biggest (3). The relations of dis-
tances between the planetary orbits are expressed as
five numbers. One of them, the biggest, is nearly 3,
two are almost twice smaller than 3, and the other
two are still smaller. It became clear which polyhe-
dron to place into which space and what “thicknesses”
to add to immaterial spheres (in 1596 Kepler was not
aware that the planetary orbits have “aphelia” and
“perihelia”). If Kepler had known about the existence
of other planets, he would have easily seen the math-
ematical construction of the whole Solar system. He
would have used just two icosahedra and seven cubes:

Mercury – CUBE – Venus – ICOSAHEDRON –
Earth – ICOSAHEDRON – Mars – CUBE –
Ceres – CUBE – Jupiter – CUBE – Saturn –
CUBE – Uranus – CUBE – Neptune – CUBE –
Ultima Thule .
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Fig. 1. Deviation of the Solar system planets’ orbital periods
from a geometric progression

We took a dwarf planet Ceres as a specimen of the
asteroid belt between Mars and Jupiter. The trans-
Neptunian Kuiper belt is presented not by a dwarf
planet Pluto, but rather a trans-Neptunian object
(486958) 2014 MU69, which got the name of Ultima
Thule 8. It seems more natural, since Ultima Thule
is an example of the so-called “classical Kuiper belt
objects”, trans-Neptunian objects that move along al-
most circular orbits and have no resonance with Nep-
tune, unlike Pluto, one of the “resonance Kuiper belt
objects”.

According to the above-mentioned pattern “...a
planet – CUBE – a planet – CUBE – ...”, inter-
planetary distances approximately follow a geometric
progression with a coefficient

√
3 ≈ 1.732. Together

with Kepler, let us imagine that the God, a great
geometrician, could not but notice such a mathemat-
ical pearl as “the golden ratio”. When creating the So-
lar system, he might have rationalized like this: the
orbital periods of neighboring planets should be de-
fined by the “best” irrational number, so that adjacent
planets could not interfere with each other’s move-
ment due to the resonances. Apparently, the “best”
irrational number is “the golden ratio,” since the chain
fraction

Φ =

√
5 + 1

2
= 1 +

1

1 + 1
1+ 1

1+ 1
1+...

≈ 1.618

contains only ones. However, these planets would
have appeared cramped as the relation of their dis-

8 On January, 1, 2019, New horizons spacecraft passed Ultima
Thule at a predetermined proximity of 3.500 km

tances would have equaled only 1.378. Still there is
one more “decent” irrational number

√
5 = 2Φ − 1 ≈

≈ 2.236, it would be perfect for creating a planetary
system. In addition, (

√
5)2/3 ≈ 1.710 ≈

√
3, which is

also good, because then the interplanetary distances
would follow the geometric progression with the coef-
ficient defined by the pattern “– a planet – CUBE –
a planet – CUBE ”. The all-knowing God knew that
there was no point in making too accurate calcula-
tions, as, with time, all this beauty would be marred
due to various unpredictable physical effects and the
incredibly difficult mathematical theory of planetary
motion.

Let us look now how the real Solar system diverges
from regulations of the simplest system (the straight
line denotes the geometric progression) (Fig. 1).

The chart for distance logarithms looks quite simi-
lar [21]. The real interplanetary distances are approx-
imated well by the geometric progression with the co-
efficient

√
3 = 1.732 ≈ (

√
5)2/3 = 1.710. As far back

as 1913, it was proved by the astronomer Blagg [22].
The history of Kepler’s Solar system model is

specifically worth reminding today, as over 4 thou-
sand exoplanets 9 have already been discovered in our
galaxy.

The year of 2010 saw the discovery of 7 exoplanets
in the Southern Hydra constellation 127 light years
away from us. They orbit the yellow dwarf HD 10180,
almost as heavy as the Sun (1.06 𝑀⊙). The orbital
period of the first exoplanet with a mass of 1.5 𝑀⊕
is 1.18 days, while that of the last one, the seventh,
with a mass of 67 𝑀⊕, is 2150 days (Fig. 2). This
exoplanetary system is 7.3 bn years old.

Let us look how HD 10180 exoplanets’ orbital peri-
ods deviate from the geometric progression with the
coefficient 3

2

√
5 (Fig. 2):

It is clearly seen that the deviation of exoplanets’
orbital periods from the geometric progression is quite
similar to the corresponding deviation for the Solar
system.

Apparently, 3
2

√
5 is a really nice irrational number,

thus Kepler’s God had chosen quite a decent coef-
ficient of the geometric progression. The coefficient
for planets’ distance relation of ( 3

2

√
5)2/3 ≈ 2.241 ≈

≈
√

5 = 2.236, seems to be His joke: the progres-
sion for distances has absolutely no need in such a

9 In 2019 Michel Mayor and Didier Queloz were awarded the
Nobel Prize for the discovery of the first exoplanet in 1995.
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nice irrationality as
√

5. Nonetheless, God’s joke of
granting Kepler the idea of the five polyhedra was
really ingenious. By the way, Kepler was so keen on
his God that he considered God’s occasional banters
absolutely natural. In his essay [20], Pauli is citing
Kepler’s words: “Now, as the Creator played, so
he also taught Nature, as His image, to play;
and to play the very same game that He played
for her first ...” .

4. Square Root of Ellipse or Spinor
Regularization of Kepler’s Problem

Before finding a square root of an ellipse, let us discuss
some properties of ellipses squared.

To commemorate the 300th anniversary of New-
ton’s Principia , Arnold proved the following theo-
rem [23]:

Any ellipse with focus 0 is the square of
(unique) ellipse with center 0.

This theorem relates to two problems solved by
Newton [24]:

Propositum X. Problem V
A body revolves in an ellipse; we need to find the

law of the centripetal force directed to the center of
the ellipse.

Answer:the force is proportional to the distance
between the body and the center of the ellipse.

Propositum XI. Problem VI
A body revolves in an ellipse; we need to find the

law of the centripetal force directed to the focus of
the ellipse.

Answer: the force is inversely proportional to the
distance from the body to the focus of the ellipse.

According to Arnold, the second ellipse is the
square of the first one, or Newton’s ellipse is the
square of Hooke’s ellipse 10. So, in Fig. 3, the smaller
ellipse is the square of the larger one. The semi-major
axis of the larger ellipse in the figure equals 1.

Not only ellipse can be squared. Any aggregate of
points, any contour on the plane can be raised to any
positive or negative power, if this plane is considered
a plane of the complex variable 𝑧 = 𝑥+ 𝑖𝑦.

10 Arnold calls the first ellipse Hooke’s ellipse and the second
one Newton’s ellipse because Hooke was the first to suggest
that when the force is proportional to the distance, the body
revolves in ellipse. We will call the second ellipse Kepler’s
ellipse or Kepler–Newton’s ellipse.

Fig. 2. Deviation of orbital periods of the Exoplanets’ HD
10180 from the geometric progression

Fig. 3. The smaller ellipse is the square of the larger one

In a simpler case where the eccentricities of both
ellipses in Fig. 3 equal one, both Newtonian bodies
move back and forth along a segment of a straight
line. Let the first body be Lewis Carroll’s Alice from
Wonderland, who falls through a well dug across the
entire globe and, in 2𝜋

√︁
𝑅
𝑔 = 84 minutes, returns

back (the well is the thick vertical diameter of the
circle in Fig. 3, 𝑅 is the radius of the globe, 𝑔 is
the acceleration of gravity). Note that, in the same
period of time, “Alice squared” (the thick horizontal
radius) will reach the center of the globe and return
back twice.

Knowing the time in which Alice returns, we can
easily find, e.g., the orbital period of the spacecraft
Vostok (89 minutes), which took Yuriy Gagarin to
fly round the Earth on April, 12, 1962. In Fig. 3, the
radius of the smaller circle equals 1, the radius of the
bigger one is 1.134. Vostok’s perigee was 1.027, the
apogee was 1.051. That is the semi-major axis of the
flight ellipse was 1.039. According to Kepler’s third
law, Gagarin’s flight along the elliptic orbit lasted
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84 ×
√

1.0393 = 89 minutes.(We used the statement
that “Newton’s apple” launched at the orbital velocity
around an atmosphereless Earth in a circle of radius
1 would return in the same time as Alice does. The
oblate shape of the Earth can be neglected as the
ratio of the equatorial radius of the Earth and its
polar radius equals 1.0034.)

In Fig. 3, the bigger ellipse is a circle flattened 8
times. Since Arnold’s theorem implies that the center
of the circle becomes the focus of the smaller ellipse,
the perihelion of this ellipse equals 1/64, hence the
aphelion of this ellipse is 64 times greater than the
perihelion.

Note that the flattening of the smaller ellipse is al-
most equal to that of Halley’s comet, where aphelion
(1948) – perihelion (1986) ratio equals 60 [25]. The
appearance of Halley’s Comet in 1682 was crucial for
the development of celestial mechanics and science
as a whole. It is generally known that Newton would
have never written his Principia , if Halley, who be-
came interested in the comet’s motion, had not made
Newton do it. In early 1684, Edmond Halley traveled
from London to Cambridge to ask Newton if the force
inversely proportional to square of the distance to the
Sun would make the comet move in an ellipse. What
happened next is well known [26]. Newton answered
that it would , as he calculated that 20 years ear-
lier. Still Newton could not show his calculations to
the astonished Halley, as he failed to find them. But
after Halley left, he found the calculations and, on
encountering a minor mistake, reproduced them in a
while. In November 1684, Newton sent Halley a small
nine-page treatise De Motu Corporum in Gyrum
(On the motion of a body in an orbit). Halley later
would say that “he was the Ulysses who produced
this Achilles” 11. Newton abandoned his alchemi-
cal, chronological, and theological research and got
down to Principia . He forgot about sleeping, eating,
and everything else. In 18 months of the painstaking
work, which almost ruined Newton, Principia was
finished, Newton’s Troy had fallen. The publishing of
Principia had to be paid by Halley as the Royal
society appeared to be short on money for that.

