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MOMENT-GENERATING FUNCTION OF OUTPUT
STREAM OF LEAKY INTEGRATE-AND-FIRE NEURON

The statistics of the output activity of a neuron during its stimulation by the stream of input im-
pulses that forms the stochastic Poisson process is studied. The leaky integrate-and-fire neuron
is considered as a neuron model. A new representation of the probability distribution function
of the output interspike interval durations is found. Based on it, the moment-generating func-
tion of the probability distribution is calculated explicitly. The latter, according to the Curtiss
theorem, completely determines the distribution itself. In particular, explicit expressions are
derived from the moment-generating function for the moments of all orders. The first moment
coincides with the one found earlier. Formulas for the second and third moments have been
checked numerically by direct modeling of the stochastic dynamics of a neuron with specific
physical parameters.
K e yw o r d s: leaky integrate-and-fire neuron, stochastic Poisson process, interspike interval,
moments of probability distribution, moment-generating function.

1. Introduction
Information in the brain is mainly represented in
the form of neural impulses. All those impulses are
roughly identical in their height and width and called
spikes, see Fig. 1. The only thing which matters is
the time when such an impulse has been generated or
received. If neural impulses are recorded with proper
biophysical instruments, one obtains a highly irregu-
lar sequence. It is called a spike train. It is difficult
to find any rational meaning in these time moments
of receiving spikes, or interspike intervals. The situ-
ation is even worse: In most cases, those sequences
do not reproduce themselves, if the same stimula-
tion is offered to an experimental animal several
times. This might be the first reason why neurosci-
entists are mainly interested in the statistical prop-
erties of spike trains. Theoretical physicists as well
try to predict which kind of statistics it could be and
how it changes with changing stimuli or model pa-
rameters. In this direction, there is a long-standing
discussion. What, indeed, represents the meaningful
information in a spike train? Is it the mean number
of spikes per time unit (rate coding), or are their ex-
act temporal positions (time coding) essential? There
is no clear answer to this question. Initially, we sup-
posed that the rate coding operates at the periphery

c○ О.К. VIDYBIDA, О.V. SHCHUR, 2021

of the nervous system. An example at the actuator
periphery of the brain is the neuro-muscular junc-
tion in motoneurons [1, Sec. 5.01.12]. Namely, the
only command passed to the muscle from the mo-
toneuron is the contraction strength. But the contrac-
tion strength is determined by the neurotransmitter
concentration, which is released from neural endings
with each spike arrival. The more the spikes per time
unit, the higher the neurotransmitter level, the higher
the contraction strength. So, we have the rate cod-
ing here. An example at the sensory periphery of the
brain is the olfactory receptor neuron [2], where the
number of spikes per time unit depends on the odor
concentration.

However, even at the sensory periphery, the time
coding can be the coding paradigm. This is observed
for the echolocation [3], where the temporal position
of spikes from two ears should be kept with microsec-
ond precision.

It is also clear that, in the time coding mechanism,
a spike train can bear more information than in the
rate coding one. This could be essential for more so-
phisticated intellectual tasks than muscle contraction
or odor sniffing.

Unfortunately, most attempts to calculate the neu-
ronal firing statistics exclude the possibility of the
time coding due to utilizing the so-called diffusion ap-
proximation. In this approach, the neuronal stimulus

254 ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 3



Moment-Generating Function of Output Stream

Fig. 1. Example of the electrical activity in the environment of neurons. The recording is made by an electrode, which
is placed in the environment. Therefore, the activity of several neurons is registered simultaneously. In a case of a neu-
ron generating an output impulse, its membrane potential changes drastically. At these time moments, the figure shows
short-term jumps of voltage, or spikes. Different spikes have different heights because they belong to different neurons that
are at different distances from the recording electrode. A single neuron generates spikes of the same height. Modified from:
https://backyardbrains.com/experiments/ spikerbox

is modeled as a diffusion stochastic process such as
the Wiener or Ornstein–Uhlenbeck one, see [4, 5]. In
the diffusion process, any finite time interval contains
infinitely many infinitesimal spikes obtained from the
differentiation of the Wiener process. Therefore, there
is no place for the time coding mechanism. At the
same time, the output activity of a neuron stimulated
with a diffusion process is represented by finite spikes
emitted, when the neuronal membrane voltage crosses
the firing threshold. The time intervals between those
spikes are finite, see Fig. 2. Those spikes represent
not a diffusion process, but the point one. Therefore,
they cannot be fed into another neuron preserving the
diffusion approximation approach. This means that
the diffusion approximation approach is both incom-
plete and inconsistent. Therefore, an attempt was
made to calculate firing statistics without diffusion
approximation.

