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STATISTICAL DESCRIPTION
OF NON-EQUILIBRIUM MANY-PARTICLE SYSTEMS

In most cases, the systems of interacting particles are non-equilibrium. In this review, a new
approach based on the application of a non-equilibrium statistical operator is presented, which
allows the inhomogeneous distributions of the particles and the temperature to be taken into
account. The method uses the saddle-point procedure to find dominant contributions to the
partition function of the system and enables all of its thermodynamic parameters to be deter-
mined. Probable peculiarities in the behavior of the systems with interaction – such as gravita-
tional systems, systems with Coulombic repulsion, and so forth – under various thermodynamic
conditions are predicted. A new approach is proposed to describe non-equilibrium systems in
the energy space, which is an extension of the Gibbs approach to macroscopic systems under
non-equilibrium conditions. It allows the stationary states and the dynamics of non-equilibrium
systems to be described.
K e yw o r d s: non-equilibrium statistical operator, many-particle systems, stationary states.

1. Introduction
Sometimes, systems of interacting particles cannot be
described in terms of an ordinary thermodynamic en-
semble (for instance, these are self-gravitating sys-
tems [1, 2]), and, as a result, they cannot be consid-
ered in the framework of standard methods proposed
by the equilibrium statistical mechanics. In particu-
lar, if the energy is not an additive quantity, the con-
cept of canonical ensemble is inapplicable for study-
ing the systems with long-range interactions. In such
systems, equilibrium states correspond only to lo-
cal entropy maxima [3, 4]. In order to determine the
equilibrium states for a system of interacting parti-
cles and to describe probable phase transitions in it,
approaches of two types, statistical and thermody-
namic, have been developed. It is generally believed
that the mean-field theory is completely acceptable
for such systems, although any thermodynamic func-
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tion in this theory depends only on dimensionless
combinations of thermodynamic parameters, and the
system can be thermodynamically unstable, although
the thermodynamic limit does exist [4].

Systems of particles with long-range interactions,
such as self-gravitating systems or systems with Cou-
lombic repulsion, do not reach the state of Bolt-
zmann–Gibbs thermodynamic equilibrium. Instead,
they turn out in quasistationary states, the lifetime of
which can be arbitrarily long, if the number of parti-
cles increases. A quantitative description of the insta-
bility threshold for the spontaneous symmetry break-
ing in 𝑑-dimensional systems was given in work [5].
However, the homogeneous distribution of particles in
a system of particles with long-range interactions is
unstable. The distribution of particles in such a sys-
tem is spatially inhomogeneous from the very begin-
ning. The behavior of systems demands different de-
scriptions for different equilibrium ensembles, mainly
because any state of a system of particles with long-
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range interaction is far from equilibrium, and the time
of relaxation to its equilibrium state is very large.

Non-equilibrium stationary states were described
in work [6]. Three-dimensional systems can be cap-
tured into non-equilibrium quasistationary states
thus terminating their evolution toward the thermo-
dynamic equilibrium. As a result, there arises a di-
lemma: either one uses the postulates of equilib-
rium statistical mechanics and obtains only the crite-
ria of instability, or one takes possible spatially in-
homogeneous particle distributions into account in
the framework of other approaches. Inhomogeneous
distributions of particles, temperature, and chemical
potential can be considered with the help of the non-
equilibrium statistical operator [3], which makes al-
lowance for the probability of local changes in the
thermodynamic parameters of the system. This ap-
proach is based on the fact that the equation of state
has to follow from the explicit form of the distribu-
tion function for a spatially inhomogeneous system,
which can be obtained in the thermodynamic limit
[7,8]. The system is non-equilibrium a priori, and the
inhomogeneity of the particle distribution allows the
non-uniform distributions of the temperature, chem-
ical potential, and other thermodynamic parameters
to exist.

The formation of a spatially inhomogeneous distri-
bution of interacting particles is a typical problem
in the condensed matter physics. The corresponding
statistical description has to use a certain procedure
to calculate main contributions to the distribution
function and has not to bring about the entropy di-
vergence for the infinite system volume. A non-stan-
dard method for solving this problem was proposed
in works [9, 12]. This approach uses the Hubbard–
Stratonovich representation for the distribution func-
tion [13]. It is applied to describe systems of particles
with long-range interactions in order to obtain a so-
lution for the particle distribution without putting
restrictions on the system volume and the number of
particles. It is important that the obtained solution
should not possess divergencies in the thermodynamic
limit. For this purpose, the saddle-point approxima-
tion can be used, in which the number of particles
in a limited volume is preserved. The distribution
functions in the cases of homogeneous and inhomo-
geneous particle distributions were obtained in works
[10,11,15]. However, this approach, makes it possible
to determine only the condition for the formation of

probable inhomogeneous distributions in the system
of particles with long-range interactions.

An important fundamental problem is a search for
an adequate approach to the statistical description
of self-gravitating systems. The general behavior of
such systems has been studied for a long time [16],
and this problem has turned out much more compli-
cated than the research of other many-particle sys-
tems. In this context, self-gravitating systems are ob-
jects that make it possible to verify and to develop the
concepts of statistical mechanics and thermodynam-
ics [17]. The statistical description of self-gravitating
systems attracts a permanent attention, which is as-
sociated with astrophysical problems [18, 28] and the
formulation of general methods that can be used in
other physical situations.

In the case of self-gravitating systems, thermody-
namic ensembles are not equivalent. In the framework
of the canonical description, there is no heat capacity
with a negative value [1], which can be observed for
microcanonical ensembles [19]. In the case of micro-
canonical ensemble, self-destruction corresponds to
the “gravithermic catastrophe”, but it is associated
with the “isothermal collapse” in a canonical ensem-
ble [19]. The self-gravitating system can increase its
entropy not only through the growth of its density,
because the equilibrium states are associated with
the local entropy maximum only. However, if a short-
range repulsive potential is introduced to prevent a
complete collapse, the global entropy maximum can
be reached now for all achievable energy values. The
effective repulsion can be introduced in various ways,
because the physical results are rather insensitive to
the exact form of regularization. Alternatively, we
may consider the classical gas of solid spheres with
an introduced excluded volume around every parti-
cle [20]. For a gas with purely gravitational interac-
tion between the particles, the corresponding distri-
bution function diverges. Since, in most cases, the
states of self-gravitating systems are far from equi-
librium, their relaxation time to equilibrium is very
large. A homogeneous distribution of identical parti-
cles in such a system is unstable, so that the particle
distribution is spatially inhomogeneous from the very
beginning. The system becomes divided into a set of
inhomogeneous clusters that evolve to a more con-
densed state.

The behavior of a self-gravitating system is de-
scribed by different methods for different equilibrium
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ensembles. Multiple attempts were made to account
for the heterogeneity of particle distributions, but
the problem remains yet unsolved. It is so because,
if the heterogeneity is taken into consideration, the
chemical potential begins to depend on spatial vari-
ables. Since the equation of state must couple the
temperature and the density, the former, as a ther-
modynamic parameter, must also depend on spatial
coordinates. The standard approach uses a polytropic
equation that determines the dependence of the tem-
perature and, hence, the pressure on the concentra-
tion. This approach allows one to generate, in par-
ticular, stable solutions while considering the gravi-
tational formation of stars. However, it is somewhat
inconsistent, because the equation of state must be
obtained from the definition of the distribution func-
tion, which is unknown for spatially inhomogeneous
systems [7, 8]. Therefore, there arises the dilemma
mentioned above.

In this review, we present a new approach that is
based on the application of the non-equilibrium sta-
tistical operator [3], which is better suited to describe
systems of particles with long-range interaction. The
equations of state and all necessary thermodynamic
parameters are governed by the equations that de-
termine the states that provide the largest contri-
bution to the partition function. Therefore, there is
no necessity to introduce an additional hypothesis
about the temperature dependence of the concentra-
tion. This dependence follows from the solution of the
corresponding thermodynamic relations that deter-
mine the non-equilibrium distribution function. Pro-
bable spatially inhomogeneous distributions for the
particle concentration and the temperature were ob-
tained in some simple cases. In the case of equilib-
rium, the well-known result for the distribution func-
tion [21, 22] was reproduced. It was shown that the
proposed approach describes the inhomogeneous par-
ticle distribution and allows the required parameters
of the system to be determined.

The main idea of the work is to give a detailed de-
scription for the system with long-range interaction,
which is based on the principles of non-equilibrium
statistical mechanics, as well as to obtain probable
particle distributions in the case where the particle
number and the energy of the system are constant.

Till now, the statistical description of inhomoge-
neous systems assumed that they are characterized
by spatially inhomogeneous distributions of particles,

temperature, and chemical potential, as well as by
fixed values of the particle number and the energy. In
many cases, however, the system heterogeneity is a
result of energy changes associated with the external
effect of the environment. Therefore, we need to de-
velop a method that would be able to make allowance
for the influence of the environment on the behavior
of a particular macroscopic system and would allow
finding its corresponding states. Fluctuations in the
parameters of both the system and the environment
must also be taken into account. It was Gibbs who
gave us a clue to this approach [53].

In all cases, any macroscopic system interacting
with its environment relaxes and finally transits into
the equilibrium. The properties of such a system are
determined as functions of the environmental char-
acteristics. The equilibrium state for an individual
macroscopic system can be achieved under ideal con-
ditions [21, 52, 54]. The influence of the environment
finally results in that the thermodynamic parameters
of an individual macrosystem coincide with the pa-
rameters of the thermostat.

It is known that any state of the system can be de-
scribed in terms of distribution functions that make
it possible to determine all thermodynamic proper-
ties of the macroscopic system [21, 52]. In practice,
the statistical description of a macroscopic system re-
quires the knowledge of only a few macroscopic pa-
rameters, e.g., the energy. Hence, the principal task
consists in developing a method to study the prop-
erties of the stationary states in open systems and
finding the conditions under which those states do
exist. One of the possible ways to solve this general
problem could be the application of a description
based on the Gibbs approach [53]. The main purpose
of our review is to propose a simple way to describe
non-equilibrium systems in the energy space [24] and
to apply it to the formulation of a new concept of
solving the cosmological problem.

2. Statistical Description
of Non-Equilibrium Systems
of Interacting Particles

The statistical thermodynamics of non-equilibrium
systems is based on the conservation laws for dy-
namic variables. When determining the thermody-
namic functions of non-equilibrium systems, the rep-
resentations of the corresponding statistical ensem-
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bles involving the non-equilibrium states of those sys-
tems are used. We may assume that Gibbs’ concept of
ensembles can be applied to describe non-equilibrium
stationary states of the system as well. In this case,
we may define the non-equilibrium ensemble as a set
of systems that corresponds to the same external sta-
tionary action. Those systems interact with a ther-
mostat in the same manner and can be character-
ized by all possible values of macroscopic parame-
ters that are allowed by the imposed conditions. In
the systems that are situated under identical external
stationary conditions, local stationary distributions
are formed. If the external conditions depend on the
time, the local equilibrium distribution is not station-
ary. For a nonlocally equilibrium ensemble, the dis-
tribution function or the statistical operator of the
system [3] has to be determined.