11 Ulysses (Odysseus) encouraged Achilles to attack Troy for
he knew that Achilles was the only person to defeat the
Troyans. Similarly, Halley urged Newton to write Prin-
cipia . Achilles perished on the eve of Troy’s fall; creating
Principia caused Newton’s complete physical and mental
exhaustion.

Based on Newton’s Principia , Halley calculated
the orbital elements of 24 comets (from 1337 till
1698) and noticed a remarkable similarity of the
three comets seen in 1531, 1607 (observed and de-
scribed by Kepler) and 1682. All three comets had
the same perihelia (0.58 au) and orbital inclinations
(1620∘) [27]. Halley reasonably assumed that all the
three comets were one and the same comet and pre-
dicted that it would return in 1758, which appeared
true. Since then it has been righteously called after
Halley.

The property of two ellipses lying in the same plane,
one being the square of the other (Arnold’s theo-
rem), was discovered by Levi-Civita [28] in 1903. Ho-
wever, Halley’s comet’s orbital inclination (1620∘) to
the ecliptic plane (which for all planets could be well
approximated to our complex variable plane) is signif-
icantly different from zero. Then is it possible to find
a square root of its ellipse, or any ellipse, in three-
dimensional space? As it was proved in 1964, it is re-
ally possible [29]. To find a square root in the general
case, astronomers had to rediscover spinors. Since the
transition from conventional coordinates to spinors
reduces a rather complex Kepler’s problem on the
motion in the singular potential 𝑈 = −1/𝑟 to a
much simpler problem on the motion in the po-
tential 𝑈 = 𝑟2, such transition is called the spinor
regularization of Kepler’s problem.

Let us return to Newton–Arnold ellipses and cal-
culate how the ellipse oblateness changes, when it is
squared. If the vertical ellipse in Fig. 3 is flattened
А times, then the aphelion of the smaller ellipse is
equal to 1/𝐴2, i.e. the perihelion of the smaller el-
lipse is 𝐴2 times bigger than the aphelion. This re-
lation unambiguously determines how many times B
this ellipse is flattened, 𝐵 = 1

2 (𝐴 + 1
𝐴 ). In our case,

Fig. 3, 𝐴 = 8, 𝐵 = 4 1
16 . Conformal transformation

of the complex variable 𝑧′ = 1
2 (𝑧 + 1

𝑧 ) is called af-
ter Zhukovsky, as in 1910 N.Ye. Zhukovsky success-
fully employed this transformation to calculate the
lift force of different aerodynamic profiles, which ap-
pear when Zhukovsky transformation acts upon a
circle, if the center of the circle does not coincide
with the complex number 𝑧 = 0 [30]. If the center
of the circle coincides with 𝑧 = 0, then it could be
easlily seen that, under the Zhukovsky transforma-
tion 𝑧′ = 1

2 (𝑧 + 1
𝑧 ), any circle with a radius differ-

ent from one will turn into an ellipse with the cen-
ter in the center of the circle, and, under the dual
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Zhukovsky transformation 𝑧′ =
(︀
1
2 (𝑧 + 1

𝑧 )
)︀2, it will

turn into an ellipse with the focus in the center of
the circle [23]. Let an arbitrary point on the circle
with a radius 𝑟 ̸= 0 correspond to the complex num-
ber 𝑧 = 𝑟𝑒𝑖𝜙, 0 ≤ 𝜙 ≤ 2𝜋. The angle 𝜙 is an ex-
tremely important variable (eccentric anomaly 𝐸) in
Kepler’s theory. Figure 3 shows a circle with the ra-
dius 𝑅 =

√︁
9
7 = 1.134, as, under the Zhukovsky

transformation 𝑧′ = 𝑖√
9
7+

7
9

(𝑧 + 1
𝑧 ), exactly this cir-

cle (or the circle with the radius 𝑅 =
√︁

7
9 = 0.882))

is flattened 8 times and turns into a bigger ellipse
with semi-major axis 1 presented in Fig. 3. The dual
Zhukovsky transformation will produce a smaller el-
lipse in Fig. 3.

Analyzing Kepler’s ellipse shown in Fig. 4, we will
see that almost everything that we need to find a
square root of the ellipse was made by Kepler.

In Fig. 4, 𝑎 and 𝑏 are the semi-major and semi-
minor axes of the ellipse, 𝜀 is the eccentricity, 𝑥 and
𝑦 are the axes of the orthogonal coordinate system
whose center coincides with the focus of the ellipse. 𝐸
is the eccentric anomaly. Given that an ellipse is a
circle flattened

√
1 − 𝜀2 times, the coordinates of the

planet can be easily found:

𝑥 = 𝑎(cos𝐸 − 𝜀), 𝑦 = 𝑎
√︀

1 − 𝜀2 sin𝐸. (1)

According to the Pythagorean theorem, from (1), we
obtain

𝑟2 = 𝑥2 + 𝑦2 = 𝑎2(cos𝐸 − 𝜀)2 +

+ 𝑎2(
√︀

1 − 𝜀2 sin𝐸)2 = 𝑎2(1 − 𝜀 cos𝐸)2,

thus

𝑟 = 𝑎(1 − 𝜀 cos𝐸). (2)

It is readily seen that

𝑥+ 𝑖𝑦 = 𝑎

(︂√
1 − 𝜀 cos

𝐸

2
+ 𝑖

√
1 + 𝜀 sin

𝐸

2

)︂2
, (3)

so Kepler’s ellipse is the square of the ellipse with the
center in the center of the ellipse, which was discov-
ered by Levi-Civita in 1903 [28].

Let us introduce a two-component quantity

𝜓 =
(︁
𝜓1
𝜓2

)︁
=

√︂
𝑎

2

⎛⎜⎝
√

1 − 𝜀 cos
𝐸

2
− 𝑖

√
1 + 𝜀 sin

𝐸

2√
1 − 𝜀 cos

𝐸

2
+ 𝑖

√
1 + 𝜀 sin

𝐸

2

⎞⎟⎠.(4)

Fig. 4. Kepler’s ellipse

We will consider the quantity 𝜓 as a spinor,
i.e. assume that when a three-dimensional coordi-
nate system (𝑥, 𝑦, 𝑧) turns round the axis directed at
e, e2 = 1, at an angle of 𝜙, e𝜙 ≡ 𝜙,

𝜓 → 𝜓′ = exp
(︁
𝑖
𝜙𝜎

2

)︁
𝜓,

𝜎1 =
(︁

0 1
1 0

)︁
, 𝜎2 =

(︁
0 −𝑖
𝑖 0

)︁
, 𝜎3 =

(︁
1 0
0 −1

)︁
,

(5)

𝜎 are the standard Pauli matrices.
Spinor (4) corresponds to Kepler’s ellipse located

in the plane (𝑥, 𝑦), more precisely, the final point of
the vector r = 𝜓*𝜎𝜓, 0 ≤ 𝐸 ≤ 2𝜋 runs along Kepler’s
ellipse. Note that

𝑑𝜓*

𝑑𝐸
𝜓 − 𝜓* 𝑑𝜓

𝑑𝐸
= 0. (6)

Now, we have to ascertain how the eccentric
anomaly Е relates to the time in which the planet
moves in the ellipse. Here, Kepler’s second law will
help. According to this law, 𝑑𝑆

𝑆 = 𝑑𝑡
𝑇 , where𝑆 = 𝜋𝑎𝑏

is the area of the ellipse, 𝑇 is the planet’s sidereal
period. By calculating

𝑑𝑆 =
1

2
|[r, 𝑑r]| =

1

2
|𝑥𝑑𝑦 − 𝑦𝑑𝑥| =

=
1

2
𝑎2
√︀

1 − 𝜀2(1 − 𝜀 cos𝐸)𝑑𝐸, (7)

we find that

𝑑𝑡 =
𝑇

2𝜋
(1 − 𝜀 cos𝐸)𝑑𝐸 =

𝑇

2𝜋𝑎
𝑟𝑑𝐸, (8)

thus

𝑡 =
𝑇

2𝜋
(𝐸 − 𝜀 sin𝐸), (9)

(assume that, when 𝑡 = 0, the planet is in the per-
ihelion). Kepler’s equation (9) is his most important
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equation in the theory of planets’ motion, as well as in
the theory of spinor regularization of Kepler’s prob-
lem. (For more details on spinor regularization of Ke-
pler’s problem, see [31, 32].)

5. Hyperfine Structure
of a Hydrogen Atom, Rydberg
Atoms, and UTR-2

In 1947, the famous astrophysicist of the XX century
I.S. Shklovsky accidentally read in the English Obser-
vatory magazine about a bold idea of a 23-year-old
Dutch student H. van de Hulst. In 1944, the latter
suggested that the emission lines of atomic hydrogen
with a wavelength of 21 cm existed in the radio spec-
trum of the Galaxy. No details were reported. Shklov-
sky was captivated by this idea. “The very possibil-
ity of literally counting all the hydrogen atoms of the
interstellar medium, finding the temperature of its
clouds, their kinematics and dynamics was fascinat-
ing,” he wrote in his memoirs [33]. In 1948, Shklovsky
calculated the lifetime of the excited level of a hyper-
fine structure (11.5 million years) and came to the
conclusion that a hydrogen radio line with the wave-
length of 21 cm could be observed! To “catch” this
wave, Shklovsky found a talented radio astronomer
V.V. Vitkevich, who zealously undertook the experi-
mental implementation of the “21 cm project”. Howe-
ver, in the early 1950s, he suddenly quit the “21 cm
project without any explanation”.