In the following sections, we will briefly formulate
previously obtained results this work is based on. Pre-
liminary results are related to the statistics of the
activity of a leaky integrate-and-fire (LIF) neuron
with a threshold of 2. In particular, earlier, [6, 7], the
explicit expressions were obtained for the distribu-
tion function of the output interspike intervals (ISI)
at the initial section of the values of the ISI dura-
tion. The distribution of input impulses is considered
to be Poissonian. For larger values of ISI, the distribu-
tion function is represented as the sum of multiple in-
tegrals. This enabled us to calculate the first moment
of the distribution function (mean ISI). In the current
paper, we have found another representation of the
distribution function, which provides the means to
calculate the moment-generating function. Applying

Fig. 2. Time course of the membrane potential simulated by
the diffusion process. At the time moment when the mem-
brane potential 𝑉 (𝑡) reaches the firing threshold V0, the out-
put impulse (spike) is generated. Modified from: A. Iolov,
S. Ditlevsen & A. Longtin, DOI: 10.1186/2190-8567-4-4

the differentiation to it, a distribution moment of any
order can be found. We note also that, according to
the Curtiss theorem [8], the moment-generating func-
tion completely determines the distribution function
itself.

2. Preliminary Results

2.1. Model description

The leaky integrate-and-fire neuron [9] is character-
ized by three positive constants: 𝜏 is the relaxation
time; V0 is the firing threshold; and ℎ is the input
impulse height.

At any given time 𝑡, the state of a LIF neuron is de-
fined by the non-negative real number 𝑉 (𝑡), which is
a deviation of the transmembrane potential difference
from the rest state toward the depolarization or, in
other words, the magnitude of the excitation. Here, it
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is assumed that 𝑉 = 0 at rest, and the depolarization
corresponds to a positive value of 𝑉 . The presence
of the leakage means that, in the absence of external
stimuli, the value of 𝑉 (𝑡) decreases exponentially:

𝑉 (𝑡+ 𝑠) = 𝑉 (𝑡)𝑒−𝑠/𝜏 , 𝑠 > 0. (1)

Input stimuli are input impulses. An input impulse
obtained at the time 𝑡 increases 𝑉 (𝑡) by ℎ:

𝑉 (𝑡) → 𝑉 (𝑡) + ℎ. (2)

The neuron is characterized by the firing threshold
V0. The latter means that, once the condition is met,
i.e. 𝑉 (𝑡) > V0, the LIF neuron generates an output
impulse and resets to the rest state, 𝑉 (𝑡) = 0. Regar-
ding ℎ and V0, we make the following assumption:

0 < ℎ < V0 < 2ℎ. (3)

From (1) and (2), it follows that the LIF neuron can
generate an output impulse only at the time of re-
ceiving the input one. Condition (3) means that one
input impulse, applied to the LIF neuron at rest, is
not enough to generate the output impulse. However,
even two input impulses obtained in a short time can
excite the LIF neuron above the threshold and gener-
ate the output impulse. This means that the neuron
has a threshold of 2 1.

2.2. Distribution function of ISI durations 2

We assume that the neuron described in Subsec. 2.1
is stimulated by a stream of input impulses, which
forms a stochastic Poisson process of intensity 𝜆. The
latter means that the probability of obtaining the ISI
of duration 𝑡 with the precision 𝑑𝑡 at the input is
given by the following expression:

𝑒−𝜆𝑡 𝜆 𝑑𝑡,

and the input ISIs are statistically independent.
We introduce the following notations:

𝑇2 = 𝜏 ln

(︂
ℎ

V0 − ℎ

)︂
, 𝑇3 = 𝜏 ln

(︂
V0

V0 − ℎ

)︂
,

Θ𝑚 = 𝑇2 + (𝑚− 3)𝑇3, 𝑚 = 3, ... . (4)

1 See [10], where the case of higher thresholds is considered.
2 In the current section and below, 𝑡 denotes the ISI duration.