It can also be recalled that the stationary states are
only metastable, because they correspond to the local
maximum of the entropy. If we assume that the non-
equilibrium states of the system can be determined
with the help of the inhomogeneous energy distribu-
tion 𝐻(r) and the inhomogeneous particle concen-
tration 𝑛(r), the distribution function for a classical
system can be written in the form [3]

𝑓𝑙 = 𝑄−1
𝑙 exp

{︂
−
∫︁

(𝛽(r)𝐻(r)− 𝜂(r)𝑛(r)) 𝑑r

}︂
, (1)

where

𝑄𝑙 =

∫︁
𝐷Γ exp

{︂
−
∫︁

(𝛽(r)𝐻(r)− 𝜂(r)𝑛(r)) 𝑑r

}︂
. (2)

The integration in formula (2) is performed over the
whole phase space of the system. It should be noted
that, in the case of a local equilibrium distribution,
the Lagrange multipliers 𝛽(r) and 𝜂(r) depend on the
spatial coordinates. The microscopic concentration of
particles can be presented in the standard form

𝑛(r) =
∑︁
𝑖

𝛿(r− ri). (3)

A local equilibrium distribution can be introduced, if
the time of relaxation in the whole system is larger
than the time of relaxation in a local macroscopic
region.

After having determined the non-equilibrium sta-
tistical operator, we can describe all thermodynamic
parameters of the non-equilibrium system. For this

purpose, we will generalize the thermodynamic rela-
tion for inhomogeneous systems. In order to deter-
mine the unknown Lagrange multipliers, let us write
the required thermodynamic relation in the form [3]

−𝛿 ln𝑄𝑙
𝛿𝛽(r)

= ⟨𝐻(r)⟩𝑙,
𝛿 ln𝑄𝑙
𝛿𝜂(r)

= ⟨𝑛(r)⟩𝑙. (4)

These formulas are a natural generalization of the
well-known relations for an equilibrium system onto
the case of inhomogeneous system. The conservation
law for particles and the energy in the system can be
written as follows:∫︁
𝑛(r)𝑑r = 𝑁,

∫︁
𝐻(r)𝑑r = 𝐸. (5)

For the further statistical description of the non-
equilibrium system, it is necessary to define the
Hamiltonian of the system,

𝐻 =
∑︁
𝑖

𝑝2𝑖
2𝑚𝑖

+
1

2

∑︁
𝑖,𝑗

𝑉 (r𝑖, r𝑗), (6)

where the potential energy of interaction consists of
two terms,

𝑉 (r𝑖, r𝑗) = −𝑊 (r𝑖, r𝑗) + 𝑈(r𝑖, r𝑗), (7)

Namely, 𝑊 (r𝑖r𝑗) and 𝑈(r𝑖r𝑗) describe the attraction
and repulsion, respectively. Then the energy density
looks like

𝐻(r) =
𝑝2(r)

2𝑚(r)
𝑛(r)− 1

2

∫︁
𝑊 (r, r′)𝑛(r)𝑛(r′)𝑑r′ +

+
1

2

∫︁
𝑈(r, r′)𝑛(r)𝑛(r′)𝑑r′. (8)

This representation can be used, if we divide the
whole space into equal regions with the same mass
and consider their motion in the phase space as the
flow of an incompressible fluid. For a system of inter-
acting particles, the non-equilibrium statistical oper-
ator can be written in the form

𝑄𝑙 =

∫︁
𝐷Γ exp [𝑆(r)]𝑄int, (9)

where

𝑆(r) = −
∫︁ [︂

𝛽(r)
𝑝2(r)

2𝑚(r)
− 𝜂(r)

]︂
𝑛(r)𝑑r, (10)
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𝑄int = exp

{︂
−1

2

∫︁
𝛽(r)𝑉 (r, r′)𝑛(r)𝑛(r′)𝑑r𝑑r′

}︂
. (11)

The integration over the phase space means

𝐷Γ =
1

(2𝜋~)3
∏︁
𝑖

𝑑𝑟𝑖𝑑𝑝𝑖.

In order to formally integrate in the second part
of this representation, additional field variables can
be introduced with the use of the theory of Gaussian
integrals [12, 13]:

exp

{︂
−𝜈

2

2

∫︁
𝛽𝜔𝑛𝑛′𝑑𝑟𝑑𝑟′

}︂
=

=

∫︁
𝐷𝜎 exp

{︂
−𝜈

2

2

∫︁
(𝛽𝜔)−1𝜎𝜎′𝑑𝑟𝑑𝑟′−𝜈

∫︁ √︀
𝛽𝜎𝑛𝑑𝑟

}︂
.

(12)
Here,

𝐷𝜎 =

∏︀
𝑠 𝑑𝜎𝑠√︀

det 2𝜋𝛽𝜔(r, r′)

and 𝜔−1(r, r′) is an inverse operator that satisfies the
condition 𝜔−1(r, r′)𝜔(r′, r′′) = 𝛿(r − r′′). The inter-
action energy is Green’s function for this operator,
and 𝜈2 = ±1 depending on the sign of the interaction
or potential energy. After the proposed transforma-
tion, the field of the variable 𝜎(r) contains the same
information as the initial distribution function does,
i.e. all information about possible spatial states of the
system. Now, the statistical operator can be rewrit-
ten in the form

𝑄𝑙 =

∫︁
𝐷Γ𝐷𝜙𝐷𝜓×

× exp

{︂
−
∫︁
𝑠(r)𝑛(r)𝑑r−

∫︁
𝑣(r, r′)𝑑r𝑑r′

}︂
, (13)

where

𝑠(r) = 𝛽(r)
𝑝2(r)

2𝑚(r)
+𝜂(r)+

√︀
𝛽(r))𝜓(r)+𝑖

√︀
𝛽(r))𝜙(r),

(14)

and the part that originates from the interaction
equals

𝑣(r, r′) =
1

2

[︀
𝛽(r)𝑊 (r, r′)

]︀−1
𝜓(r)𝜓(r′)−

− 1

2

[︀
𝛽(r)𝑈(r, r′)

]︀−1
𝜙(r)𝜙(r′). (15)

In the general functional integral, the integration
can be carried out over the phase space, if we use the
definition of particle concentration and sum up over
the occupation numbers. The mathematical transfor-
mations for this functional can be found in original
works [37–40]. Afterward, the non-equilibrium statis-
tical operator can be rewritten in the form

𝑄𝑙 =

∫︁
𝐷𝜙𝐷𝜓𝑑𝜉 exp {−𝑆(𝜙(r), 𝜓(r), 𝜉(r), 𝛽(r))},(16)

where the effective non-equilibrium “local thermody-
namic potential” reads

𝑆 = −1

2

∫︁ [︀
𝛽(r)𝑊 (r, r′)

]︀−1
𝜓(r)𝜓(r′)−

− 1

2

∫︁ [︀
𝛽(r)𝑈(r, r′)

]︀−1
𝜙(r)𝜙(r′)𝑑r𝑑r′ −

−
∫︁ [︂

𝜉(r)

(︂
2𝜋𝑚(r)

~3𝛽(r)

)︂3/2
×

× exp
√︀
𝛽(𝑟)𝜓(r) cos

(︁√︀
𝛽(r))𝜙(r

)︁]︂
𝑑r. (17)

Here, the introduced new variable 𝜉(r) ≡ exp 𝜂(r) can
be interpreted as the chemical activity. The statisti-
cal operator in the presented form makes it possible
to apply effective methods developed in the quantum
field theory, but imposing no additional integration
restrictions on the field variables and using no per-
turbation theory.

The functional 𝑆(𝜙(r), 𝜉(r), 𝛽(𝑟)) depends on the
distributions of field variables, 𝜙(r), chemical activ-
ity, 𝜉(r), and inverse temperature, 𝛽(r). Now, we can
use the saddle-point method to find the asymptotic
value of the statistical operator 𝑄𝑙, if the number of
particles𝑁 tends to infinity (𝑁 → ∞). The dominant
contributions are made by the states that satisfy the
conditions of functional extremum. It is evident that
the saddle-point equations are thermodynamic rela-
tions, and they can be written as equations for the
field variable,

𝛿𝑆

𝛿𝜙(r)
= 0,

𝛿𝑆

𝛿𝜓(r)
= 0, (18)

provided that the number of particles is constant,

𝛿𝑆

𝛿(𝜂(r))
= −

∫︁
𝛿𝑆

𝛿(𝜉(r))
𝜉(r))𝑑r = 𝑁, (19)
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and the energy of the system is conserved,

−
∫︁

𝛿𝑆

𝛿(𝛽(r))
𝜉(r))𝑑r = 𝐸. (20)

The solutions of the equations obtained in such a
way completely determine all thermodynamic param-
eters and describe the general behavior of the sys-
tem of interacting particles irrespective of whether
the corresponding particle distribution is spatially in-
homogeneous or not. In principle, the equations pre-
sented above describe a multiparticle problem in the
thermodynamic limit. A spatially inhomogeneous so-
lution of those equations corresponds to the distribu-
tion of interacting particles. Such heterogeneous be-
havior is related to the nature and intensity of interac-
tion. In other words, the accumulation of particles in
a finite spatial region (the formation of inhomogene-
ity) reflects the spatial distribution of fields, activity,
and temperature. It is very important to note that
this is the approach where the non-uniform distribu-
tion of the temperature, which may depend on the
spatial distribution of particles in the system, can be
taken into account.

3. Systems of Particles
with Long-Range Interaction

The definition of 𝑄𝑙 contains the inverse interaction
energy operator. Therefore, for the further descrip-
tion, we have to determine this operator. Let us firstly
consider a system with attractive gravitational inter-
action. In the general case of long-range interactions,
such as the Coulombic interaction or Newtonian grav-
itational one, the inverse operator in the continuous
limit can be given by the formula

𝑈−1(r, r′) = − 1

4𝜋𝐺𝑚2
△r𝛿(r− r′) = 𝐿𝜓rr′𝛿(r− r′),

(21)

where Δr is the Laplace operator in the real
space. The number of realistic interactions for which
the inverse operator can be found is confined. Dif-
ficulties in obtaining the inverse operator can be
avoided by introducing a collective variable that cor-
responds to the relation between the introduced fields
at the saddle-point trajectories. It is known from the
cosmology that two masses move away from each
other at the velocity 𝑣 = 𝐻 |r− r′|, where 𝐻 is the
Hubble constant, and |r− r′| is the distance between

them. The kinetic energy of the relative motion of
each mass can be written in the form

𝑇 =
𝑚(r)

2
𝐻2(r− r′)2

and transformed into the energy of interaction be-
tween two masses located at different spatial points,

𝑊 (r)− r′) =
𝑚(r)

2
𝐻2(r− r′)2 +

𝑚(r′)

2
𝐻2(r− r′)2,

(22)

For a homogeneous mass distribution, this formula
can be rewritten in the form 𝑊 (r−r′) = 𝑚(r)𝐻2(r−
− r′)2. Then, the inverse operator looks like

𝐿𝜙rr′ =
1

𝑚𝐻2

𝑑2

𝑑𝑟2
. (23)

In our case (long-range attraction and even longer-
range repulsion between the particles), let us rewrite
the non-equilibrium statistical operator in the form

𝑄𝑙 =

∫︁
𝐷𝜙𝐷𝜓𝑑𝜉 exp {−𝑆(𝜙(r), 𝜓(r), 𝜉(r), 𝛽(r))},

(24)

where the effective non-equilibrium “local thermody-
namic potential” reads

𝑆(𝜙(r), 𝜓(r), 𝜉(r), 𝛽(r)) =

=

∫︁
1

2𝑟𝜙
𝜙(r)𝐿𝜙rr′𝜙(r

′) +
1

2𝑟𝜓
𝜓(r)𝐿𝜓rr′𝜓(r

′)+

+ 𝜉(r)Λ−3 exp
√︀
𝛽(𝑟)𝜓(r) cos

[︁√︀
𝛽(r)𝜙(r)

]︁
𝑑r. (25)

Here, the quantities 𝛽, 𝜙, and 𝜓 depend on the spa-
tial coordinate. In this representation, we used the de
Broglie thermal wavelength

Λ(r) =

(︂
2𝑚(r)

~2𝛽(r)

)︂1/2
and defined the interaction lengths

𝑟𝜓(r) = 4𝜋𝐺𝑚2𝛽(𝑟),

𝑟𝜙(r) =
2

𝑚𝐻2
.