Only 20 years later, Vitkevich told Shklovsky what
had happened [33]: Cleopatra’s nose intervened in
the “21 cm project”! It turned out that Viktor Vitke-
vich sometimes visited Lev Landau’s house (their
wives were relatives), where he used to be mod-
estly silent. Still, once he carelessly and lightly told
Landau about the “21 cm project”. Landau reacted
to Vitkevich’s story as follows: “Big deal – cal-
culating the probability of magneto-dipole radiation!
There are corresponding formulas in my book, and
any student can do such calculations. But where did
Shklovsky find the density of hydrogen in the interstel-
lar medium? This is pure pathology”. Unfortunate-
ly, Vitkevich did not receive appropriate instructions
from I.Y. Tamm on time, which he gave to every-
one who had something to tell Landau [34]: “When
he swears – says that it is “philology”, “pathology”,
“nonsense”, – ignore it, but as soon as he begins to
speak straight to the point – be all ears and take

note of it”. That is, Landau said nothing special and
did not get to the bottom line. Vitkevich’s reaction to
his words enabled American scientists H. Ewan and
E. Purcell to be the first to catch a 21 cm wave in the
spring of 1951.

As for the book, Landau was right, indeed, on
pp. 547–548 of “Quantum Mechanics” published in
1948 [35], the Fermi formula was derived [36],

Δ𝐸 =
8𝜋𝛽0𝛽

3𝑖
(2𝑖+ 1)|𝜓(0)|2 =

8𝛽0𝛽

3

(2𝑖+ 1)

𝑎3𝑛3𝑖
(10)

for the energy splitting Δ𝐸 between two levels of
hyperfine structure of ns-states of alkaline elements’
atoms 12. In the Landau–Lifshitz approach, the elec-
tron magnetic moment is equal to the Bohr magneton
𝛽0 ≡ 𝜇𝐵 = 𝑒~

2𝑚𝑒𝑐
, but it can be arbitrary , 𝛽 is the

nuclear magnetic moment, 𝑖 is the nuclear spin, 𝜓(0)
is the wave function of the s-electron at the origin,
𝑎 = ~2

𝑚𝑒𝑒2
is the Bohr radius. It should be explained

what 𝜓(0) is: the electron wave function Ψ𝛼(r) in the
Schrödinger–Pauli equation is the spinor, 𝛼 = 1, 2, for
the 𝑛𝑠-electron, Ψ𝛼(r) = 𝜓(𝑟)𝑢𝛼, 𝑢*𝑢 = 1. 𝜓(𝑟) is
the conventional Schrödinger wave function in the ab-
sence of a magnetic field (the magnetic field of the nu-
cleus is considered a small perturbation). Using for-
mula (10), the frequency and the wavelength of the
radiation of alkaline hydrogen atoms, or deuterium,
can indeed be calculated by any student. However it
had to be Fermi to derive this formula!

Unlike Landau and Lifshitz, Fermi did not consider
the Schrödinger–Pauli equations, but the Dirac equa-
tion, that is in Fermi’s works the magnetic moment of
the electron was fundamentally equal to the Bohr
magneton , as it follows from the Dirac equa-
tion 13. Fermi considered the spinor Ψ𝛼(r) = 𝜓(𝑟)𝑢𝛼
as the third and fourth (“large”) components of the
Dirac wave function, the other two components, the
first and second (“small”) ones are expressed in two
“large” ones, the result can be expressed only in two

12 When Shklovsky was calculating the hyperfine hydrogen
splitting in the summer of 1948, he had no chance to use
the formula (10) from Landau and Lifshitz’s book, as it did
not exit at that time; the textbook was approved for pub-
lishing only on July, 9, 1948.

13 “I have used Dirac’s theory of the electron, since the simpler
Pauli’s theory gives the wrong result”, wrote Fermi in a
short report on his research in Nature [37]. Landau and Lif-
shitz, though, derived a correct (???) Fermi formula
from Pauli’s theory
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“large” components, and Fermi did so. Fermi right-
fully thought that, as, in a non-relativistic approxi-
mation, “large” components followed the Schrödinger
equation, the Dirac equation and “small” components
could be neglected and 𝜓(𝑟) could be considered as
the Schrödinger wave function. Fermi thought it was
evident , and it surely is, but it is absolutely dif-
ferent for a hydrogen atom ! In 1928, Darwin
found out [38] that, for a hydrogen atom, 𝜓(0) = ∞!
Fermi referred to Darwin’s paper in his 1930 work,
but he missed the infinity of 𝜓(0) and brought it
up three years later in his 1933 paper [39], writing
about formula (10), “Evidently, though, this for-
mula cannot be used in the relativistic case”. The co-
author of the paper was Emilio Segré, but it was Et-
tore Majorana who helped Fermi to deal with infin-
ity of 𝜓(0).

The infinity of 𝜓(0) is caused by the fact that the
singularity of Kepler’s problem in a Coulomb field be-
comes even greater in the relativistic case (singularity
of 1/𝑟2 is added to the singularity of 1/𝑟 ). However
in reality (in nature), there is no singularity and no
infinity related to it. Darwin and Fermi considered a
point electron in a point proton field. But the proton
is not a point-like particle. The way out is to take
into account that the proton is not a point-like ob-
ject. It was first done in 1945 by Pomeranchuk and
Smorodinsky [40]; they considered the proton as a
uniformly charged sphere with the radius of 1.2 fm
(1 fm = 10−15 m, or fermi, femtometer). The value of
the Dirac wave function appeared finite and very close
to the values of the Schŕ’odinger wave function. Fer-
mi’s intuition did not betray him 14.

If we take experimental data of the year 1947
for electron’s, proton’s. and deuteron’s magnetic mo-

14 Intuition sometimes did betray even the great Enrico
Fermi. Laura Fermi, who was quite successful in fighting En-
rico’s habit of overusing the word “evidently”, recalled [41]
that the winter of 1928–1929 in Italy was extremely severe,
the temperature in the rooms where the young couple lived
did not exceed +8 ∘С. Enrico’s theoretical instructions on
how to stoke the oven wouldn’t help. When Laura suggested
buying winter window frames, Enrico got down to lengthy
calculations and declared that the penetration of cold air
through the window frames was so insignificant that winter
frames were evidently useless. Several months later, “His
Excellency” Enrico (just now Fermi was appointed a mem-
ber of the Royal Academy of Italy by Mussolini) found a
mistake in his calculations: he had put the decimal point in
the wrong place and approved buying the frames.

ments, then, according to the Fermi formula (10),

𝜈𝐻 = 1416.90(54) MHz, 𝜆𝐻 = 21.1583(81) cm

𝜈𝐷 = 326.53(16) MHz, 𝜆𝐷 = 91.812(44) cm.
(11)

In 1947, it was found out that the formulas (11) dis-
agreed with the experiments as, according to the cal-
culations of Rabi’s group [42],

𝜈𝐻 = 1421.3(2) MHz, 𝜆𝐻 = 21.090(3) cm

𝜈𝐷 = 327.37(3) MHz, 𝜆𝐷 = 91.576(8) cm.
(12)

The discrepancy between formulae (11) and (12) is ex-
plained by the fact that electron’s magnetic moment
is not equal to Bohr’s magneton, as followed from the
Dirac theory. It was a considerable discovery, whose
significance can be compared with Kepler’s discovery
of the ellipticity of planetary orbits. This discovery
marked the beginning of progressive development of
quantum electrodynamics, quantum field theory, and
theory of elementary particles.

Soon after, in the same 1947, Foley and Kusch [43]
found in their experiments that the electron’s mag-
netic moment equaled

𝜇𝑒 exp er. = 𝜇𝐵 × 1.0012(1), (13)

and Schwinger [44] theoretically calculated that

𝜇𝑒 theor. = 𝜇𝐵

(︁
1 +

𝛼

2𝜋

)︁
= 𝜇𝐵 × 1.001162,

𝛼 =
𝑒2

~𝑐
≈ 1

137
.

(14)

The 2008 measurements of electron’s magnetic mo-
ment

𝜇𝑒 exp = 𝜇𝐵 × 1.00115965218073 (28) (15)

agree well with the theoretical calculations [46],

𝜇𝑒 theor = 𝜇𝐵 × 1.00115965218067(81). (16)

Since the theoretical calculations contain the fine
structure constant 𝛼, its current experimental value
[47] is also worth providing:

𝛼 =
𝑒2

~𝑐
=

1

137.035999084(21)
. (17)

The hyperfine splitting in hydrogen and deuterium
atoms is also measured with high accuracy [48]:

Δ𝜈𝐻 = 1420.4057517667(9) MHz,

Δ𝜈𝐷 = 327.384352522(2) MHz.
(18)
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The Fermi formula (10), given the correct value
of electron’s magnetic moment and the finiteness of
proton’s and deuteron’s masses, enables calculating
only the first five digits in these numbers. To calculate
the sixth and seventh significant digits, one should
account for the distributions of the electric charge and
magnetic moments inside the proton and deuteron,
which are determined by proton’s quark structure and
deuteron’s proton-neutron structure [50].