In papers [6, 7], the following formula is obtained
for the distribution function of output ISIs:

𝑃 (𝑡)𝑑𝑡 =

𝑚−1∑︁
𝑘=2

(︀
𝑃 0
𝑘 (𝑡)𝜆𝑑𝑡− 𝑃−

𝑘 (𝑡)𝜆𝑑𝑡
)︀
+ 𝑃 0

𝑚(𝑡)𝜆𝑑𝑡,

𝑡 ∈ ]Θ𝑚; Θ𝑚+1], 𝑚 ≥ 2,

(5)

where 𝑃 (𝑡)𝑑𝑡 is the probability to obtain an output
ISI of duration 𝑡 with the precision 𝑑𝑡. Functions on
the right-hand side of (5) are defined as follows:

𝑃 0
𝑘+1(𝑡)𝜆 𝑑𝑡 =

𝑡∫︁
Θ𝑘+1

𝑃−
𝑘 (𝑠)𝜆 𝑑𝑠 𝑒−𝜆(𝑡−𝑠)𝜆 𝑑𝑡,

𝑡 ≥ Θ𝑘+1, 𝑘 = 2, 3, ...,

(6)

𝑃−
𝑘 (𝑡)𝜆𝑑𝑡 = 𝑒−𝜆𝑡𝜆𝑘𝑑𝑡

𝑡1∫︁
𝑡1

𝑑𝑡1

𝑡2∫︁
𝑡2

𝑑𝑡2 ...

𝑡𝑘−1∫︁
𝑡𝑘−1

𝑑𝑡𝑘−1, (7)

where the limits of integration are defined through
the following inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑡1 ≤ 𝑡−Θ𝑘+1,

𝑇2 + 𝜏 ln

⎛⎝∑︁
1≤𝑗≤𝑖

𝑒𝑡𝑗/𝜏

⎞⎠ ≤ 𝑡𝑖+1,

𝑡𝑖+1 ≤ 𝜏 ln

⎛⎝𝑒(𝑡−Θ𝑘+1−𝑖)/𝜏 −
∑︁

1≤𝑗≤𝑖

𝑒𝑡𝑗/𝜏

⎞⎠,
𝑖 = 1, ..., 𝑘 − 2.

(8)

Thus, the distribution function of the output ISI is
completely determined by the function 𝑃−

𝑘 (𝑡) for dif-
ferent 𝑘 = 2, 3, ... . Its physical meaning is as follows:
if the neuron starts from the rest state, 𝑉 (0) = 0,
then the expression 𝑃−

𝑘 (𝑡)𝜆𝑑𝑡 gives the probability to
obtain 𝑘 consecutive input impulses from the Pois-
son input process in such a way that the last of them
falls into the interval [𝑡; 𝑡 + 𝑑𝑡], and the neuron does
not fire (the excitation threshold V0 has not been ex-
ceeded). In turn, 𝑃 0

𝑘 (𝑡)𝜆 𝑑𝑡 gives the probability to
obtain 𝑘 impulses, the last one within the interval
[𝑡; 𝑡+ 𝑑𝑡] so that there is no firings up to and includ-
ing the (𝑘 − 1)-th impulse. Note that, in formula (7)
for a fixed 𝑡, 𝑘 cannot take values greater than 𝑘max,
where

𝑘max =

[︂
𝑡− 𝑇2

𝑇3

]︂
+ 2,

and the square brackets denote the integer part of a
number.
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3. A New Representation
of the Distribution Function

In this section, we will represent (7), (8) in a sim-
pler form convenient for calculating the moment-
generating function. For this reason, we introduce
new integration variables:

𝑧𝑖 = 𝑒−
𝑡−Θ𝑘+2−𝑖

𝜏

∑︁
1≤𝑗≤𝑖

𝑒
𝑡𝑗
𝜏 , 𝑖 = 1, ..., 𝑘 − 1.

The domain of integration (8) in terms of new vari-
ables takes the following form:{︃
𝑒−

𝑡−Θ𝑘+1
𝜏 ≤ 𝑧1 ≤ 1,

𝑧𝑖 ≤ 𝑧𝑖+1 ≤ 1, 𝑖 = 1, ..., 𝑘 − 2.
(9)

The Jacobian determinant of the transition to the
new variables has the form⃒⃒⃒⃒
det

⃦⃦⃦⃦
𝜕𝑧𝑗
𝜕𝑡𝑖

⃦⃦⃦⃦⃒⃒⃒⃒
=

1

𝜏𝑘−1
𝑧1

∏︁
2≤𝑖≤𝑘−1

(𝑧𝑖−1 − 𝛽𝑧𝑖),

where 𝛽 = 𝑒−
𝑇3
𝜏 . In view of this relation and (9), (7)

can be expressed in the following form:

𝑃−
𝑘 (𝑡) = 𝑒−𝜆𝑡(𝜆𝜏)𝑘−1

1∫︁
𝐵𝑘(𝑡)

𝑑𝑧1
𝑧1

1∫︁
𝑧1

𝑑𝑧2
𝑧2 − 𝛽𝑧1

...