(26)

Now, knowing the representation for the distribution
function, we can describe various real systems and
determine the thermodynamic parameters for a non-
equilibrium system.
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4. System of Particles
with Repulsive Interaction

First of all, let us consider a system characterized by
only a repulsive interaction between the particles. In
this case, 𝜓 = 0, and we can express the “local ther-
modynamic potential” in the simple form

𝑆 =

∫︁ {︂
1

2
𝜙(r)𝐿rr′𝜙(r

′)+

+ 𝜉(r)Λ−3(r) cos
[︁√︀

𝛽(r)𝜙(r)
]︁}︂
𝑑r. (27)

The functional 𝑆(𝜙(r), 𝜉(r), 𝛽(𝑟)) depends on the
field, chemical activity, and inverse temperature dis-
tributions. In order to find the asymptotic value of
the statistical operator 𝑄𝑙, we can use the saddle-
point method, if the number of particles 𝑁 tends to
infinity. In this case, the dominant contributions are
made by the states that satisfy the extremum con-
dition for the functional. It can be shown that the
saddle-point equation is a thermodynamic relation
that can be reduced to the equation for the field vari-
able,

𝛿𝑆

𝛿𝜙(r)
= 0,

the condition that the number of particles is constant,

𝛿𝑆

𝛿(𝜂(r))
=

∫︁
𝛿𝑆

𝛿(𝜉(r))
𝜉(r)𝑑r = 𝑁,

and the conservation law for the energy of the system,∫︁
𝛿𝑆

𝛿𝛽(r)
𝜉(r)𝑑r = 𝐸.

The solutions of the equations given above completely
determine all thermodynamic functions and describe
the general behavior of interacting systems with spa-
tially homogeneous or inhomogeneous particle distri-
butions. The indicated system of equations solves, in
principle, the many-particle problem in the thermo-
dynamic limit. It is very important to note that only
this approach allows one to consider the inhomoge-
neous temperature distribution that may depend on
the spatial distribution of particles in the system.

In order to obtain more information about the be-
havior of interacting systems, let us introduce some
new variables. From the constancy condition for the

particle number,
∫︀
𝜌(r)𝑑r = 𝑁 , let us introduce the

macroscopic density function

𝜌(r) ≡ Λ−3(r)𝜉(r) cos(
√︀
𝛽(r)𝜙(r)). (28)

In the absence of an interaction (free particles),
𝜙(r) = 0. Then, if we express the chemical ac-
tivity in terms of the chemical potential, 𝜉(r) =
= exp(𝜇(r)𝛽(r)), we obtain the known relation
𝛽(r)𝜇(r) = ln 𝜌(r)Λ3(r), which generalizes the rela-
tion from the equilibrium statistical mechanics [21].
Now, the equation for energy conservation takes the
form

1

2

∫︁
𝜌(r)

𝛽(r)

{︁
3−

√︀
𝛽(𝑟)𝜙(r) tan

[︀√︀
𝛽(r)𝜙(r)

]︀}︁
𝑑r = 𝐸.

(29)

From whence, we obtain the relation for the chemical
potential,

𝛿𝐸

𝛿𝑉

𝛿𝑉

𝛿𝑁
=

1

2

𝜌(r)

𝛽(r)
×

×
{︁
3−

√︀
𝛽(𝑟)𝜙(r) tan

[︁√︀
𝛽(r)𝜙(r)

]︁}︁
= 𝜇(r)𝜌(r), (30)

which results in the following formula for the chemical
potential:

𝜇(r)𝛽(r) =
3

2
− 1

2

√︀
𝛽(𝑟)𝜙(r) tan

[︁√︀
𝛽(r)𝜙(r)

]︁
. (31)

The same approach also brings us to the equation of
state of the type

𝑃 =
1

𝛽

𝛿𝑆

𝛿𝑉
.

The corresponding local equation of state looks like

𝑃 (r)𝛽(r) = 𝜌(r)

[︂
𝜇(r)𝛽(r)− 1

2

]︂
. (32)

For the ideal gas, we obtain the known equation of
state, because 𝜙(r) = 0 and 𝑃𝛽 = 𝜌. In this case, we
obtain 𝜇(r)𝛽(r) = 3/2, and the equation of state re-
produces the equation of state for the ideal gas. The
energy of the system equals 𝐸 = 3

2𝑁𝑘𝑇 . This formula
corresponds to the well-known results [21]. On the ba-
sis of Eq. (32), a conclusion can be drawn that the
condition 𝜇(r)𝛽(r) < 1/2 corresponds to the appear-
ance of a negative pressure, 𝑃 (r)𝛽(r) < 0, and this re-
sult satisfies the necessary condition of vacuum in the
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general theory of relativity. This condition is fulfilled
in the realistic state

√︀
𝛽(𝑟)𝜙(r) tan

[︁√︀
𝛽(r)𝜙(r)

]︁
< 2

for the constant temperature and for the total energy
𝐸 < 1

2𝑁𝑘𝑇 . This assumes that the energy of every
particle is lower than the thermal energy. In this spe-
cific case, the energy of the system is lower than the
total thermal energy of the particles. This very spe-
cific condition can be associated with particular prop-
erties of the vacuum, If the definition of the chemical
potential is taken into account, we can rewrite the
density in the form

𝜌(r) ≡ Λ−3
𝑒 (r) exp

[︂
1

2
𝜎(r) tan𝜎(r)

]︂
cos𝜎(r), (33)

where a new variable 𝜎 =
√︀
𝛽(𝑟)𝜙(r) was introduced,

and the de Broglie wavelength is redefined:

Λ𝑒 =

[︂
~2𝛽(r)𝑒
2𝑚(r)

]︂1/2
.

The local thermodynamic potential can be rewritten
in the form

𝑆 =

∫︁ {︃
1

2

𝜎(r)√︀
𝛽(𝑟)

𝐿rr′
𝜎(r′)√︀
𝛽(𝑟)

+

+Λ−3
𝑒 (r) exp

[︂
1

2
𝜎(r) tan𝜎(r)

]︂
cos𝜎(r)

}︃
𝑑r. (34)

If the temperature and the mass of particles are
constant, the local entropy can be determined in the
mean-field approximation:

𝑆 =

∫︁ {︂
1

2𝛽
𝜎(r)𝐿rr′𝜎(r

′)+

+Λ−3
𝑒 exp

[︂
−1

2
𝜎(r) tan𝜎(r)

]︂
cos𝜎(r)

}︂
𝑑r. (35)

Now, the equation for the field variable can be rewrit-
ten in the form

𝐿rr′𝜎(r
′)− 𝛽

𝑑𝑉 (𝜎)

𝑑𝜎
= 0, (36)

where the potential energy

𝑉 = Λ−3
𝑒 exp

[︂
−1

2
𝜎(r) tan𝜎(r)

]︂
cos𝜎(r)

is a function of the field variable. This potential has a
minimum, if 3 sin 2𝜎 = −2𝜎. At small 𝜎-values, there

exist two different solutions, 𝜎 = 0 and 𝜎2 = 1, the
effective potential takes a very simple form, 𝑉 (𝜎) =
= (1− 𝜎2), and the equation for the field variable
reads: 𝐿rr′𝜎(r

′) + 2𝛽𝜓 = 0. In the general case, the
potential energy of the field has an oscillatory charac-
ter with a decreasing amplitude. Then one can ana-
lyze the possible spatial solution for the field variable
and the behavior of this field in the time.

If the inverse operator is determined, we can find
the spatial dependence of the fundamental scalar field
by solving the equation

1

𝑚𝐻2

𝑑2𝜎

𝑑𝑟2
− 𝛽

𝑑𝑉 (𝜎)

𝑑𝜎
= 0. (37)

At small 𝜎, it transforms into the equation

𝑑2𝜎

𝑑𝑟2
+ 2𝛽𝑚𝐻2𝜎 = 0, (38)

which has the periodic solution 𝜎 = cos(
√
2𝑚𝛽𝐻𝑟)

with the spatial period equal to 2𝜋/(
√
2𝑚𝛽𝐻). At

distances shorter than this value, the fundamental
scalar field can be assumed constant in the space, but
it can change in the time. To determine the evolution
of such a field, we can formulate a dynamic equation.

In particular, this solution can describe the for-
mation of a bubble of a new phase in the inflation
theory of the Universe [42–44], whereas the intro-
duced field variable plays the role of the fundamen-
tal scalar field and makes allowance for a repulsive
interaction in the considered system. In this sense,
the Ginzburg–Landau equation for the fundamental
scalar field written in the standard form can be used
as a dynamic field equation,

𝜕𝜎(r, 𝑡)

𝜕𝑡
= −𝛾 𝛿𝑆

𝛿𝜎(r)
= −𝛾 𝑑𝑉 (𝜎)

𝑑𝜎
, (39)

where 𝛾 is the dynamic viscosity coefficient [50]. This
is an evolutionary equation, which is virtually ap-
plicable to a number of systems with the non-
conservative order parameter. We may assume that
the dynamics of the Universe is governed by the en-
tropy growth. The evolution in the non-equilibrium
state will be determined under the influence of the
entropy landscape and the morphological instability
of the parameters. The dynamics of the system is dis-
sipative, which can lead to a local reduction of the
entropy.
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5. System with Coulombic-Type Interaction

Systems of particles with Coulombic interaction
(Coulombic-like systems) – such as plasma, colloidal
systems, electrolyte solutions, electron gas in solids,
and so forth – are widely spread both in the Nature
and under the laboratory conditions. Soft matter of
a lot of types – such as surfactant solutions, colloids
in various solvents, and dust particles in plasma –
demonstrates the self-organization. One of the most
important problems in this case is the statistical de-
scription of Coulombic systems with high concen-
trations of interacting particles. As the particle con-
centration increases, the formation of various crystal
structures, transitions between crystal phases with
different symmetries, or melting take place. The the-
oretical description of such systems is rather com-
plicated, because the standard methods of statisti-
cal mechanics cannot be applied to inhomogeneous
systems with the Coulombic interaction. So, there
emerges the necessity to use methods that would
account for the contribution of dominant configu-
rations to the distribution function and, simultane-
ously, would not lead to divergences in the free energy,
when the system volume infinitely increases. The pur-
pose of this review consists in applying the quantum-
mechanical field approach to both the statistical de-
scription of a Coulombic system and the calculation
of the thermodynamic characteristics for the homo-
geneous or inhomogeneous distribution of interacting
particles, as well as to studying the space-periodic
condensed structures. Below, we will consider electri-
cally neutral systems. Either the Coulombic interac-
tion potential or the effective screened potential will
be used depending on the applied model. In the case
of a Coulombic system that is neutral in whole, the
inverse operator for the screened interaction in the
limiting continuum case should be considered in the
operator sense, i.e.