Let us return to Shklovsky’s radio-astronomical
research. A sudden collapse of “the 21 cm project”
was not Shklovsky’s last experience connected with
hyperfine transitions. Shklovsky self-calculated 15 the
wave lengths of the transition emission of the 1𝑠-
term hyperfine structure of not only hydrogen (21.1
cm), but also deuterium (91.6 cm), nevertheless this
wave in the Galaxy radio emissions was never de-
tected in Shklovsky’s lifetime. Upon calculating in
1951 [51] the corresponding transition frequencies,
Shklovsky assumed the possibility of the existence
in Galaxy’s radio spectrum of two emission lines of
the atomic nitrogen 14𝑁 , whose basic state 4𝑆3/2 is
split into three levels of hyperfine structure with the
spins 5/2, 3/2, and 1/2. In 1958, the transition fre-
quencies (5/2 → 3/2) and (3/2 → 1/2), calculated
by Shklovsky, were measured under the Earth condi-
tions [52],

𝜈5/2→ 3/2 = 26.1275 ± 0.0005 MHz,

𝜈3/2→ 1/2 = 15.6772 ± 0.0005 MHz.
(19)

Shklovsky found reliable people who enthusiasti-
cally embarked on the task of finding the waves with
the frequencies (19) in the Galaxy radio emission. It
was a team of Kharkiv radio astronomers from the
Institute of Radio Electronics (IRE) of the Ukrainian
Academy of Sciences headed by S.Ya. Braude. To
find the 14𝑁 nitrogen radio emission line, in a vil-
lage of Grakove near Kharkiv, the radio telescope
UTR-2 (Ukrainian T-like Radio telescope of the 2-
nd modification) was built, the world’s biggest and
best decameter radio wave radio telescope, which has
been operating since 1970. On June, 17, 1978, the
UTR-2 captured a 26.7 MHz signal from Cassiopeia

15 The Fermi formula, unknown to Shklovsky, at that time,
could be found not only in Landau and Lifshitz’s textbook
[35]; in 1949 a book [49] was published in Russian which
contained the Fermi formula and discussions on Rabi’s team
experiments of 1947 [42].

A (Cas A) supernova remnants in the constellation
Cassiopeia 16. Kharkiv scientists did a great job and
found what they had been searching.

On January, 24, 1980, the Nature published the
paper by Konovalenko and Sodin “Neutral 14𝑁 in the
interstellar medium” [54], where the authors reported
observing the absorption of radio waves from Cas
A at the frequency of 26.13 ± 0, 20 MHz. As a reac-
tion to this publication, a paper by Blake, Crutcher,
and Watson [55] appeared in Nature on October, 23,
1980, where the authors expressed their skepticism
about the interpretation of the origin of the signal ob-
served at the UTR-2. They also supposed that it was
an emission recombination line of the highly excited
(Rydberg) carbon atom C631𝛼 17. On November, 12,
1981, Konovalenko and Sodin reported in Nature on
the UTR-2 observation of the emission recombina-
tion lines of C630𝛼 and C640𝛼 [56]. Later on, the
radio lines of C603𝛼, C611𝛼, C621𝛼, C628𝛼–С638𝛼,
C640𝛼, C686𝛼, C732𝛼, С790𝛽–С802𝛽 [57] were also
observed using the UTR-2.

Let us explain the above-mentioned designation
Сn𝛼. We will use the Rydberg formula to calculate
emission frequencies of the Rydberg carbon atom

𝜈𝑛+𝑘→𝑛 =
𝑒4

4𝜋~3
𝑚𝑒𝑚𝑁

𝑚𝑒 +𝑚𝑁

(︂
1

𝑛2
− 1

(𝑛+ 𝑘)2

)︂
=

=
𝜈0

1,000039

(︂
1

𝑛2
− 1

(𝑛+ 𝑘)2

)︂
, (20)

where 𝜈0 = 𝑒4/4𝜋~3 = 3.2898419602508(64)×1015 Hz
is the Rydberg constant, whose accuracy was cer-
tainly excessive for Konovalenko and Sodin, but, for-
tunately, the observations of the UTR-2 were accu-
rate enough to understand emissions of which atoms
exactly were observed.

The Rydberg formula enables calculating the
atom’s emission frequency, when the electron moves
from the 𝑛 + 𝑘-th level to the 𝑛-th one. The
transition 𝑛 + 1 → 𝑛 for a carbon atom (С –
Сarboneum) is denoted as Сn𝛼, the transition

16 Cassiopeia A, a powerful radio source located approximately
11,000 light years away from Earth, the type II supernova
remnants, was discovered by radio astronomers in 1948 [53]

17 Rydberg atoms with 𝑛 ≈ 100–1000 are formed in the in-
terstellar space due to recombination, i.e. firstly the atom’s
ionization, and then the capture of the lost electron. Hence,
the name – recombination lines.
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𝑛+ 2 → 𝑛 as Сn𝛽 etc. According to (20), the fre-
quency of the C630𝛼 line equals 26.25025 MHz, the
C631𝛼 line – 26.12574 MHz, and the C640𝛼 line –
25.03982 MHz. This was the proof that all the three
lines were the recombination radio lines (RRL) of ex-
actly carbon Rydberg atoms.

So, thanks to I.S. Shklovsky, the radio-astronomi-
cal team headed by S.Ya. Braude reached the world
level, Kharkiv had seen outstanding radio-astrono-
mical discoveries (not only those mentioned; for ex-
ample, the UTR helped obtain important results on
the nature of Jupiter’s radio emissions [58]). The re-
search at the UTR-2 is going on, and Ukraine has
been still holding the world leadership in decame-
ter radio-astronomical observations. I.S. Shklovsky’s
contribution to the advances in low-frequency radio-
astronomy is discussed in O.O. Konovalenko’s paper
[60]; the recombination radio lines (RRL) of the Ryd-
berg atoms were examined in book [62], which high-
lights the achievements of Kharkiv scientists.

6. Rydberg Atoms and Adiabatic
Invariants, Electrons in a Magnetic Field
and Fock–Darwin Quantum Dots,
Quantum Hall Effect, Rydberg
Hydrogen Atom in a Magnetic Field
as an Anharmonic Oscillator

6.1. Boltzmann adiabatic
invariant and Rydberg atoms

We will start with events happening more that a hun-
dred of years ago. On September, 28, 1913, P. Eh-
renfest wrote in a letter to A.F. Ioffe, “Bohr’s pa-
per ’Quantum mechanical consequences of Balmer’s
law’ makes me desperate: if Balmer’s formula can
be derived in such a way, then I have to throw
away all the physics (and myself withal)” [63]. Bohr’s
work drove many people to despair, but Ehrenfest was
ready to accept this work more than anybody else. In
late 1912, he discovered the rule of quantization of
arbitrary periodic motion. The quantization of the
angular momentum, which was the basis of Bohr’s
theory, appeared the simplest conclusion of Ehren-
fest’s theory. According to this theory, Planck’s hy-
pothesis could be generalized as follows: one should
quantize Boltzmann’s adiabatic invariant 2𝜏𝑇 , where
𝜏 is the motion period, 𝑇 is the mean value of the
kinetic energy 𝑇 during the motion period,

2𝜏𝑇 = 𝑛ℎ. (21)

Using just several lines of transformations, from
Ehrenfest’s formula (21) and the virial theorem, one
can derive both Planck’s quantization of harmonic
oscillations and the Bohr–Sommerfeld quantization
of arbitrary elliptic orbits in a hydrogen atom (for
more details and references, see [32]). In the general
case of a homogeneous potential 𝑈(𝜆𝑟) = 𝜆𝑁𝑈(𝑟),
from the virial theorem [64], 𝑇 = 𝑁

2 �̄� , we obtain
(𝜈 = 1/𝜏):

𝐸𝑛 = �̄� = 𝑇 + �̄� =
𝑁 + 2

𝑁
𝑇 = 𝑛

𝑁 + 2

𝑁

ℎ𝜈

2
. (22)

For harmonic oscillations (𝑁 = 2), we obtain Planck’s
quantization rule:

𝐸𝑛 = 𝑛ℎ𝜈. (23)

For a hydrogen atom (𝑁 = −1),

𝐸𝑛 = −𝑛ℎ𝜈
2
. (24)

Given that, for Kepler’s classical motion of an elec-
tron in the potential 𝑈 = −𝑒2/𝑟, the energy is defined
just by the revolution frequency, 𝐸3 = −𝜋2𝑚𝑒𝑒

4𝜈2/2
[64], we obtain the Bohr–Sommerfeld quantization
rule for arbitrary elliptic orbits,

𝐸𝑛 = −𝑒
4𝑚𝑒

2~2
1

𝑛2
. (25)

From this, for the hydrogen atom emission frequen-
cies, we obtain the Rydberg formula (20) (disregard-
ing the proton mass)

𝜈𝑛+𝑘→𝑛 =
𝐸𝑛+𝑘 − 𝐸𝑛

ℎ
=
𝑒4𝑚𝑒

4𝜋~3

(︂
1

𝑛2
− 1

(𝑛+ 𝑘)2

)︂
=

= 𝜈0

(︂
1

𝑛2
− 1

(𝑛+ 𝑘)2

)︂
, (26)

𝜈0 is the Rydberg constant.
When Bohr derived the formula (25) for the case

of circular orbits in 1913, there arose a sensible ques-
tion: if an electron revolves in a circle with the fre-
quency 𝜈, it has to emit electromagnetic waves at fre-
quencies 𝜈, 2𝜈, 3𝜈 ... (corresponding classical formu-
lae were found by Schott [65] in 1912), or is it Bohr’s
atom that emits these waves? The answer is: these
waves are emitted by hydrogen atoms only in a classi-
cal limit, at 𝑛≫ 1, i.e. by Rydberg atoms. Indeed, in
2000–2003, the UTR-2 revealed simultaneously two
parallel series of decametric carbon lines directed to
Cassiopeia A [57], C628𝛼–С638𝛼 and С790𝛽–С802𝛽.
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These lines are of the same 1.2 MHz frequency band
due to the fact that the corresponding frequencies
follow the relation 3

√
2 × (𝑛(𝛼) + 1) ≈ 𝑛(𝛽) + 2,

e.g. 3
√

2 × 629 = 792.5.
Let us ascertain that, at 𝑛≫ 1, Rydberg electrons

emit waves at the frequencies 𝜈, 2𝜈, 3𝜈 ... . According
to (24) and (25), the electron orbital frequency

𝜈 = −2𝐸𝑛

ℎ𝑛
=
𝑒4𝑚𝑒

2𝜋~3
1

𝑛3
. (27)

According to (25), at 𝑛≫ 1,

𝜈𝑛+𝑘→𝑛 =
𝐸𝑛+𝑘 − 𝐸𝑛

ℎ
≈ 𝑒4𝑚𝑒

2𝜋~3
𝑘

𝑛3
= 𝑘𝜈, (28)

which absolutely agrees with the emission of a classi-
cal electric charge moving on a classical orbit.