...

1∫︁
𝑧𝑘−2

𝑑𝑧𝑘−1

𝑧𝑘−1 − 𝛽𝑧𝑘−2
, (10)

where

𝐵𝑘(𝑡) = 𝑒−
𝑡−Θ𝑘+1

𝜏 .

If the set of auxiliary functions 𝑓𝑖(𝑥) is introduced by
the relations

𝑓0(𝑥) ≡ 1, 𝑓𝑖+1(𝑥) =

1∫︁
𝑥

𝑑𝑦

𝑦 − 𝛽𝑥
𝑓𝑖(𝑦), 𝑖 = 0, ..., (11)

then (10) can be written as

𝑃−
𝑘 (𝑡) = 𝑒−𝜆𝑡(𝜆𝜏)𝑘−1

1∫︁
𝐵𝑘(𝑡)

𝑑𝑥

𝑥
𝑓𝑘−2(𝑥). (12)

The latter with (5) and (6) are used below to calculate
the moment-generating function.

4. Moment-Generating Function

The moments of the probability distribution 𝑃 (𝑡) are
the quantities 𝜇𝑛 given by the formula 3

𝜇𝑛 =

∞∫︁
−∞

𝑡𝑛𝑃 (𝑡)𝑑𝑡. (13)

Here, the first moment is the mean of a random vari-
able (in our case, of ISI). The calculation of moments
can be difficult due to the complexity of the expres-
sion for 𝑃 (𝑡). The moment-generating function sim-
plifies the task.

According to the definition, the moment-generating
function 𝑀𝑡(𝑧) is determined by the following
formula:

𝑀𝑡(𝑧) = E[𝑒𝑡𝑧] =
∞∫︁

−∞

𝑒𝑡𝑧𝑃 (𝑡)𝑑𝑡. (14)

To find it, let us represent the distribution func-
tion 𝑃 (𝑡) (5) in terms of the auxiliary functions 𝑓𝑖(𝑥)
(11). To accomplish this, firstly, expression (6) for
𝑃 0
𝑘 (𝑡) should be rewritten through 𝑓𝑖(𝑥) (11), sub-

stituting (12):

𝑃 0
𝑘+1(𝑡) = 𝜆(𝑡−Θ𝑘+1)𝑃

−
𝑘 (𝑡)+

+ 𝑒−𝜆𝑡𝑟𝑘
1∫︁

𝐵𝑘+1(𝑡)

ln(𝑥)

𝑥
𝑓𝑘−2(𝑥)𝑑𝑥, (15)

where 𝑟 = 𝜆𝜏 .
By regrouping the terms in the sum on the right-

hand side of (5) and substituting (12) and (15), the
following expression for the distribution function 𝑃 (𝑡)
can be obtained in terms of the functions 𝑓𝑖(𝑥):

𝑃 (𝑡)𝑑𝑡 = 𝜆𝑡𝑒−𝜆𝑡𝑑𝑡+ 𝑒−𝜆𝑡𝑑𝑡×

×
𝑚∑︁

𝑘=3

𝑟𝑘−2

1∫︁
𝐵𝑘(𝑡)

𝑑𝑥

𝑥
𝑓𝑘−3(𝑥)(𝜆(𝑡−Θ𝑘)− 1 + 𝑟 ln(𝑥)),

𝑡 ∈]Θ𝑚; Θ𝑚+1], 𝑚 ≥ 2.