𝑈−1(r, r′) = − 1

4𝜋𝐺𝑄2
(Δr − κ2(r))𝛿(r− r′) =

= 𝐿𝜓rr′𝛿(r− r′), (40)

where, as before, Δr is the Laplace operator in the
real space, and κ(r) is the inverse screening length. In
our case, the relation

(∇𝜙(r))2 = ∇(𝜙(r)∇𝜙(r))− 𝜙(r)Δ𝜙(r)

can be used to determine the “local thermodynamic
potential”. When integrating it, the integral of the

first term can be represented as a surface integral with
𝜙(r) = 0 at the surface. Then the local entropy can
be represented in the form

𝑆 =

∫︁
𝑑r

{︂
1

2𝑟𝑒

[︀
(∇𝜙(r))2 + κ2𝜙2r

]︀
−

− 𝜉(r)Λ−3(r) cos𝜙(r)

}︂
,

where 𝑟𝑒 = 4𝜋𝑄2𝛽, if the temperature is constant.
Let us consider a one-dimensional system with

a linear particle concentration. A charge distributed
along a macromolecule can be regarded as an exam-
ple of such a system. Let us consider a cylindrical
molecule with length 𝐿 and radius 𝑟 ≪ 𝐿. Let the
Coulombic charges be located on the cylinder axis. In
this case, the problem can be solved exactly. In par-
ticular, the local thermodynamic potential of a sys-
tem of charged particles in the one-dimensional case
can be represented as follows:

𝑆 =
𝑉

𝐿

𝐿∫︁
0

𝑑𝑧

{︃
1

𝑟𝑒

(︂
𝑑𝜙

𝑑𝑧

)︂2
− 𝜉Λ−3 cos𝜙

}︃
,

and the equation for the saddle-point field looks like
the sine-Gordon equation,

1

𝑟𝑒

(︂
𝑑2𝜙

𝑑𝑧2

)︂
+ 𝜉Λ−3 sin𝜙 = 0.

The field equation has the first integral

1

𝑟𝑒

(︂
𝑑𝜙

𝑑𝑧

)︂2
+ 𝜉Λ−3 cos𝜙 = 𝐶

and the exact solution

𝜙 = 4arctan exp
(︁
𝑧
√︀
𝑟𝑒𝜉Λ−3

)︁
.

Substituting this solution into the expression for the
local entropy, we obtain

𝑆 = 2𝜉Λ−3𝑉

{︂
2𝐸(𝑝)

𝑝2𝐾(𝑝)
− 1

𝑝2
+ 1

}︂
− 𝜉Λ−3𝑉,

where

𝑝 =

√︃
2𝜉Λ−3

𝐶 + 𝜉Λ−3
.
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Finally, by applying the normalization condition, we
obtain the following exact expression for the local
entropy:

𝑆 = 𝑆𝐵 + 8

(︂
𝑁
𝐿

𝑟𝑒

)︂1/2
.

So, the local entropy of interacting particles increases
with the particle number and/or the size of the sys-
tem.

The spatial boundary conditions may be responsi-
ble for the appearance of a periodic structure. The

period of the structure equals 𝑙 = 𝐿
(︁

𝐿
𝑁)𝑟𝑒

)︁1/2
and

increases, as the particle number decreases. Such a
system is homogeneous on the macroscopic scale, but
the particles can be periodically distributed in space.

In the case of a two-dimensional system, the exact
solution can be obtained for a uniform particle distri-
bution. Let us consider the Coulombic-like potential

𝜔𝑖𝑗 =
𝑄2

⟨𝑟⟩
lnκ𝑟𝑖𝑗 ,

where 𝑟𝑖𝑗 is the distance between the particles, and
⟨𝑟⟩ is its average value. This model potential has
the same form as the interaction potential between
two uniformly charged lines in the three-dimensional
space. Hence, the motion of real charges in a two-
dimensional plane is similar to the motion of parallel
lines oriented perpendicularly to the plane of a two-
dimensional system. In the continuous limit, the cor-
responding partition function can be written in the
standard form:

𝑍𝑁 =

∫︁
exp [−𝛽𝐻(𝑟, 𝑝)] 𝑑𝑁r𝑑𝑁p,

where the Hamiltonian equals

𝐻(𝑟, 𝑝) =
∑︁
𝑖

𝑝2𝑖
2𝑚

+
1

2

∑︁
𝑖,𝑗

𝜔𝑖𝑗 .

In the two-dimensional case, the equation of state can
be obtained from the relation

𝑃 = 𝑘𝑇
𝜕 ln𝑍𝑛
𝜕𝑆

,

where 𝑆 is the squared circle radius𝑅. By introducing
the dimensionless variable 𝑟𝑖 = 𝑟𝑖/𝑆

1/2, the partition
function can be rewritten in the form

𝑍𝑁 = 𝑆𝑁
∫︁

exp [−𝛽𝐻(𝑟, 𝑝)] 𝑑𝑁r′𝑑𝑁p′, 𝑟′𝑖 =
𝑟𝑖
𝑆1/2

.

Then the derivative of the partition function with re-
spect to the “volume” can be represented as follows:

𝜕𝑍𝑁
𝜕𝑆

=
𝑁𝑍

𝑆
− 𝑆𝑁

𝑘𝑇
×

×
∫︁

exp (−𝛽𝐻)
1

2

∑︁
𝑖,𝑗

𝑟𝑖𝑗
2𝑆

𝜕𝜔𝑖𝑗
𝜕𝑟𝑖𝑗

𝑑𝑁r′𝑑𝑁p′

or

𝜕𝑍𝑁
𝜕𝑆

=
𝑁𝑍

𝑆
− 𝑁(𝑁 − 1)𝑍

4𝑆𝑘𝑇
.

Substituting this result into the equation of state,
we obtain the following exact solution for the two-
dimensional Coulombic system:

𝑃𝑆 = 𝑁𝑘𝑇

{︂
1 +

(𝑁 − 1)𝑄2

4𝑘𝑇 ⟨𝑟⟩

}︂
.

If we take into account that the average distance
between the particles, ⟨𝑟⟩, is proportional to 𝑛−1/2,
where 𝑛 is the surface concentration of particles, we
can show that, in the case of high concentration,
the system of interacting particles becomes unstable,
so that an inhomogeneous particle distribution may
arise. The inhomogeneous distributions of this kind
are a result of the long-range character of the Cou-
lombic interaction. In the case of intense interaction,
the Coulombic-like system is unstable in general, so
the minimum value of the thermodynamic potential
is reached in the case where the particle distribution
is inhomogeneous.

Let us apply the proposed approach to find the
states associated with Wigner crystals. In the two-
dimensional case, the effective thermodynamic poten-
tial can be written as follows:

𝑆 =
𝑉

𝑆

∫︁
𝑑𝑥𝑑𝑦

{︂
1

𝑟𝑒

(︀
(∇𝜙)2 + κ2𝜙2

)︀
− 𝜉Λ−3 cos𝜙

}︂
,

where 𝑉/𝑆 = ℎ is the thickness of the two-
dimensional layer. In the general case, the equation
for saddle-point states takes the form
1

𝑟𝑒

{︀
Δ2𝜙− κ2𝜙

}︀
+ 𝜉Λ−3 sin𝜙 = 0,

where Δ2 is the Laplace operator in the two-
dimensional case. Thus, we obtain the first integral
in the form
1

𝑟𝑒

[︀
(∇𝜙)2 − κ2𝜙2

]︀
+ 𝜉Λ−3 cos𝜙 = 𝐸,
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where 𝐸 is an integration constant, which is to be
determined from the condition that a solution for
the field does exist. Although this equation cannot
be solved in the general case, it is a tool to study
numerous Coulombic systems with interaction under
various external conditions. In particular, the chem-
ical activity can be obtained from the normalization
condition (𝑉/𝑆)

∫︀
𝑑𝑥𝑑𝑦𝜉Λ−3 cos𝜙 = 𝑁 . In terms of

the density function 𝜌, the first integral can also be
written in the form

𝑆 =
𝑉

𝑆

∫︁
𝑑𝑥𝑑𝑦

{︂
𝐸 + 2

κ2

𝑟𝑒
arccos2

(︂
𝜌

𝜉Λ−3

)︂
− 2𝜌

}︂
,

where the value of the integral over the coordinate
space is evaluated in terms of the averaged concen-
tration.

From the minimization condition for the effective
local entropy, we draw a conclusion that the solution
exists, if 𝜉Λ−3 = 𝜌0. Then the effective local entropy
takes the form

𝑆 ≃ 𝑆𝐵 +𝑁

{︂
𝜋2κ2

4𝑛𝑟𝑒
− 1

}︂
.

Let us use the approach proposed above to describe
a stationary system of dust particles in weakly ion-
ized plasma. In this case, the method again allows us
to determine the states that give the dominant con-
tribution to the distribution function, i.e. this is the
saddle-point approximation. In the general case, the
equation for saddle points looks like

1

𝑟𝑒

{︀
Δ𝜙− κ2𝜙

}︀
+ 𝜉Λ−3 sin𝜙 = 0.

The difficulty consists in that we do not know a
three-dimensional solution of the sine-Gordon equa-
tion, which would determine the field variable under
the normalization condition∫︁
𝑑𝑉 𝜉Λ−3 cos𝜙 = 𝑁.

It should be noted that this condition makes it pos-
sible to introduce the concentration of particles as
𝜌(r) = 𝜉Λ−3 cos𝜙(r). From whence, it follows that
the first integral of the equation can be written in
the form

1

𝑟𝑒

{︀
(∇𝜙)2 + κ2𝜙2

}︀
+ 𝜉𝐴 cos𝜙 = 𝐸,

where 𝐸 is an integration constant. Similarly to the
two-dimensional case, this equation cannot be solved
explicitly.

Like the two-dimensional Coulombic system, the
examined system becomes unstable as a whole in the
case of intense interaction, so the minimum value of
the free energy is achieved at an inhomogeneous par-
ticle distribution. Let us determine the states associ-
ated with the formation of Wigner crystals. Taking
into account that the distribution density is always
positive and assuming that the Wigner crystal does
exist, let us select the periodic density distribution
function in the form

𝜌(r) = 𝜉Λ−3 cos𝜙(r) =

= 𝜉Λ−3 {1 + cos(𝑘𝑥𝑥) + cos(𝑘𝑦𝑦) + cos(𝑘𝑧𝑧)}, (41)

which corresponds to a cubic lattice with the wave
vector k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧). Supposing that there is one
charged particle at every lattice site, and the lattice
is isotropic, so that 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 2𝜋𝑛1/3, where
𝑛 = 𝑁/𝑉 is the particle concentration, we obtain
from the normalization condition that 𝜉 = 𝑁

Λ−3𝑉 . On
the basis of the first integral for the field variable, we
can conclude that the local entropy looks like

𝑆 = 𝑆𝐵 +𝑁

{︂
𝜋2κ2

4𝑛𝑟𝑒
− 1

}︂
.

Then, introducing the coupling parameter Γ𝑒 = 𝑟𝑒𝑛
1
3 ,

which is equal to the ratio between the Coulombic in-
teraction and kinetic energies, we obtain the relation
for the critical value of the coupling parameter,

Γ𝑒 ≥ 4𝜋2κ2𝑛
2
3 ≡ (2𝜋κ𝐿)2,

where 𝐿 is the lattice period. If this condition is sat-
isfied, one may expect the formation of a crystalline
structure.

Just such structures are observed in the case of
dust plasma. As a structural parameter, we use the
lattice constant 𝐿 (the distance between the particles
normalized by the effective screening length). As a
result, we obtain

Γ𝑒 ≥ (2𝜋𝑙)2, 𝑙 ≡ κ𝐿.

This relation gives values that are of the same order of
magnitude as the result of the numerical simulation.
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6. Self-Gravitating System

Not less interesting are systems with purely attrac-
tive interaction. An example of such a situation is the
behavior of a self-gravitating system. The solution
of the saddle-point equation completely determines
all thermodynamic parameters for the field 𝜓, which
describes the general behavior of a self-gravitating
system both in the cases of spatially homogeneous
and inhomogeneous particle distributions. In other
approaches, the dependence of the temperature on
the spatial point is introduced through the polytropic
dependence of the temperature on the particle con-
centration in the equation of state [19]. As a result,
this dependence follows from the required thermody-
namic state and can be found for various particle dis-
tributions.