The fact that Ehrenfest’s quantization rule (21) is
true for a hydrogen atom does not seem strange, be-
cause, as we saw in Section 4, Kepler’s motion of an
electron in the potential 𝑈 ∼ 1/𝑟 is the “square” of
the elliptic motion of the particle in the quadratic
(parabolic) potential.

The validity of Ehrenfest’s rule in a quasiclassi-
cal approximation is proved in quantum mechanics
for the case of an arbitrary potential 𝑈(𝑟), which
has coupled states with 𝑛 ≫ 1. There are, though,
physical problems of another nature, e.g., studying
atomic properties in an external magnetic field. In
such cases, Ehrenfest’s rule, if not generalized, be-
comes invalid. It seems important to clarify the cause.

6.2. Electrons in a magnetic
field and Fock–Darwin quantum dots

Ehrenfest’s rule does not work in the simplest case
of a charge moving on a circle with the frequency 𝜈
in the static magnetic field 𝐻. Its energy levels are
defined by formula (21), 𝐸𝑛 = 𝑛ℎ𝜈2. The transition
𝑛→ 𝑛−1 causes the charge to emit a photon with the
frequency 𝜈/2. This contradicts the fact that, at 𝑛≫
≫ 1, this frequency is equal to 𝜈. Let us show that
it is quite possible to obtain a valid quantization
rule for a charge moving in a magnetic field from
Ehrenfest’s rule, if to move to a rotating coordinate
system.

Let us put down the equation for the motion of
the charge −𝑒 with the mass 𝑚𝑒 , which moves in a
plane (𝑥, 𝑦) in a magnetic field 𝐻 with the cyclotron
angular frequency 𝜔 = 𝑒𝐻/𝑚𝑒𝑐, as

𝑧 − 𝑖𝜔�̇� = 0, (29)

where 𝑧 = 𝑥+𝑖𝑦. In the new coordinate system (�̃�, 𝑦)
rotating with the Larmor frequency 𝜔/2, 𝑧 = �̃�+𝑖𝑦 =
= exp(−𝑖𝜔 𝑡/2) 𝑧, we obtain

¨̃𝑧 + (𝜔/2)2𝑧 = 0. (30)

Note that the trivial transformation from (29) to
(30) reveals an important characteristic of the prob-
lem of the motion of a charge in a static magnetic
field. The fact that two very simple equations, (29)
and (30) are equivalent means the equivalence of
the charge motion in a magnetic field and body mo-
tion on Hooke’s ellipse (see Section 4). Since Hooke’s
ellipse squared is Kepler’s ellipse, we have discov-
ered an interesting similarity: the classical problem
of the charge motion in a static homogeneous
magnetic field is mathematically equivalent to Ke-
pler’s problem of the charge (or mass) motion in
the Coulomb (or Newtonian) potential. So, we have

𝐸𝑛 = 𝑛~𝜔. (31)

On passing to a rotating coordinate system, we will
dispose of the magnetic field, while the quantiza-
tion of harmonic oscillations is what we can easily
do. Meanwhile, the quantization rule 𝐸 = 𝑛~𝜔/ 2
seems to be invalid. But, in fact, everything is true. In
a rotating system, all the circles on which in the initial
coordinate system the charges revolve with the fre-
quency 𝜔 will turn into the circles or ellipses on which
the charges revolve with the frequency 𝜔/2. The tran-
sition 𝑛 → 𝑛 − 1 will cause the charge to emit a
photon with the frequency 𝜔/2, as it should be. Let
us now slowly turn back to the initial coordinate sys-
tem and employ Ehrenfest’s adiabatic hypothesis (this
term was first used by Einstein in 1914): every state,
completely definite in terms of the quantum theory,
under an adiabatic change of system;s parameters will
again turn to a definite state characterized by the
same quantum numbers. This means that when we
move back to the initial system, all the revolution
frequencies 𝜔/2 will turn to the value 𝜔 , and our
quantum number 𝑛 will not change, and, at 𝑛 ≫ 1,
we will obtain a valid quantization rule of energy
levels in a magnetic field 18.

18 Everything happens in the same way as in the case with
the Rayleigh–Lorentz–Einstein pendulum. According to Ein-
stein speaking at I Solvay Conference (1911), “... oscillation
energy is still equal to ℎ𝜈, if it was initially equal to ℎ𝜈,
oscillation energy changes proportional to 𝜈” [32].
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Formula (31), more precisely, the formula 𝐸𝑛 =
= (𝑛 + 1/2)~𝜔, for arbitrary 𝑛 was first obtained by
Fock in 1928 [66], but back then almost nobody no-
ticed it . In the same year, a relativistic generaliza-
tion of this formula, 𝐸𝑛 =

√︀
𝑚2

𝑒𝑐
4 + 2(𝑛~𝜔)2, was

obtained by Rabi [67] out of Dirac’s relativistic equa-
tion, which had been just discovered 19. Nevertheless,
Rabi’s quantization was taken as some relativistic
quirk . Still earlier, in 1923, Wilson [68] had figured
out how to generalize Boltzmann’s adiabatic invariant
2𝜏𝑇 in the case of charge 𝑒 revolving in the magnetic
field H = rotA. We have to make a substitution (p,q
are the momentum and coordinate of the charge):

2𝜏𝑇 =

∮︁
p𝑑q = 𝑛ℎ→

∮︁ (︁
p +

𝑒

𝑐
A
)︁
𝑑q = 𝑛ℎ. (32)

Formula (32) solved the quasiclassical quantization
problem at 𝑛≫ 1. It turned out later that the substi-
tution in (32) 𝑛→ 𝑛+1/2 yielded an accurate formula
to calculate the energy levels of an electron in a static
magnetic field and in a quadratic one-dimensional po-
tential well for arbitrary 𝑛,

𝐸𝑛 =

(︂
𝑛+

1

2

)︂
~𝜔. (33)

Fock and Rabi solved the problems of the new
quantum mechanics, i.e. the Schŕ’odinger equation
and Dirac equation, rather than the old one. Then
why had almost nobody noticed Fock’s paper [66]?
Fock was indifferent about searching for the energy
levels of a charge moving in a magnetic field. The fol-
lowing problem also seemed simple to him: a charge
is located in a quadratic potential well, which, in its
turn, is located in a magnetic field, the energy levels
have to be found. While being simple to Fock, it was
too complex to most other physicists, its applica-
bility being also obscure. The further discussion will
clarify this point.

Fock’s classical problem deals with the following
equation:

𝑧 − 𝑖𝜔�̇� + 𝜔2
0𝑧 = 0. (34)

The motion with definite frequency, 𝑧 = 𝑅×
× exp(−𝑖Ω𝑡), relates to two frequencies Ω1 and Ω2,

19 The Rabi formula is an exact formula, but in it, thanks to
the magnetic moment of the electron, the “zero oscillations
of energy” have disappeared, from 𝑛+ 1/2 disappeared 1/2.

Ω1,2 = 𝜔
2 ±

√︁(︀
𝜔
2

)︀2
+ 𝜔2

0 . What Fock calculated [66]
were the energy levels for arbitrary integers 𝑛1 and
𝑛2 following from the Schrödinger equation.

𝐸(𝑛1, 𝑛2) =

(︂
𝑛1 +

1

2

)︂
~|Ω1| +

(︂
𝑛2 +

1

2

)︂
~|Ω2| =

= ~

[︃
𝜔

2
(𝑛1 − 𝑛2) + (𝑛1 + 𝑛2 + 1)

√︂(︁𝜔
2

)︁2
+ 𝜔2

0

]︃
. (35)

At 𝜔0 = 0 (eliminating the well !), we obtain formula
(33) 𝐸𝑛1

= (𝑛1 + 1
2 )~𝜔. At 𝜔 = 0 (eliminating the

magnetic field !) we obtain the formula

𝐸𝑛 = (𝑛+ 1)~𝜔 = (𝑛1 + 𝑛2 + 1)~𝜔, (36)

i.e. the accurate formula for the quantization in a two-
dimensional quadratic well. It is easily calculated that
all levels in the well are (𝑛 + 1)-fold degenerate. We
will see that the energy levels of a charge moving in
a magnetic field are also degenerate, but infinity-fold
degenerate.