The latter is used in (14) to find the moment-
generating function:

𝑀𝑡(𝑧) =
𝜆2

(𝜆− 𝑧)2
+

+
𝜆𝑧

(𝜆− 𝑧)2

∞∑︁
𝑚=3

𝑟𝑚−2𝑒−(𝜆−𝑧)Θ𝑚𝐼𝑚(𝑧), 𝑧 < 𝜆, (16)

3 In the considered case, 𝑡 ≤ 0 ⇒ 𝑃 (𝑡) = 0.
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Fig. 3. Dependence of the second 𝜇2 and third 𝜇3 moments
of the ISI duration distribution function on the intensity of
the input stream 𝜆. Diamonds denote the results of numerical
simulation by the Monte Carlo method, solid line – calculations
according to formulas (21) and (20) at 𝑛 = 3. Here, V0 =

= 20 mV, ℎ = 11.2 mV, 𝜏 = 20 ms

where the following auxiliary functions 𝐼𝑚(𝑧) are in-
troduced:

𝐼𝑚(𝑧) =

1∫︁
0

𝑑𝑥 𝑓𝑚(𝑥)𝑥𝑟−𝜏𝑧−1, 𝑚 = 0, 1, ... .

To find a recurrent relation for 𝐼𝑚(𝑧), we substitute
(11) into the last relation:

𝐼𝑚(𝑧) = Φ(𝛽, 1, 𝑟 − 𝜏𝑧)𝐼𝑚−1(𝑧), 𝑚 = 1, 2 ...;

𝐼0(𝑧) =
1

𝑟 − 𝜏𝑧
.

(17)

Here, Φ(𝛽, 1, 𝑟−𝜏𝑧) denotes the Lerch transcedent:

Φ(𝑧, 𝑠, 𝑎) =
1

Γ(𝑠)

1∫︁
0

𝑑𝑥

1− 𝑧𝑥
(− ln(𝑥))𝑠−1𝑥𝑎−1.

It follows from the reccurent relation (17) that

𝐼𝑚(𝑧) =
1

𝑟 − 𝜏𝑧
(Φ (𝛽, 1, 𝑟 − 𝜏𝑧))

𝑚
, 𝑚 = 0, 1 ... .

Let us substitute the last relation into (16) and use
definition (4) of Θ𝑚:

𝑀𝑡(𝑧) =
𝜆2

(𝜆− 𝑧)2
+

𝜆𝑧

(𝜆− 𝑧)2
𝑟

𝑟 − 𝜏𝑧
𝑒−(𝜆−𝑧)𝑇2×

×
∞∑︁

𝑚=0

(︁
𝑟𝛽𝑟(1− 𝑧

𝜆 )Φ (𝛽, 1, 𝑟 − 𝜏𝑧)
)︁𝑚

. (18)

Here, the series
∑︀∞

𝑚=0

(︀
𝑟𝛽𝑟(1− 𝑧

𝜆 )Φ (𝛽, 1, 𝑟 − 𝜏𝑧)
)︀𝑚

is convergent in some neighborhood of the point 𝑧 =
= 0, since 𝑟𝛽𝑟Φ (𝛽, 1, 𝑟) < 1. The latter is proved in
Theorem 3 of [7].

Finally, after the summation on the right-hand side
of (18), in some neighborhood of the point 𝑧 = 0, the
moment-generating function has the following form:

𝑀𝑡(𝑧) =
𝜆2

(𝜆− 𝑧)2
+ 𝑎𝑟

𝜆𝑧

(𝜆− 𝑧)2
×

× 𝑟

𝑟 − 𝜏𝑧

𝑒𝑧𝑇2

1− 𝑟𝛽𝑟𝑒𝑧𝑇3Φ(𝛽, 1, 𝑟 − 𝜏𝑧)
, (19)

where 𝑎 = 𝑒−
𝑇2
𝜏 .

Since, in some neighborhood of zero, the moment-
generating function is finite, then, according to the
Curtiss theorem [8], the obtained moment-generating
function (19) completely determines the distribution
function 𝑃 (𝑡).

Using the moment-generating function (19), the
moments of the distribution function can be found
as

𝜇𝑛 =
𝑑𝑛𝑀𝑡(𝑧)

𝑑𝑧𝑛

⃒⃒⃒⃒
𝑧=0

=
(𝑛+ 1)!

𝜆𝑛
+

+
𝑛!𝑎𝑟

2𝜆𝑛

1

1− 𝑟𝛽𝑟Φ(𝛽, 1, 𝑟)

𝑛−1∑︁
𝑚=0

(𝜆(𝑇2 − 𝑇3))
𝑚

𝑚!
×

×
𝑛−1−𝑚∑︁
𝑘=0

(𝑛−𝑚− 𝑘)(𝑛−𝑚− 𝑘 + 1)

(︃
𝛿𝑘,0 +

+
1

𝑘!