Now, let us derive the saddle-point equation for the
limiting values

𝑄𝑙 =

∫︁
𝐷𝜙𝐷𝜓𝑑𝜉 exp {𝑆(𝜓(r), 𝜉(r))} (42)

of the local thermodynamic function

𝑆 =

∫︁ [︃
1

2𝑟𝜓
𝜓(r)𝐿𝜓rr′𝜓(r

′)+

+ 𝜉(r)Λ−3 exp
√︀
𝛽(𝑟)𝜓(r)

]︃
𝑑r. (43)

In the absence of a repulsive interaction (𝜙 = 0), the
equation for the field variable, 𝛿𝑆/𝛿𝜓 = 0, brings
about the expression

1

𝑟𝑚
Δ𝜓(r) + 𝜉(r)

(︂
2𝜋𝑚

~2𝛽(r)

)︂3/2
×

×
√︀
𝛽(𝑟) exp (

√︀
𝛽(𝑟)𝜓(r)) = 0, (44)

where the notation 𝑟𝑚 ≡ 4𝜋𝐺𝑚2 was introduced for
the gravitational interaction length. The normaliza-
tion condition can be written in the form∫︁
𝜉(r)

(︂
2𝑚

~2𝛽(r)

)︂3/2
exp (

√︀
𝛽(𝑟)𝜓(r))𝑑r = 𝑁, (45)

and the conservation law for the energy of the system
looks like

1

2

∫︁ (︂
2𝜋𝑚

~2𝛽(r)

)︂3/2
𝜉(r)

𝛽(r)

[︁
3−

√︀
𝛽(𝑟)𝜓(r)

]︁
×

× exp(
√︀
𝛽(𝑟)𝜓(r)) 𝑑r = 𝐸. (46)

In order to obtain a more information about the be-
havior of the self-gravitating system, we introduce
new variables. The preservation of the particle num-
ber

∫︀
𝜌(r)𝑑r = 𝑁 gives us the following expression

for the density function:47

𝜌(r) ≡
(︂

2𝜋𝑚

~2𝛽(r)

)︂3/2
𝜉(r) exp(

√︀
𝛽(r)𝜓(r)), (47)

which simplifies the previously obtained equation. In
this case, the equation for the field variable is taken
in the form

Δ𝜓(r) + 𝑟𝑚
√︀
𝛽(r)𝜌(r) = 0. (48)

If the temperature and the chemical activity are con-
stant, this equation transforms into the well-known
equation for the gravitational potential 𝜓 =

√︀
𝛽(r)𝜓,

Δ𝜓(r) = −4𝜋𝐺𝑚2𝛽𝜌(r). (49)

The energy conservation equation looks now like

1

2

∫︁
𝜌(r)

𝛽(r)

[︁
3−

√︀
𝛽(𝑟)𝜓(r)

]︁
𝑑r = 𝐸. (50)

The equations obtained in such a way cannot be
solved in the general case. However, some variants of
the self-gravitating system behavior under various ex-
ternal conditions can be analyzed. The chemical ac-
tivity can be rewritten in terms of the chemical poten-
tial, 𝜉(r) = exp(𝜇(r)𝛽(r)). By differentiating Eq. (50)
with respect to the volume, we obtain the equation
for the chemical potential,

1

2

𝜌(r)

𝛽(r)

[︁
3−

√︀
𝛽(𝑟)𝜓(r)

]︁
=
𝛿𝐸

𝛿𝑉
=

=
𝛿𝐸

𝛿𝑁

𝛿𝑁

𝛿𝑉
= 𝜇(r)𝜌(r). (51)

From whence, we have

𝜇(r)𝛽(r) =
3

2
− 1

2

√︀
𝛽(𝑟)𝜓(r)). (52)

By introducing the reduced thermal de Broglie wave-
length

Λ(r) =

(︂
~2𝛽(r)
2𝑚𝑒

)︂1/2
and the gravitation length

𝑅𝑔(r) = 2𝜋𝐺𝑚2𝛽(r),

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 12 1067



B.I. Lev, A.G. Zagorodny

all the equations and normalization conditions can be
rewritten in terms of the density and temperature,

Δ

(︃
ln(Λ3(r)𝜌(r))√︀

𝛽(r)

)︃
+

𝑅𝑔(r)√︀
𝛽(r)

𝜌(r) = 0. (53)

The formula for the chemical potential is reduced to
the expression

𝜇(r)𝛽(r) =
3

2
− ln(Λ3(r)𝜌(r)). (54)

Thus, we can obtain the equation of state for a
self-gravitating system, if we use the thermodynamic
relation for the conservation of the energy 𝐸,

𝑃 = − 1

𝛽

𝛿𝑆

𝛿𝑉
. (55)

From the definition of the particle concentration, it
follows that

𝑆 =

∫︁ [︀
−𝜌(r) ln(Λ3(r)𝜌(r)− 𝜌(r)

]︀
𝑑r, (56)

so that the local equation of state can be written in
the form

𝑃 (r)𝛽(r) = 𝜌(r)(1− ln(Λ3(r)𝜌(r)) =

= 𝜌(r)

(︂
𝜇(r)𝛽(r)− 1

2

)︂
. (57)

In the classical case, Λ3(r)𝜌(r) ≪ 1 and 𝑃𝛽 ≡ 𝜌. At
Λ3(r)𝜌(r) = 1, we obtain the equation of state for the
ideal gas.

7. Particle and Temperature
Distributions in a Self-Gravitating System

7.1. Homogeneous particle distribution

First of all, let us consider the equilibrium state, when
the parameters do not depend on the spatial coordi-
nates. In this case, the energy and the total number
of particles are fixed, and, furthermore, the temper-
ature and the chemical potential do not vary in the
space. Then the equation for the particle distribution

Δ𝜓(r) + 𝑟𝑚
√︀
𝛽(r)𝜌(r) = 0 (58)

leads to a simple state with
√
𝛽𝜌 = 0, which can be

realized, only if 𝑇 → ∞. Hence, the distribution of
particles in a self-gravitating system can be homoge-
neous only at very high temperatures.

Another interesting case takes place, if only the
particle concentration depends on the coordinate,
whereas the temperature is fixed. Then the equation
for the density takes the form

Δ
(︀
ln Λ3𝜌(r)

)︀
+𝑅𝑔𝜌(r) = 0 (59)

and can be transformed into

Δ(ln 𝜌(r)) +𝑅𝑔𝜌(r) = 0. (60)

Equation (60) has the exact solution 𝜌(r) = 2/(𝑅𝑔𝑟
2),

but the normalization condition is obeyed only in
the case of a fixed volume with the size 𝑅 =
= (𝑁𝐺𝑚2)/(4𝑘𝑇 ) and the fixed energy 𝐸 = 𝑁𝑘𝑇 .
Then the change of the chemical potential in a con-
fined volume is given by the expression

𝜇 = 𝑘𝑇

(︂
3

2
− 2Λ3

4𝑘𝑇𝑅𝑔𝑟2

)︂
.

By introducing a new function 𝑓(r) = ln 𝜌(r),
Eq. (60) can be transformed into the Lane–Emden
equation [10, 19]

Δ𝑓(r) +𝑅𝑔 exp 𝑓(r) = 0, (61)

which has the exact solution for the particle density

𝜌(r) =
1

cosh2(𝑟/𝑅𝑔)

only in the one-dimensional case [10, 45, 49]. This
equation does not agree with the results of the molec-
ular dynamic simulation [49] and does not describe
the general spatially inhomogeneous particle distribu-
tion in self-gravitating systems [10]. As follows from
the equation obtained for a constant temperature, the
homogeneous particle distribution is unstable, and
the equation for the density perturbations 𝜌(r) =
= 𝜌+ 𝛿𝜌(r) looks like

Δ𝛿𝜌(r) +𝑅𝑔𝜌𝛿𝜌(r) = 0, (62)

which is the Helmholtz equation. The general solu-
tion of the wave equation is an unstable radial dis-
tribution 𝛿𝜌(r) = (exp 𝑖𝑘𝑟)/𝑟 with the wave num-
ber 𝑘 =

√︀
2𝜋𝐺𝑚2𝛽𝜌. This means that the instability

wavelength is half as large as the Jeans length. This
is the statistical length of the instability for a particle
distribution in the system. The concept of the Jeans
gravitational instability is discussed in the framework
of equilibrium statistics and the related kinetic the-
ory [31].

1068 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 12



Statistical Description of Non-Equilibrium Many-Particle Systems

7.2. Inhomogeneous particle
and temperature distributions

Now, let us consider the non-equilibrium description
of a self-gravitating system and account for the proba-
ble spatially inhomogeneous distributions of particles
and the temperature. Let us introduce the new vari-
able 𝜑 = Λ3(r)𝜌(r) and simplify the equation for the
density. We get

Δ

(︃
ln𝜑√︀
𝛽(r)

)︃
+

𝑅𝑔(r)√︀
𝛽(r)Λ3(r)

𝜑 = 0. (63)

In general, the exact solutions of this nonlinear equa-
tion are unknown, but we now propose a way to an-
alyze this equation.

First of all, we can find the general solution of the
problem. In the three-dimensional case, the action of
the Laplace operator can be represented as follows:

Δ

(︃
ln𝜑√︀
𝛽(r)

)︃
=

1√
𝛽

(︂
𝑑2

𝑑𝑟2
+

2

𝑟

𝑑

𝑑𝑟

)︂
ln𝜑−

− ln𝜑√︀
𝛽3

(︃
𝑑2𝛽

𝑑𝑟2
+

2

𝑟

𝑑𝛽

𝑑𝑟
− 3

2𝛽

(︂
𝑑𝛽

𝑑𝑟

)︂2)︃
−

− 1√︀
𝛽3

𝑑 ln𝜑

𝑑𝑟

𝑑𝛽

𝑑𝑟
. (64)

A solution for the temperature can be sought in the
form 𝛽 = 𝛾3𝑟𝑛. Then, if 𝑛 = 2, we obtain an equation
only for 𝜑,

𝑑2 ln𝜑

𝑑𝑟2
+

𝑎𝑚
𝐵𝛾𝑟

𝜑 = 0, (65)

which can be rewritten in terms of the new variable
𝑟2 = 𝑟 as follows:

𝑑

𝑑𝑟

(︂
1

𝜑

𝑑𝜑

𝑑𝑟

)︂
+

4𝑎𝑚
𝐵𝛾

𝜑 = 0. (66)

Let us multiply this equation by (1/𝜑)(𝑑𝜑/𝑑𝑟) and
calculate the first integral of the product,(︂
1

𝜑

𝑑𝜑

𝑑𝑟

)︂2
+

4𝑎𝑚
𝐵𝛾

𝜑 = Δ. (67)

The exact solution of Eq. (67) is written in the form

𝜑 =
Δ

8𝑎𝑚/𝐵𝛾 sinh
2
√︀
Δ𝑟/4

. (68)

With the help of formula (68), we obtain the exact
solution for the inhomogeneous particle distribution,

𝜌(r) =
Δ

8𝑎𝑚𝛾2𝑟3 sinh
2
√︀

Δ𝑟/4
. (69)

This behavior correlates with the results obtained in
works [47,48], where the Boltzmann equation and the
distribution function for a spherical isolated stellar
system were used. The particle distribution is inho-
mogeneous for the size 𝑅 = 1/4Δ and diverges at
𝑟 → 0 as 𝜌(r) = 1/2𝑎𝑚𝛾

2𝑟4. The energy of the sys-
tem is constant at that. However, we yet do not know
the coefficients. To solve this problem, an approach
described below is proposed.