In 1931, Fock’s problem was solved by Darwin
[69]. He knew nothing about Fock’s paper, but he was
familiar with paper [70], where Landau proved that
the quantum gas of free electrons “possesses orbital
diamagnetism, different from zero, ... which is exactly
equal to one third of the Pauli spinor paramagnetism”
[71]. Darwin’s paper was the reaction to Landau’s pa-
per. He wrote: “In a recent paper, Landau has shown
that, when electrons are moving freely in a magnetic
field, they exhibit, in addition to the paramagnetic ef-
fect of their spin, a diamagnetic effect due to their
motion. This result is rather unexpected, since it is
quite contrary to the classical case” 20. The diamag-
netism of free electrons is a specifically quantum ef-
fect, but to observe it, the electron motion should be
limited by some walls. Landau placed his electrons
in a rectangular box, while Darwin replaced vertical
walls by a quadratic potential well. This brought him
to Fock’s problem.

20 Bohr–van Leeuwen theorem, which was not yet forgotten in
1930, stated that “in a uniform magnetic field and in thermal
equilibrium, the magnetization of the classical electron gas
vanishes identically”. Van Leeuwen (1921) [72] proved this
theorem independently of Bohr (1911) [73]. A rigorous proof
of this theorem is given in paper [74].
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First, Fock (and later Darwin) obtained formula
(35) in the form

𝐸(𝑚,𝑁) = ~

[︃
𝜔

2
𝑚+ (2𝑁 + |𝑚| + 1)

√︂(︁𝜔
2

)︁2
+ 𝜔2

0

]︃
,

(37)

where 𝑚 = 𝑛1 − 𝑛2 = 0, ±1, ±2 ... is the azimuthal
quantum number, 𝑁 = 0, 1, 2, ... is the radial quan-
tum number. In the absence of the potential well,
(𝜔0 = 0), we get

𝐸 (𝑛(𝑚,𝑁)) =

(︂
𝑛+

1

2

)︂
~𝜔 =

=

(︂
𝑁 +

𝑚 + |𝑚|
2

+
1

2

)︂
~𝜔, (38)

𝑚 = 𝑛, 𝑛− 1, ...0,−1,−2, ...−∞.

Note that Fock and Darwin were the first who
considered “the quantum dot” in a magnetic field,
the term “Fock–Darwin quantum dot” is generally
accepted in the special literature [75–77]. Quantum
dots that are created and studied in laboratories are
rightly called artificial atoms, they usually contain
many electrons, which are placed at allowed quan-
tum levels, creating shells, if the levels are degener-
ate. Quantum dots with completely filled shells, as in
the case of ordinary atoms, are artificial atoms that
are particularly stable.

6.3. Degeneration of energy levels
in a magnetic field and the quantum
Hall effect

According to Darwin, negative 𝑚 values are responsi-
ble both for Landau’s diamagnetism of free electrons
and for the disappearance of the diamagnetism in the
classical limit [69]. In addition, the infinity-fold de-
generation of energy levels in a magnetic field (in
the absence of a well) due to negative 𝑚 (38) have
caused such fundamental physical consequences that
it resulted in two Nobel prizes for the discovery and
explanation of the quantum Hall effect (QHE), for
integer and fractional cases (K. von Klitzing, 1985;
R. Laughlin, H. Stormer, D. Tsui, 1998).

So, what is the essence of the degeneration of en-
ergy levels due to negative 𝑚? The equations for the
motion of an electric charge in a magnetic field (29),
𝑧 − 𝑖𝜔�̇� = 0, contain integrals of motion, crucial for

the theory of the quantum Hall effect, as well as co-
ordinates of the circle center, in which the charge is
moving, 𝑥0 and 𝑦0, or

𝑧0 = 𝑥0 + 𝑖𝑦0 = 𝑧 +
𝑖

𝜔
�̇�,

𝑧*0 = 𝑥0 − 𝑖𝑦0 = 𝑧* − 𝑖

𝜔
�̇�*.

(39)

It is clear that arbitrary functions of 𝑧0 and 𝑧*0 are also
the integrals of motion. Let us calculate the integral
of motion

𝑟20 = |𝑧0|2 = 𝑥20 + 𝑦20 =

= �̇��̇�*/𝜔2⏟  ⏞  + 𝑧*𝑧 + 𝑖(𝑧*�̇� − �̇�*𝑧)/𝜔⏟  ⏞  =

= 2𝐸/𝑚𝑒𝜔
2⏟  ⏞  − 2𝑀/𝑚𝑒𝜔⏟  ⏞  . (40)

According to (40), the integral of motion 𝑟20 is ex-
pressed through two integrals of motion, the kinetic
energy of a charge 𝐸 and the angular momentum 𝑀
(relative to the point 𝑧 = 0). It is worth noting that
the relation between 𝑟20, 𝐸 and 𝑀 is still present in
the quantum case where all quantities become oper-
ators [78]. Since 𝐸 and 𝑀 are quantized, 𝑟20 is also
quantized:

𝜋𝑟20(𝑛,𝑚) =

(︂
𝑛−𝑚+

1

2

)︂
𝑆0,

𝑚 = 𝑛, 𝑛− 1, ...0,−1,−2, ...−∞.

(41)

𝑆0 is the area with the magnetic flux passing through
which is equal to the flux Φ0 = ℎ𝑐/𝑒, i.e. 𝑆0 = ℎ𝑐/𝑒𝐻.
The operators �̂�0 and 𝑦0 do not commute,

�̂�0𝑦0 − 𝑦0�̂�0 = 𝑖
𝑆0

2𝜋
, (42)

from where the formula (41) follows directly. The
physical meaning of the degeneration of energy levels
by 𝑚 consists in the fact that electric charges in the
plane permeated by the magnetic field can be local-
ized in a vicinity of any point (𝑥0, 𝑦0), but the local-
ization, according to (42), has quantum limitations
Δ𝑥0Δ 𝑦0 ≈ 𝑆0. According to (41), in a circle of the
area (𝑛−𝑚+ 1

2 )𝑆0, the charge has 𝑛−𝑚 possibilities
to be placed somewhere, which means that a circle
can contain not more than 𝑛 −𝑚 electrons with the
fixed direction of the spin (Pauli principle). Thus, we
may conclude that the maximum density of electrons
in a fixed quantum state on a plane permeated by a
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magnetic field is equal to 1/𝑆0, and the charge density
is 𝜌0 = 𝑒/𝑆0

21.
Consider now a semiconducting film which is per-

meated by the magnetic field perpendicular to the
film 𝐻0

22. Let the film be maximally packed with
electrons which are in the first Landau energy level. If
we start moving past the film (along its length)
with a velocity of −𝑉 , in our coordinate system,
the electric current 𝑗 = 𝜌0𝑉/

√︀
1 − 𝑉 2/𝑐2 = 𝑒/𝑆0 ×

×𝑉/
√︀

1 − 𝑉 2/𝑐2 will appear. In addition, due to the
Lorentz transformation, there will appear the electric
(Hall’s) field 𝐸𝐻 = 𝑉/𝑐𝐻0/

√︀
1 − 𝑉 2/𝑐2·, perpendic-

ular to the velocity 𝑉 and the magnetic field 𝐻. So,
we obtain

𝑗 =
𝑒

𝑆0

𝑉√︀
1 − 𝑉 2/𝑐2

=

=
𝑒2

ℎ

𝐻0

𝑐

𝑉√︀
1 − 𝑉 2/𝑐2

=
𝑒2

ℎ
𝐸𝐻 = 𝜎0𝐸𝐻 . (43)

Note that Eq. (43) is one of three relativistically in-
variant equations, which describe the motion of elec-
trons in a two-dimensional plane (more specifically,
the motion of the electron orbit centers),

𝑗𝜇 =
𝑒2

2ℎ
𝜀𝜇𝜈𝜌𝐹𝜈𝜌,

or
𝐽𝑖 =

𝑒2

ℎ
𝜀𝑖𝑘𝐸𝑘, 𝐽0 ≡ 𝜌 =

𝑒2

ℎ
𝐻, (44)

where 𝜇, 𝜈, 𝜌 = 0, 1, 2, 𝑖, 𝑘, 𝑙 = 1, 2, 𝐹12 = 𝐻, 𝐹𝑖0 = =
𝐸𝑖, 𝜀𝜇𝜈𝜌 and 𝜀𝑖𝑘 are the Levi-Civita tensors, 𝜀012 = 1
and 𝜀12 = 1. If, in a semiconducting film, the elec-
trons occupy 𝑛 Landau levels, then there appears the
quantum Hall effect 𝑗 = 𝑛𝜎0𝐸𝐻 . In a film with width
𝐿 and length 𝐿*, the relation between the total cur-
rent 𝐼 = 𝑗𝐿 and the Hall voltage 𝑈𝐻 = 𝐸𝐻𝐿 takes

21 In 1979, a year before QHE was discovered by K. von Kl-
itzing [79], Aharonov and Casher [80] proved the theorem,
which is directly related to QHE. The theorem by Aharonov
and Casher states that “an electron moving in a plane under
the influence of a perpendicular inhomogeneous magnetic
field 𝐻(𝑥, 𝑦) has 𝑁 ground-energy states, where 𝑁 is the
integral part of the total flux Φ in units of the flux quantum
Φ0, 𝑁 = {Φ/Φ0}”. For more details, see [81].