𝑘∑︁
𝑙=1

(−1)𝑙𝑙!

(1− 𝑟𝛽𝑟Φ(𝛽, 1, 𝑟))𝑙
𝐵𝑘,𝑙(𝑔1, 𝑔2, ..., 𝑔𝑘−𝑙+1)

)︃
,

𝑔𝑚 = (−𝜆𝑇3)
𝑚 −𝑚!𝑟𝑚+1𝛽𝑟Φ(𝛽,𝑚+ 1, 𝑟), (20)

where 𝜇𝑛 denotes the 𝑛-th moment, and
𝐵𝑘,𝑙(𝑔1, 𝑔2, ..., 𝑔𝑘−𝑙+1) are incomplete exponen-
tial Bell polynomials.

Setting 𝑛 = 1 in the last expression, for the first
moment, we have

𝜇1 =
2

𝜆
+

1

𝜆

𝑎𝑟

1− 𝑟𝛽𝑟Φ(𝛽, 1, 𝑟)
,

which coincides with the obtained previously one in
[7, Eq. (46)]. Notice that, in the notations used in [7],
𝐼(𝑎, 𝑟) = 𝛽𝑟Φ(𝛽, 1, 𝑟).

According to (20) for 𝑛 = 2, the second moment
takes the form

𝜇2 =
6

𝜆2
+

2

𝜆2

𝑎𝑟

1− 𝑟𝛽𝑟Φ(𝛽, 1, 𝑟)

(︃
3 + 𝜆𝑇2 +

+
𝑟𝛽𝑟Φ(𝛽, 1, 𝑟)

1− 𝑟𝛽𝑟Φ(𝛽, 1, 𝑟)

(︂
𝜆𝑇3 + 𝑟

Φ(𝛽, 2, 𝑟)

Φ(𝛽, 1, 𝑟)

)︂)︃
. (21)
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5. Numerical Verification

To numerically verify the obtained formulas, a pro-
gram was written that simulated the dynamics of
the membrane potential of a neuron stimulated by
a stream of input impulses that form the stochas-
tic Poisson process. The behavior of the neuron was
simulated for such a time that, as a result, 1000 000
output impulses were obtained, which allowed the cal-
culation of the probability density 𝑃 (𝑡) and its mo-
ments, as shown in (13). The simulation was repeated
for different values of the input stream intensities
𝜆. The results of calculating the 2nd and 3rd moments
and their comparison with formulas (21) and (20) for
𝑛 = 3 are shown in Fig. 3.

6. Conclusions

In the current paper, the statistics of the activity of a
leaky integrate-and-fire neuron during its stimulation
by input impulses, which form the stochastic Pois-
son process, is considered. For the model of a neuron
with a threshold of two, a comprehensive description
of the statistics of the durations of interspike inter-
vals in terms of the moment-generating function is
obtained. The latter is found explicitly, Eq. (19). The
obtained formulas have been verified by the numer-
ical modeling of the neuron dynamics with specific
physical parameters.
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ТВIРНА ФУНКЦIЯ МОМЕНТIВ
ДЛЯ СТАТИСТИКИ ВИХIДНОЇ АКТИВНОСТI
IНТЕГРУЮЧОГО НЕЙРОНА З ВТРАТАМИ

Дослiджується статистика вихiдної активностi нейрона при
його стимуляцiї потоком вхiдних iмпульсiв, що утворюють
стохастичний процес Пуассона. В ролi моделi нейрона взято
iнтегруючий нейрон з втратами. Знайдено нове представле-
ння функцiї розподiлу ймовiрностей довжин вихiдних мiж-
iмпульсних iнтервалiв. На його основi обчислено в явному
виглядi твiрну функцiю моментiв ймовiрнiсного розподiлу.
Остання, за теоремою Куртiса, повнiстю визначає сам роз-
подiл. Зокрема, на основi твiрної функцiї знайдено явнi ви-
рази для моментiв всiх порядкiв. Момент першого порядку
збiгається iз знайденим ранiше. Формули для моментiв дру-
гого i третього порядкiв перевiрено чисельно шляхом пря-
мого моделювання стохастичної динамiки нейрона з кон-
кретними фiзичними параметрами.

Ключ о в i с л о в а: iнтегруючий нейрон з втратами, стоха-
стичний процес Пуассона, мiжспайковий iнтервал, моменти
функцiї розподiлу, твiрна функцiя моментiв.
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