If the particles are concentrated at short distances,
and if their concentration is very high, then the quan-
tum effect becomes crucial, and the classical approach
is invalid. In this case, the relation between the criti-
cal temperature and the particle concentration is de-
termined in a natural way,

Λ3(r)𝜌(r) =

(︂
~2𝛽𝑐
2𝑚𝑒

)︂3/2
𝜌𝑐 = 1. (70)

This relation together with the formula for the con-
stant particle number, 4𝜋/2𝑎𝑚𝑅𝑐 = 𝑁 , determine all
necessary parameters, i.e. the critical distance 𝑅𝑐 =
=~2/𝑚𝑎𝑚𝑁1/3, the coefficient 𝛾2=(2𝜋𝑚𝑒)/(~2𝑁2/3),
the critical temperature 𝛽𝑐 = 𝛾2𝑅2

𝑐 , and the critical
density 𝜌𝑐 = 1/2𝑎𝑚𝑅

4
𝑐 . The energy of the system in

this case is 𝐸 = 3
2𝑁𝑘𝑇 , i.e. it is equal to the energy

of free particles!
Let us describe a system for which Λ3(r)𝜌(r) =

= 𝛼 = const ≪ 1. In this case, only the temperature
behavior can be determined, which is governed by the
equation

Δ

(︃
1√︀
𝛽(r)

)︃
+
𝑎𝑚𝑒

𝛼

𝐵 ln𝛼

1

𝛽
= 0. (71)

Similarly to the previous case, let us seek the solution
of this equation in the form 𝛽 = 𝛾−2𝑟−2𝑛. Then we
find that it is obeyed for 𝑛 = −2, i.e. the tempera-
ture varies as 𝑘𝑇 = 𝛾2𝑟−4, and the concentration as
𝜌 = 𝐴𝑟−6. The normalization conditions for the con-
stant particle number and energy are satisfied at that.

Hence, we have a solution that describes the
spatial dependences of the concentration and the
temperature.
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8. Stationary States
of Non-Equilibrium Systems
Any macroscopic system, when being in a thermostat,
approaches the equilibrium state during some relax-
ation time. In the equilibrium state, the properties of
the system do not depend on the method of equilib-
rium establishment. However, the equilibrium state is
realized only under certain idealized conditions. The-
refore, actually, the properties of the system in the
quasistationary (stationary) state may depend on the
specific features of the interaction between the system
and the thermostat, as well as on the parameters of
the system [14,21–54]. The same is applicable to non-
equilibrium systems, which can demonstrate, never-
theless, nevertheless, the equilibrium behavior.

Under certain conditions, the equilibrium state of
the system may exist as a stationary state in which
the energy exchange between the system and the en-
vironment is balanced. Such a state is a result of the
balance between the direct action of the environment
on the system and the process of energy dissipation
taking place owing to the interaction of the system
with the environment. It is easy to imagine a macro-
scopic system that can receive the energy from the
environment but cannot return it all back, which de-
pends on the parameters of the system. These are
examples of such systems: hot electrons in a semi-
conductor system [3], a system of photons diffracting
due to their scattering at inhomogeneities (the coef-
ficient of photon diffraction depends on the photon
frequency) [51, 55], a system of high-energy parti-
cles generated at collisions in an accelerator, and a
system of ordinary Brownian particles with the fric-
tion coefficient depending on their velocity. All those
systems are far from thermal equilibrium, and their
new state is completely determined by the processes
of energy exchange. Such a system may be charac-
terized by a distribution function of its states that
differs from the equilibrium distribution function, in
particular, as the well-known distribution function of
thermal states.

There is no clear definition of the distribution func-
tion for a non-equilibrium system that would taccount
for possible states of the macroscopic system [3]. The
standard method allows a non-equilibrium states to
be considered as an equilibrium thermal state, if
the deviations from this state are small. The imbal-
ance manifests itself in this approach as small modi-
fications in the equilibrium distribution function. An

open system can exist very far from the equilibrium,
but exhibiting, nevertheless, a stationary behavior.

In this section, we consider the problem of descrip-
tion of a non-equilibrium system and give one of the
possible definitions for a new stationary state, which
accounts for the energy absorption and the scatter-
ing processes induced by the interaction with the en-
vironment. Let us begin with the formulation of the
statistical approach.

For an equilibrium state, the canonical distribution
function in the phase space can be written in the form

𝜌(𝑞, 𝑝)𝑑Γ = exp

{︂
𝐹 −𝐻(𝑞, 𝑝)

Θ

}︂
𝑑Γ, (72)

where 𝐻(𝑞, 𝑝) is the Hamiltonian, 𝑑Γ =
∏︀
𝑖 𝑑𝑞𝑖𝑑𝑝𝑖 is

an element of the phase space, Θ = 𝑘𝑇 , 𝑇 is the
temperature, and 𝐹 is the free energy, which can be
found from the normalization condition∫︁

exp

{︂
𝐹 −𝐻(𝑞, 𝑝)

Θ

}︂
𝑑Γ = 1.

As was shown in work [53], the phase space depends
only on the energy 𝐸 of the system and the external
parameters. Let us introduce the function

Σ = ln
𝑑Γ

𝑑𝐸
.

Then the canonical distribution function looks like

𝜌(𝐸)𝑑𝐸 = 𝐶 exp

{︂
𝐹 − 𝐸

Θ
+Σ(𝐸)

}︂
𝑑𝐸. (73)

This relation describes the dependence of the distri-
bution function on the energy of the macroscopic sys-
tem [53]. The normalization condition can be written
in this representation in the form∫︁
𝐶 exp

{︂
𝐹 − 𝐸

Θ
+Σ(𝐸)

}︂
𝑑𝐸 = 1, (74)

which makes it possible to determine the normaliza-
tion constant 𝐶. The latter accounts for the deter-
minant transformation between the phase space and
the energy variable. In order to distinguish the states
that make a dominant contribution to the distribu-
tion function, we use the condition 𝑑Σ/𝑑𝐸 = 1/Θ,
which defines the temperature of the system from
the condition that the phase space depends only on
the energy of the system. Using this definition and
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taking the basic principles of statistical mechanics
into account [54], we arrive at the conclusion that
Σ = ln 𝑑Γ/𝑑𝐸 = 𝑆 is equal to the entropy of the
system.

It should be noted that the temperature describes
the entropy dependence only on the energy, but not
on other thermodynamic quantities. Another impor-
tant conclusion is that the partition function can be
calculated by integrating over the energy. The ex-
tremum of the distribution function is realized at
𝐹 = 𝐸 − 𝜃𝑆, and any probable deviation from this
condition makes a very small contribution to the
macroscopic characteristics, similarly to the quan-
tum-mechanical contribution to classical trajecto-
ries. This circumstance makes it possible to consider
non-equilibrium systems as Brownian ones in the en-
ergy space [24]. On the basis of the Chapman–Kolmo-
gorov equation for the distribution function of a mac-
roscopic system in the energy space, the stationary
states and fluctuation-dissipation relations for non-
equilibrium systems can be obtained [24].

The energy, being regarded as a control quantity
for a non-equilibrium system, can be a “slow” param-
eter describing the state of the system. In the absence
of any other information about the non-equilibrium
system, there is no preference among the states de-
termined by the energy. Like in the equilibrium case,
the non-equilibrium distribution function 𝜌(𝐸, 𝑡) can
be determined as a function of the energy 𝐸 and the
time. In the general case, it can be obtained from the
basic kinetic equation. In terms of the energy, the ba-
sic kinetic equation for the non-equilibrium distribu-
tion function can be taken in the form
𝜕𝜌(𝐸, 𝑡)

𝜕𝑡
=

∫︁ {︀
𝑊 (𝐸,𝐸′)𝜌(𝐸′, 𝑡)−

−𝑊 (𝐸′, 𝐸)𝜌(𝐸, 𝑡)
}︀
𝑑𝐸′, (75)

where 𝑊 (𝐸,𝐸′) is the probability for the system
to transit between the states with different ener-
gies. This basic kinetic equation is the balance equa-
tion for the probability of states. The energy repre-
sentation of a non-equilibrium process is valid, only
if this variable is canonical and performs averaging
over the phase as the conjugate quantity. All solu-
tions of the basic kinetic equation have a common
property: as 𝑡 → ∞, they approach a stationary so-
lution, which can be interpreted as the “equilibrium”
state for the examined system. The stationary solu-
tion corresponds to the law of entropy growth [58].

In the case where the changes of the energy of the
system are small, the basic kinematic equation trans-
forms into the Fokker–Planck equation,

𝜕𝜌(𝐸, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝐸
𝐴(𝐸)𝜌(𝐸, 𝑡)+

+
1

2

𝜕2

𝜕𝐸2
𝐷(𝐸)𝜌(𝐸, 𝑡). (76)

The physical meaning of the coefficients 𝐴(𝐸) and
𝐷(𝐸) can be specified, if we return to the dynamic
equation for the energy. In the general case, the dissi-
pation equation can be written in the standard form
of the Langevin equation

𝑑𝐸

𝑑𝑡
= 𝑓(𝐸) + 𝑔(𝐸)𝐿(𝑡). (77)

This dissipation equation depends on external factors
and initial conditions. The external influence mainly
manifests itself in the changes of the energy of the
system, which is either dissipated or absorbed. This
process is described by the first term on the right-
hand side of Eq. (77), which describes the direct in-
fluence of the environment on the macroscopic sys-
tem. This term can be obtained from the dynamics
of any macroscopic system, if the direct interaction
of this system with the environment is taken into
account.

The changes in the energy of the system due to
the stochastic influence of the environment is de-
scribed by the second term on the right-hand side
of Eq. (77). A random migration of the system is a
result of the interaction between this system and the
environment, the influence of which randomly mod-
ifies the energy of the system. Let us assume that
the correlation between two fluctuation values at two
different time moments, ⟨𝐿(𝑡)𝐿(𝑡′)⟩ = 𝜑(𝑡 − 𝑡′), can
differ from zero only within a certain finite time inter-
val. The symbol ⟨...⟩ means the statistical averaging
of the corresponding quantity. The function 𝜑(𝑡− 𝑡′)
must possess a sharp maximum near zero and sat-
isfy the condition

∫︀
𝜑(𝜏)𝑑𝜏 = 𝜎2 for the white noise

[58]. A system that cannot restore its equilibrium
state after rapid changes in the environment must
adapt to new conditions. This process testifies to a
possible dissipation of the energy, when the system
contacts with the environment.

The energy representation of the general dissipa-
tion equation is also valid for an ordinary Brown-
ian particle. The dynamics of Brownian particles can
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be described in terms of the velocity 𝑣 using the
Langevin equation

𝑑𝑣

𝑑𝑡
= −𝛾𝑣 + 𝐹 (𝑡), (78)

where 𝛾 is the friction coefficient, and 𝐹 (𝑡) is a ran-
dom force that describes some action on the particle
in a liquid. In this case, the equalities ⟨𝐹 (𝑡)⟩ = 0 and
⟨𝐹 (𝑡)𝐹 (𝑡′)⟩ = 𝜑2𝛿(𝑡 − 𝑡′) are true. They satisfy the
white noise condition and describe the uncorrelated
process of particle motion. For a Brownian particle,
the energy equals 𝐸 = 𝑀𝑣2/2, so we can define the
energy that varies as

𝑑𝐸

𝑑𝑡
=𝑀𝑣

𝑑𝑣

𝑑𝑡
= −2𝛾𝐸 +

√
2𝑀𝐸𝐹 (𝑡), (79)

which corresponds to Eq. (77) with 𝑓(𝐸) = −2𝛾𝐸,
𝑔(𝐸) =

√
𝐸, and 𝐿(𝑡) =

√
2𝑀𝐹 (𝑡). By solving the

Langevin equation for the velocity, we can obtain [58]
⟨𝑣(∞)⟩ = 𝜑2/2𝛾 = 𝑘𝑇/𝑀 , as well as ⟨𝐸⟩ = 𝑘𝑇/2,
where the thermostat temperature 𝑇 is introduced.
By solving Eq. (79) in the approximation that does
not take the correlation energy into account, we also
obtain√︀

⟨𝐸⟩2 =
𝜎2

4𝛾
≡ 𝜑2

4𝛾
2𝑀 = 𝑘𝑇,

which is completely responsible for the equilibrium
state, as was in the previous result.