22 Semiconducting film is required only for the purpose of locat-
ing the electrons on a two-dimensional plane. The behaviour
of the electrons on this plane is considered not to differ from
that of electrons in vacuum. Experiments corroborate this
assumption with great accuracy.

the form 𝐼 = 𝑛𝜎0𝑈𝐻 . For the quantization of the Hall
resistance 𝑅𝐻(𝑛), we obtain the formula

𝑅𝐻(𝑛) =
ℎ/𝑒2

𝑛
=
𝑅K

𝑛
, (45)

where 𝑅K is the von Klitzing constant.
In 1980, von Klitzing found the 𝑅K value

𝑅K−1980 = 25812.68 ± 0.08 Ohm. Using the recom-
mended value of the fine-structure constant (Sommer-
feld constant) [47], we obtain

𝑅K−2019 =
ℎ

𝑒2
= 2𝜋

~𝑐
𝑒2

1

𝑐
= 2𝜋

1

𝛼

1

𝑐
=

= 2𝜋 × 137.035999084(21) × 29.9792458 =

= 25812.8074452(39) Ohm. (46)

When calculating (46), we used the relation
Ohm = Volt/Ampere, which allows expressing the
speed of light in Ohms, 1/𝑐 ≈ 30 Ohm, more pre-
cisely

Ohm =
Coulomb/metr

2.997924582 × 109

⧸︁
Coulomb/second =

=
1

29.9792458

1

𝑐
, (47)

i.e. 1/𝑐 = 29.9792458 Ohm [82]. This relation be-
tween the speed of light and Ohms was the one von
Klitzing used in 1980. The formula (46) explicitly re-
lates the von Klitzing and Sommerfeld constants. Von
Klitzing saw this as the essence of his fundamental
discovery, entitling his Nobel-prize-winning publica-
tion [79] “New Method for High-Accuracy Determina-
tion of the Fine-Structure Constant Based on Quan-
tized Hall Resistance”.

Apparently, instead of running past a semicon-
ducting film at a speed of almost 26 km/h (we will
soon calculate this speed), von Klitzing connected
the film of the size 𝐿 × 𝐿* = 50 𝜇m ×140 𝜇m to
a voltage source. The voltage was selected so that
the electrons occupying four Landau levels should
produce the electric current of 1 𝜇A along 𝐿*. The
film was located in a 18 T magnetic field, and the
Hall voltage 𝑈𝐻 = 6453.17 ± 0.02 mV was ob-
served. The corresponding Hall field and the veloc-
ity of the electron motion were 𝐸𝐻 = 129 V/m and
𝑉 = (𝐸𝐻/𝐻0) 𝑐 = 7.17 m/s. Since, in von Klitzing’s
experiments, a static electric current was maintained
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in the film 𝐼 = 𝑒𝑛𝑉𝑛𝐿𝐻/Φ0 = 1 𝜇A, where 𝑉𝑛 is the
velocity of the electrons with 𝑛 Landau levels occu-
pied, 𝑛𝑉𝑛 = const, 𝑛𝑉𝑛 = 4𝑉4 = 4 × 7.17 m/s, and
we have obtained the formula for the velocity of the
electrons 𝑉𝑛 = 28.68/𝑛 m/s.

6.4. Rydberg hydrogen atom
in a magnetic field as an anharmonic
oscillator and supersymmetric
quantum mechanics

Consider a classical electron with the charge −𝑒
and the mass 𝑚𝑒. Let the electron move around the
Coulomb center with the charge 𝑒 in a plane (𝑥, 𝑦),
the magnetic field 𝐻 being directed perpendicularly
to it. The equations of the electron motion in the
complex plane 𝑧 = 𝑥+ 𝑖𝑦, |𝑧|2 = 𝑟2,

𝑧 − 𝑖𝜔�̇� + 𝛼
𝑧

|𝑧|3
= 0, (48)

are similar to the equations for the charge motion in
a Fock–Darwin quantum dot (34), but they have a
singularity in the coordinate origin. In Eq. (48), 𝜔 =
= 𝑒𝐻/𝑚𝑒𝑐 is the cyclotron frequency, 𝛼 = 2𝑒2/𝑚𝑒. In
the reference frame (�̃�, 𝑦) rotating with Larmor’s fre-
quency 𝜔/2, 𝑧 = �̃�+ 𝑖𝑦 = exp(−𝑖𝜔 𝑡/2) 𝑧, we obtain

¨̃𝑧 + (𝜔/2)2𝑧 + 𝛼
𝑧

|𝑧|3
= 0. (49)

Passing to a new complex variable 𝑤 = 𝜉 + 𝑖𝜁 =
=

√︀
𝑧/2 =

√︀
(�̃�+ 𝑖𝑦)/2 and a new time 𝜏, 𝑑𝜏 =

= 𝑑𝑡/|𝑧|, we will obtain, instead of (49), the equation
of an anharmonic oscillator without singularity,

𝑤′′ + Ω2𝑤 + 3(𝜔/2)2|𝑤|4𝑤 = 0, (50)

where 𝑤′′ ≡ 𝑑2𝑤/𝑑𝜏2, Ω2 is the motion integral of
Eq. (49),

Ω2 = −1

4

(︂
| ˙̃𝑧|2 + (𝜔/2)2|𝑧|2 − 𝛼

|𝑧|

)︂
, (51)

related to the electron energy 𝐸 = −2𝑚𝑒Ω
2, whose

levels, 𝐸𝑛, we need to find.
Let us make an assumption whose validity is proved

by comparing the calculated and observed energy lev-
els 𝑊𝑛 [83]: the electronic orbital momentum in a
rotating reference frame equals zero. The electron in
this system is supposed to move along the axis �̃�,

�̃� ≡ 𝑟 ≥ 0, the corresponding 𝜉 can be both positive
and negative. Instead of (50), we have

𝜉′′ + Ω2𝜉 + 3(𝜔/2)2𝜉5 = 0. (52)

Let us quantize the motion integral of Eq. (52),

𝑊 = 8𝑚𝑒(𝜉
′2 + Ω2𝜉2 + (𝜔/2)2𝜉6) = 𝑇 + 𝑈. (53)

The respective Bohr–Sommerfeld quantization rule
has a form (𝑛≫ 1):∮︁ √︀

2𝑚𝑒(𝑊𝑛 − 𝑈)𝑑𝜉 =

= 8

𝜉0∫︁
0

√︀
𝑚𝑒𝑊𝑛/2 + 2𝐸𝑚𝑒𝜉2 −𝑚2

𝑒𝜔
2𝜉6 𝑑𝜉 = 𝑛ℎ (54)

(at the upper limit of integration, the integrand
equals zero). But here arises a problem which is easy
to be solved. The fact is that 𝑊 has an absolutely
definite value, 𝑊 = 2𝑒2 which we can clearly see, if
we use the relation 𝜉2 = 𝑟/2, 𝜉′2 = 𝑟 �̇�2/8. That is, in
order to quantize integral (54), the energy 𝐸 is to be
quantized, which is just what we need:

𝜉0∫︁
0

√︀
𝑚𝑒𝑒2[1 + 2(𝐸𝑛/𝑒2)𝜉2 −𝑚𝑒(𝜔/𝑒)2𝜉6] 𝑑𝜉 =

= 𝑛ℎ/8. (55)

Passing to a new variable 𝜆 = 𝜉
√
𝑚𝑒𝑒2/𝑛~, let us

rewrite (55) in the form

𝜆0∫︁
0

√︀
1 + 2(𝐸𝑛𝑛2/~𝜔0)𝜆2 − (𝜔𝑛3/𝜔0)2𝜆6 𝑑𝜆 =

= 𝜋/4, (56)

where the frequency 𝜔0 = 𝑒4𝑚𝑒/~3 = 4𝜋𝜈0, 𝜈0 is the
Rydberg constant. Note that the levels 𝐸𝑛 are charac-
terized by a very small ratio 𝜔/𝜔0 = 𝐻×4.2543821×
× 10−10, if 𝐻 is measured in Tesla (T). In the exper-
iments [83], the field 𝐻 was equal to 2–4 T.

Equation (56) contains an important information
on the characteristics of the energy spectrum of Ryd-
berg hydrogen atoms in a magnetic field; it means
that 𝐸𝑛𝑛

2/~𝜔0 is a function of 𝛽 = (𝜔/𝜔0)𝑛3,
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𝐸𝑛(𝛽)𝑛2 = ~𝜔0𝑓(𝛽). This is the well-known empir-
ical scale law [83, 84], and Eq. (57) in the form
of (56),

𝜆0∫︁
0

√︀
1 + 2𝑓(𝛽)𝜆2 − 𝛽2𝜆6 𝑑𝜆 = 𝜋/4, (57)

allows to calculate the function 𝑓(𝛽), which agrees
perfectly with the experiment [83]. Thus, e.g., it is
easy to calculate the value

𝛽0 =

⎛⎝4

𝜋

1∫︁
0

√︀
1 − 𝜆6𝑑𝜆

⎞⎠3 = 1.5592627,

which turns 𝑓(𝛽) = 0. It is somewhat more difficult to
obtain the formula describing the experimentally de-
rived equidistance of levels (Landau quasilevels) with
the difference of 3~𝜔/2 in a vicinity of 𝐸𝑛 = 0,

𝐸𝑛 = 3~𝜔/2 (𝑛− 33.21704/𝐻1/3), (58)

where 𝐻 is measured in Tesla. At 𝐻 = 1 T, the en-
ergy sign changes with the transition from 𝑛 = 33 to
𝑛 = 34, but, according to (58), 𝐸34−𝐸33 = 3~𝜔/2. If
we increase the magnetic field to 𝐻 = 1.1 T, the en-
ergy sign will change with the transition from 𝑛 = 32
to 𝑛 = 33, i.e. the energy level location is easy to be
controlled.

It is clear that Eq. (55) and, hence, (58) are ab-
solutely equivalent to the conventional rule of the
Bohr–Sommerfeld quantization [82] (to make the for-
mulae simpler, we will change to atomic units 𝑒 =
= ~ = 𝑚 = 1)

𝑟0∫︁
0

√︀
2𝐸𝑛 + 2/𝑟 − (𝜔/2)2𝑟2𝑑𝑟 = 𝑛𝜋 �

𝑟�2𝜉2

�
𝑟�2𝜉2

𝜉0∫︁
0

√︀
1 + 2𝐸𝑛𝜉2 − 𝜔2𝜉6 𝑑𝜉 = 𝑛𝜋/4. (59)

What is new in changing to the new variable 𝜉 and
the new time 𝜏 , except the fact that we have dis-
posed of the singularity 1/𝑟? The new and significant
consequences of our reformulation of the problem are
revealed, when we analyze the Schrödinger equation
corresponding to an anharmonic oscillator (52),

(−𝑑2/𝑑𝜉2 − 8𝐸𝑛𝜉
2 + 4𝜔2𝜉6)𝜓𝑛 = 2𝜓𝑛. (60)

Consider just one example. Equation (58) is an ex-
ample of the equation

[−𝑑2/𝑑𝜉2 + 𝜀 𝑑𝑈/𝑑𝜉 + 𝑈2(𝜉)]𝜓𝑛 = 𝜆𝑛𝜓𝑛 (61)

with 𝑈 = 2𝜔𝜉3, 𝜀𝑛 = 4𝐸𝑛/3𝜔, 𝜆𝑛 = 2. If 𝜀 = ±1, and
if there exists a quadratically normalized function

𝜓−
0 (𝜉) =

𝜉∫︁
0

𝑒−𝑈(𝜌)𝑑𝜌, (62)

then, in the a supersymmetric pair of equations [85]

[−𝑑2/𝑑𝜉2 ± 𝑑𝑈/𝑑𝜉 + 𝑈2(𝜉)]𝜓±
𝑛 = 𝜆±𝑛𝜓

±
𝑛 , (63)

all the eigenvalues coincide, except 𝜆+0 = 0. That is,

𝜆+1 = 0, 𝜆+2 = 𝜆−1 , ... , 𝜆
+
𝑛+1 = 𝜆−𝑛 , ... . (64)

Let us now find the distance between the levels 𝐸𝑛 in
a vicinity of 𝐸𝑛 = 0, which, as we already know, are
equally spaced. Consider the location of the levels,
where the level 𝐸𝑛 < 0 and the level 𝐸𝑛+1 > 0, and
|𝐸𝑛| = 𝐸𝑛+1. If 𝜀𝑛 = 4𝐸𝑛/3𝜔 = −1, and 𝜀𝑛+1 =
= 4𝐸𝑛+1/3𝜔 = 1, the corresponding equations (63)
turn into a supersymmetric pair of equations with the
same eigenvalue 𝜆−𝑛 = 𝜆+𝑛−1 = 2, and 𝐸𝑛+1 − 𝐸𝑛 =
= 3𝜔/2 ≡ 3~𝜔/2, as it should be.

We have just discussed a simplified but significant
case of a flat Rydberg hydrogen atom in a mag-
netic field using the simplified regularization of Ke-
pler’s problem. This case was also considered in pa-
pers [86, 87]. The generalization of the spinor regular-
ization for a classical and quantum three-dimensional
hydrogen atom in static and homogeneous electric
and magnetic fields was analyzed in [88] in de-
tail. Paper [89] reveals the close association between
the quantum mechanics of the charge motion in
a magnetic field and the supersymmetric quantum
mechanics.

7. Conclusions

When Newton was writing his PRINCIPIA, he was
aided by a junior assistant, who was also a secre-
tary, a copyist and, more importantly, a good nanny,
whom Newton needed badly at that time – it was
Humphrey Newton. In his memoirs, Humphrey New-
ton recollected [26] that, within five years, he had
seen only once that Newton Senior had laughed –
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when asked why to study Euclid. A really funny ques-
tion, indeed. Apparently, a lot of things that are
just as important as Euclid’s mathematics have ap-
peared for 2300 years since the time, when Euclid
lived. The idea that one should study not only Eu-
clid (and physicists should study not only Landau
and Lifshitz) is probably the main conclusion of this
paper. Unfortunately, even outstanding people can
overlook important things that could be of interest
and useful for them. The spinor regularization of the
Kepler problem, for example, escaped Arnold’s at-
tention [23], who was so perfect at binding square
roots from Kepler ellipses and Zhukovsky transfor-
mation. Using the Zhukovsky transformation, our pa-
per explains that finding a square root of the Kepler
ellipse and employing the Kepler eccentric anomaly
instead of the conventional time is what makes up
the spinor regularization of the Kepler problem.The
spinor regularization is generalized to non-ellipic or-
bits. This is used to analyze the energy spectra of
Rydberg hydrogen atoms in a magnetic field. Some
of the important characteristics of these spectra are
accounted for by supersymmetric quantum mechan-
ics. An interesting aspect of the classical problem
of the charge motion in a static homogeneous mag-
netic field has been revealed. This problem is math-
ematically equivalent to the Kepler problem on the
mass motion in the Newtonian potential. The his-
tory of how Kharkiv radio-astronomers were search-
ing for the recombination radiolines of Rydberg car-
bon atoms using radio-telescope has been given a de-
tailed description.

The author expresses his sincere gratitude to
O.S. Bakai for his continued deep interest in this work
and great help in writing this paper.

APPENDIX
On major innovations in the SI system
and some related problems with new Ohms
and the speed of light

It is worth noting that, quite recently in May 2019, an im-
portant event took place: a new international SI system [90],
radically changed and enhanced, came into force, which was
proposed by the International Bureau of Weights and Measures
(Bureau International des Poids et Mesures, BIPM ).
As it was proclaimed in 1875, when Paris Metre Convention 23,

23 From now on, Ukraine as a member state of Paris Metre
Convention (since May 2018) is to follow the new SI system.

was founded, the new system has also been adopted A TOUS
LES TEMPS, A TOUS LES PEOPLES (for all times,
for all nations). According to the new updates, from now on
the Planck constant

ℎ = 6.62607015× 10−34 B ·A · c2

and the electron’s electric charge

𝑒 = 1.602176634× 10−19 A · c

are exactly fixed physical constants, as well as the speed of
light

𝑐 = 299792458 m · c−1,

which became a physical constant back in 1983. Von Klitzing
constant 𝑅K, which is responsible for the superaccurate value
of Ohm, as well as the Josephson 24 constant 𝐾J, which is
responsible for the superaccurate value of Volt, henceforth and
forever can be calculated using a simple arithmetic,

𝑅K = ℎ/𝑒2 = 25812.8074593045... Ohm,

𝐾J = 2𝑒/ℎ = 483597.848416984... GHz/V

(three dots in these expressions mean the possibility of calcu-
lation of the given numbers with arbitrary accuracy).

These innovations have also caused some inconveniences
(probably, temporary ones, if the exact value of the fine
structure could be found). If we carefully examine 𝑅K−2019

(46) and the new 𝑅K, one can notice that the tenth digits in
𝑅K−2019 (measured) and in the new 𝑅K (calculated) are dif-
ferent. It happened because the new 𝑅K denotes the new Ohm,
Ohm2019, which is slightly less than the older one, which we
will designate as Ohm1948, as it was closely (and exactly) re-
lated to the new definition of Ampere, which came into effect
in 1948,

Ohm1948 = 1.00000000055(15) Ohm2019.

Despite the fact that 𝑐, ℎ and 𝑒 are exactly defined funda-
mental physical constants, we cannot calculate exactly the
fine structure constant 𝑒2/~𝑐, as now we do not know how the
exact fundamental constant 𝑐 relates to the new, exactly de-
fined Ohm2019. If we calculate 1/𝑐 as

𝑅K/2𝜋𝛼2019

then

1/𝑐 = 29, 9792458163(46) Ohm2019.

There is another victim of the updated SI system – an im-
portant quantity, exact earlier, – the characteristic vacuum
impedance [92], which is equal to 4𝜋/𝑐 and generally required
in Ohms, because it is used to express such practical quantities
as the impedances of different electromagnetic wave transmis-
sion lines, for example, the impedance of an ordinary TV ca-
ble. Of course, the relation between 1/𝑐 and the new Ohm will

24 On Josephson and on the Nobel prizes related to precision
problems, see [91].
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become exact as soon as the exact value of the fine structure
constant is determined. That is, if it exists at all, rather than
changes over time, which is quite possible [93].
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Square Roots of Kepler Ellipses

Ю.П.Степановський

КВАДРАТНI КОРЕНI IЗ ЕЛIПСIВ
КЕПЛЕРА, ЕЛЕКТРОНИ ТА РIДБЕРҐIВСЬКI
АТОМИ У МАГНIТНОМУ ПОЛI

Р е з ю м е

Смiливi iдеї юного Кеплера щодо будови Сонячної системи
застосовуються до аналiзу планетних вiдстаней в екзопла-
нетнiй системi HD 10180. За допомогою перетворень Жу-

ковського роз’яснюється суть спiнорної регуляризацiї за-
дачi Кеплера, як добування квадратного кореня з елiпса
i використання кеплеровської ексцентричної аномалiї за-
мiсть звичайного часу. Розглядаються досягнення харкiв-
ських радiоастрономiв у пошуках рекомбiнацiйних радiолi-
нiй рiдберґiвських атомiв вуглецю на радiотелескопi УТР-
2. Узагальнення спiнорної регуляризацiї задачi Кеплера на
неелiптичнi орбiти використовується для аналiзу енерге-
тичних спектрiв рiдберґiвських атомiв водню в магнiтно-
му полi.
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