The descriptions of the process in terms of vari-
ous variables are equivalent. The advantage of the
energy representation consists in that it allows the
“equilibrium” states of a non-equilibrium system to
be determined. This approach is efficient in the cases
where the direct effect of the interaction with the en-
vironment and the action of random forces can be
determined, as well as because the energy is the slow-
est variable on which the relaxation of the system
depends.

Two different approaches have been proposed to
analyze random processes. If the coefficient 𝑔(𝐸) de-
pends on the energy at the initial time moment, the
equation for the non-equilibrium distribution func-
tion generates a Fokker–Planck equation in form
(76). But if this coefficient depends on the energy be-
fore and after the transition, the diffusion equation
can be written in the Stratonovich form,

𝜕𝜌

𝜕𝑡
= − 𝜕

𝜕𝐸
(𝑓(𝐸)𝜌) +

𝜎2

2

𝜕

𝜕𝐸
𝑔(𝐸)

𝜕

𝜕𝐸
𝑔(𝐸)𝜌. (80)

In what follows, the latter (Stratonovich) representa-
tion will be used, because the both representations
are interrelated [58, 59].

Equation (80) can be rewritten as a continuity
equation,

𝜕𝜌(𝐸, 𝑡)

𝜕𝑡
=
𝜕𝐽(𝜌(𝐸, 𝑡))

𝜕𝐸
, (81)

where

𝐽 = −
[︂
𝑓(𝐸)− 𝜎2

2
𝑔(𝐸)

𝜕

𝜕𝐸
𝑔(𝐸)

]︂
𝜌+

𝜎2

2
𝑔2(𝐸)

𝜕

𝜕𝐸
𝜌.

(82)
By comparing (76) and (82), we find that

𝐴(𝐸) = 𝑓(𝐸)− 𝜎2

2
𝑔(𝐸)

𝜕

𝜕𝐸
𝑔(𝐸)

and the diffusion coefficient

𝐷(𝐸) =
𝜎2

2
𝑔2(𝐸).

The stationary solution of the Fokker–Planck equa-
tion with 𝐽(𝜌(𝐸, 𝑡)) = 0 can be presented in the form

𝜌𝑠(𝐸) = 𝐴 exp

{︃ 𝐸∫︁
𝐸0

2𝑓(𝐸′)𝑑𝐸′

𝜎2𝑔2(𝐸′)
− ln

𝑔(𝐸)

𝑔(𝐸0)

}︃
(83)

or

𝜌𝑠(𝐸) = 𝐴 exp {−𝑈(𝐸)}, (84)

where

𝑈(𝐸) = ln
𝑔(𝐸)

𝑔(𝐸0)
−

𝐸∫︁
𝐸0

2𝑓(𝐸′)𝑑𝐸′

𝜎2𝑔2(𝐸′)
. (85)

This distribution function has an extreme value at the
energy that can be found as a solution of the equation

𝑈 ′( ̃︀𝐸) =
1

𝐷(𝐸)
[𝐷′(𝐸)− 𝑓(𝐸)], (86)

where the primed quantities mean their derivatives
with respect to the energy. This equation is equivalent
to the equation

𝐷′( ̃︀𝐸) = 𝑓( ̃︀𝐸), (87)

which establishes the relation between the dissipation
(scattering) and the diffusion in the stationary case
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and completely determines a new “equilibrium” state
of the system. The stationary non-equilibrium distri-
bution function can be set equal to

𝜌𝑠(𝐸) = exp
{︁
−𝑈( ̃︀𝐸)

}︁
exp

{︁
−𝑈 ′′( ̃︀𝐸)𝐸2

}︁
, (88)

where

−𝑈 ′′( ̃︀𝐸) =
1

𝐷( ̃︀𝐸)

[︁
𝐷′′( ̃︀𝐸)− 𝑓 ′( ̃︀𝐸)

]︁
.

Taking relation (87) into account, we obtain 𝜌𝑠(𝐸) =

= exp
{︀
− 𝑈( ̃︀𝐸)

}︀
. In the general case, 𝑓(𝐸) is a non-

linear function of the state, and the diffusion coeffi-
cient depends on the energy, which makes it possi-
ble to reveal a lot of interesting situations, includ-
ing noise-induced transitions into new stabler “equi-
librium” states.

If 𝑔(𝐸) = 1, the stationary solution can be written
in the form

𝜌(𝐸) = 𝐴 exp

{︃ 𝐸∫︁
𝐸0

𝑓(𝐸)

𝜎2
𝑑𝐸′

}︃
, (89)

where 𝐸0 is the internal energy of the system. In the
case of conservative system (if 𝑓(𝐸) = 0), the sta-
tionary solution does not depend on the energy. Note
that the value 𝐸 = 𝐸0 is not only an internal limit,
but also a stationary point in the absence of energy
dissipation and stochastic diffusion.

In the case with the energy diffusion only (if 𝑔(𝐸) =
= 1), the equations for the non-equilibrium distribu-
tion function acquire the form of the simple diffusion
equation, and their solutions

𝜌(𝐸) = 𝐴
1√

4𝜋𝜎2𝑡
exp

{︂
− (𝐸 − 𝐸0)

2

4𝜎2𝑡

}︂
describe the migration of the system over its energy.
The mean-square deviation of the energy increases
with the time according to the law ⟨(𝐸 − 𝐸0)

2⟩ =
= 2𝜎2𝑡. This solution corresponds to the evolution of
a system that was described in the initial state by the
equilibrium distribution function 𝜌(𝐸) = 𝛿(𝐸 − 𝐸0).

If the diffusion coefficient depends on the energy,
and the energy conservation law 𝑓(𝐸) = 0 holds true,
then the stationary solution takes the form

𝜌𝑠(𝐸) = 𝐴 exp

{︂
− ln

𝑔(𝐸)

𝑔(𝐸0)

}︂
, (90)

which corresponds to the canonical equilibrium dis-
tribution function

𝜌(𝐸) = 𝐴 exp {−𝛽(𝐸 − 𝐸0)} (91)

only provided that the condition 𝑔(𝐸) = 𝑒𝛽𝐸 is
satisfied, where 𝛽 is the inverse temperature of the
medium. This is possible, if

𝐷(𝐸) =
𝜎2

2
𝑔2(𝐸) =

𝜎2

2
𝑒2𝛽𝐸 .

The description in the energy space can be more
illustrative, if the equilibrium states are described in
the standard way. As an example, the stationary solu-
tion for an ordinary Brownian particle can be written
in the form

𝜌𝑠(𝐸) = 𝐴 exp

{︂
−4𝛾

𝜎2
𝐸 − ln

√
𝐸

}︂
≡

≡ 𝐴
1√
𝐸

exp{−𝛽𝐸}, (92)

where the well-known ratio 2𝛾/𝜎2 = 𝛽 is applied.
With the normalization condition

∫︀
𝜌𝑠(𝐸)𝑑𝐸 ≡

≡
∫︀
𝜌𝑠(𝑝)𝑑𝑝, the distribution function in the momen-

tum space looks like

𝜌𝑠(𝑝) = 𝐴 exp

{︂
−𝛽 𝑝2

2𝑀

}︂
= 𝐴 exp

{︂
−𝑀𝑣2

2𝑘𝑇

}︂
. (93)

If the dissipative function is represented in the form
𝑓(𝐸) = 𝛼𝑡𝑒

𝛽𝐸 , then the Langevin equation can be
rewritten in another form,

𝑑𝑒−𝛽𝐸(𝑡)

𝑑𝑡
= −𝛽𝛼𝑡, (94)

where the quantity 𝛼𝑡 = 𝛼 + 𝜉𝑡 consists of the con-
stant part 𝛼 and the part 𝜉𝑡 describing the white-noise
effect of the environment [59].

Using the new variable 𝑧 = 𝑒−𝛽𝐸 , the Fokker–
Planck equation for the non-equilibrium distribution
function can be written in the simpler form

𝜕𝜌(𝑧, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑧
[𝛼𝛽𝜌(𝑧, 𝑡)] +

𝜎2𝛽2

2

𝜕2

𝜕𝑧2
𝜌(𝑧, 𝑡). (95)

Its stationary solution looks like

𝜌𝑠(𝑧) = exp

{︂
2𝛼

𝜎2𝛽
𝑧

}︂
.
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In the case 𝛽𝐸 > 1, it can be represented as follows:

𝜌𝑠(𝐸) = exp {−𝛽𝐸} at
2𝛼

𝜎2𝛽
= 1.

In the white-noise case, the Fokker–Planck equa-
tion can be written in the form [59]

𝜕𝜌(𝐸, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝐸
(𝛾𝐸𝜌(𝐸, 𝑡)) +

𝜎2

2

𝜕2

𝜕𝐸2
𝐸2𝜌(𝑣, 𝑡). (96)

The stationary solution of this equation is [59]

𝜌𝑠(𝐸, 𝑡) = 𝑁𝐸− 1
2 (

2𝛾

𝜎2 +1) (97)

(it can be verified by substitution). This stationary
solution coincides with the solution in the standard
case, if the diffusion and friction coefficients do not
depend on the energy. A similar result,

𝜌𝑠(𝑣, 𝑡) = 𝑁𝑣−
2𝛾

𝜎2 +1,

can also be obtained in the velocity representation.
Let us imagine a situation where the energy of the

system increases, but there is a mechanism that re-
stricts its value. Such a process can be described with
the help of the dissipative function 𝑓(𝐸) = 𝛾𝐸 −𝐸2,
where the second term takes the indicated restric-
tion into account. The corresponding Fokker–Planck
equation looks like

𝜕𝜌(𝐸, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝐸

[︀
(𝛾𝐸 − 𝐸2)𝜌(𝐸, 𝑡)

]︀
+

+
𝜎2

2

𝜕2

𝜕𝐸2
𝐸2𝜌(𝑣, 𝑡), (98)

and its stationary solution is

𝜌𝑠(𝐸, 𝑡) = 𝑁𝐸− 2𝛾

𝜎2 +1 exp

{︂
− 2

𝜎2
𝐸

}︂
. (99)

9. Statistical Description
of the Universe Evolution

The proposed statistical approach makes it possible
to attempt a description of the Universe birth and
evolution on the basis of the general principles of
statistical mechanics and quantum-mechanical the-
ory. With this aim in view, we suggest the following
assumptions.

i) The Universe is non-equilibrium a priori, but we
may assume that the state of a subsystem that is a

part of a large system is described by the local Gibbs
distribution. The latter evolves following the way that
provides the energy minimum and the entropy maxi-
mum for the selected subsystem.

ii) In the case of spontaneous generation of a scalar
field in the vacuum, the ground-state energy of the
“new” vacuum (i.e. the vacuum of the system “ini-
tial vacuum + scalar field”) for fields of other char-
acters must be lower than the ground-state energy of
the “initial” vacuum. The self-consistent interaction
of the scalar field with fluctuations of any other field
ensures the energy conservation in the new state of
the system. The calculation of the partition function
for such a system testifies to the possibility of a phase
transition in it from the state with the zero scalar field
to a state with a finite spontaneously generated scalar
field. As a result, owing to the spontaneous symme-
try breaking, there appear real particles, which can
be interpreted as a Big Bang.

iii) The Universe interacts with the fluctuating vac-
uum, and the Universe energy is not constant (the
role of a thermostat for the Universe is played by the
vacuum in which all possible fields fluctuate and in-
teract with the Universe).

First of all, we assume that the ground state of the
vacuum has the energy 𝐸0. In so doing, we assume
a possibility for all fields that can be generated in
this vacuum to fluctuate. This assumption allows us
to write the equation of state for the vacuum. From
thermodynamic relations, it is possible to determine
the pressure,

𝑃 = −𝑑𝐸0

𝑑𝑉
= −𝜌𝑣, (100)

where 𝑉 is the volume, provided that the entropy is
constant. For the pure vacuum, we may write

𝐸0 = 𝜌𝑣𝑉.

Here, we assume that the energy is an additive quan-
tity with the density 𝜌𝑣. Equation (100) is the well-
known equation of state for the vacuum.

The Universe has been non-equilibrium since its
birth. Therefore, in order to describe its evolution, it
is worth introducing an additional quantity 𝑡 called
“time” as an internal parameter. Then we may write

𝑑𝑆

𝑑𝑡
=

1

Θ

𝑑𝐸

𝑑𝑡
. (101)
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From whence, it follows that the temporal change of
the entropy is associated with the temporal change
of the energy. Since 𝑑𝑆/𝑑𝑡 > 0, it follows that, in
the course of a relaxation to the equilibrium state,
we have 𝑑𝐸/𝑑𝑡 > 0, i.e. the entropy increases to-
gether with the energy. In thermodynamics, heat is
the energy distributed among the degrees of freedom
that are not macroscopically observable. Therefore,
when the vacuum state changes, let us suppose that
𝑑𝑄/𝑑𝑡 = 𝑑𝐸/𝑑𝑡 > 0, so that the heating is possible
only at the relaxation to the equilibrium state.

The speculations and relations presented above are
well known. Let us apply them in order to propose
another possible explanation of the Universe evolu-
tion. As was mentioned above, according to standard
cosmological models, an instability of the fundamen-
tal scalar field was the main origin of the forma-
tion of such a Universe state that resulted in the
Big Bang. Therefore, let us first assume that there
appeared a non-zero scalar field in the “initial” vac-
uum owing to a phase transition to its new state. This
means that, after its appearance, the “new” vacuum
with any other allowable field will differ from the “pri-
mary” vacuum, because the scalar field already exists
in the former. The scalar field lowers the energy of
the “new” vacuum with respect to that of the “pri-
mary” vacuum, and the ground-state energy in the
“new” vacuum equals

𝐸 = 𝐸0 −
𝜇2

2
𝜙2, (102)

where the second term is the scalar field energy, and
the coefficient 𝜇2 describes the relation between the
new field and the “primary” vacuum, i.e. the self-
consistent interaction of the new field with the fluctu-
ations of all other fields that can exist in the “primary”
vacuum.

Two remarks are to be made. First, the appear-
ance of a scalar field lowers the energy of the initial
vacuum state. Second, the coupling coefficient 𝜇2 is
now positive by definition and, therefore, does not
require further explanations, which are usually made
in the standard approach. The contribution of such
interaction to the partition function of the Gibbs dis-
tribution can be described in the standard way:

𝑍 ∼
∫︁
𝐷𝜙

∫︁
𝐷𝜉×

× exp
1

Θ

{︂
−𝐸0 +

1

2
𝜇2𝜙2 + 𝜉𝜙2 − 𝜉2

2𝜎2

}︂
. (103)

Here, we used the representation 𝜇2 = 𝜇2 + 𝜉 by as-
suming that the coupling coefficient consists of its
average value and a fluctuation associated with the
non-linear interaction of the field 𝜙 with the fluctu-
ations of the fields of different nature. We also sup-
posed that the mean-square value of the fluctuation
𝜉 is equal to 𝜎2. Integrating with respect to the fields
𝜉, we obtain

𝑍 ∼
∫︁
𝐷𝜙 exp

1

Θ

{︂
−𝐸0 +

1

2
𝜇2𝜙2 +−𝜎

2𝜙4

4

}︂
. (104)

So, we have a system with the effective energy (aver-
aged over the fluctuations of another field with which
the scalar field interacts)

𝐸 = 𝐸0 + 𝑉 (𝜙) = 𝐸0 −
1

2
𝜇2𝜙2 +

𝜎2𝜙4

4
, (105)

where

𝑉 (𝜙) = −1

2
⟨𝜇2⟩𝜙2 +

𝜎2𝜙4

4

is the well-known expression for the energy of the
fundamental scalar field. The total effective energy of
the “new” vacuum with the fundamental scalar field
can be written in the form

𝐸 = 𝐸0 −
⟨𝜇2⟩2

4𝜎2
+
𝜎2

4

(︂
𝜙2 − ⟨𝜇2⟩

𝜎2

)︂2
. (106)

From whence, it follows that 𝐸 = 𝐸0 in the absence
of a scalar field (𝜙 = 0), whereas, at

𝜙2 =
⟨𝜇2⟩
𝜎2

, (107)

the effective energy of the ground state of the “new”
vacuum equals

𝐸 = 𝐸0 −
⟨𝜇2⟩2

4𝜎2
.

From Eq. (106), one can see that the energy of the
vacuum with the scalar field is lower than the energy
of the “primary” vacuum and can equal zero, if

𝐸0 =
⟨𝜇2⟩2

4𝜎2
.

From the obtained formulas, it follows that the sys-
tem may undergo a phase transition giving rise to the
formation of a new ground state of the vacuum with
energy (106), which can be equal to zero, if condition
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(107) is satisfied. The scalar field can be arbitrary
large at that.

For the further consideration, let us suppose that
both the statistical distribution in and the evolution
of the Universe can be described by a distribution
function that depends only on the energy. An exam-
ple of how this idea can be applied to describe the
features in the statistical distribution was given in
the previous section. Concerning the description of
the evolution for non-equilibrium distributions (with
our Universe being non-equilibrium a priori), the as-
sumption that the system evolves in the energy space
similarly to the Brownian motion of the system in
the energy-state space seems to be quite natural. The
answer to question “What can serve as a thermostat
whose interaction with the Universe is the source of
system’s random motion?” is as follows: it is the vac-
uum in which, as was noted above, all physical fields
fluctuate, those fluctuations interact with the funda-
mental scalar field and, in such a way, affect even the
ground state of the vacuum. In other words, it is the
fluctuations of physical fields (except those for the
selected fundamental scalar field) that play the role
of a random source in the Langevin equations. This
means that we can use the Fokker–Planck equation
in the Stratonovich form (80) as the main equation
to describe the evolution of the Universe.

Furthermore, if we also assume that the dissipative
function 𝑓(𝐸) depends non-linearly on the energy,
and a noise-induced transition to a new stabler sta-
tionary state can be implemented in the system, then
the proposed formalism can be applied to describe
Universe’s formation. For this purpose, we have to
formulate an equation that would describe the en-
ergy dissipation in the system with a scalar field. In
the general form, such an equation looks like

𝑑𝐸

𝑑𝑡
=
𝑑𝐸

𝑑𝜙

𝑑𝜙

𝑑𝑡
, (108)

and the dynamic equation for the scalar field can be
written in the standard form [54]

𝑑𝜙

𝑑𝑡
= −𝛾 𝑑𝐹 (𝜙)

𝑑𝜙
. (109)

Here, 𝛾 is the friction coefficient describing the dis-
sipation of the fundamental scalar field, and 𝐹 (𝜙)
is the free energy. From the theory of phase transi-
tions for the fundamental field [42], it is known that

𝐹 (𝜙Θ) = 𝑉 (𝜙, 0) at the zero temperature so that
Eq. (109) acquires a form that is well known in the
standard cosmology. By setting

𝑑𝐸

𝑑𝜙
=
𝑑𝑉 (𝜙)

𝑑𝜙
,

we obtain

𝑑𝐸

𝑑𝑡
= −𝛾

(︂
𝑑𝑉 (𝜙)

𝑑𝜙

)︂2
. (110)

In other words, we have obtained the generalized
Langevin equation

𝑑𝐸

𝑑𝑡
= 𝑓(𝐸) (111)

with

𝑓(𝐸) = −𝛾
(︂
𝑑𝑉 (𝜙)

𝑑𝜙

)︂2
. (112)

In the simplest case,

𝑉 (𝜙) = −1

2
𝜇2𝜙2

and

𝑓(𝐸) = −2𝛾𝜇2𝐸.

In view of the assumption made above that 𝜇2 =
= 𝜇2 + 𝜉, as well as the Langevin equation (111), we
arrive at the expression 𝑔(𝐸) = 2𝛾𝐸, which yields the
following stationary solution:

𝜌(𝐸, 𝑡) = 𝑁(𝛾𝐸)
− ⟨𝜇2⟩

𝛾𝜎2 +1
. (113)

The same solution is obtained for the Fokker–Planck
equation [59],

𝜌(𝐸, 𝑡) = 𝑁

(︂
𝐸

𝐸0

)︂− ⟨𝜇2⟩
𝛾𝜎2 +1

. (114)

From the presented results, it follows that one of
the possible Universe states is a state characterized
by a scalar order parameter and possessing the pos-
sibility to form a “bubble” of a new state with the
energy 𝐸 = 𝐸0 − 𝜇4/4𝜎2. The entropy of the ground
state with the vacuum energy 𝐸0 is minimum and
increases with the formation of a bubble of the new
phase. The starting point in all cosmological models
is the Big Bang that generates a heated Universe. Our

1076 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 12



Statistical Description of Non-Equilibrium Many-Particle Systems

approach can shift the starting point. We can start
the consideration from the vacuum state with field
fluctuations of various nature. At the beginning of
the “time”, when an additional scalar field appears,
the number of possible states increases and the en-
ergy of the new vacuum state decreases owing to the
formation of growing bubbles of the new state. In par-
ticular, at the critical temperature Θ𝑐 = 2𝜇/𝜎 [42],
the symmetry in the behavior of the fundamental
scalar field is restored, and we have the well-known
behavior of the Universe, but with a principal dif-
ference. The initial vacuum remains restored incom-
pletely, and we can observe the expansion of the Uni-
verse with acceleration. As was noted above, this pro-
cess depends on the dispersion of field fluctuations
of various nature. But if a new-phase “bubble” has
been formed, not all possible fluctuations can affect
the processes running in the Universe. This is known
as the fluctuation-induced condensation effect [38]. In
this case, the acceleration never terminates.

To calculate the transient probabilities, the interac-
tion with a multiplicative noise should be considered
from the viewpoint of possible changes in both the
dispersion of fluctuations and the scalar field poten-
tial. In so doing, the non-linearity of the scalar field
potential and the field fluctuations of various nature
should be taken into consideration. Such fluctuations
can modify the potential minimum and determine an
alternative way for Universe’s formation. For exam-
ple, the Universe state can be described in this case
as 𝜙 = 0, but with a non-zero Hubble constant. Thus,
a new model has been proposed to describe the non-
equilibrium Universe, which makes it possible to de-
termine new stationary states.

10. Conclusions

In many cases, the systems with long-range inter-
actions are non-equilibrium. Before relaxing to the
thermodynamic equilibrium, the systems with long-
range interaction turn out in non-equilibrium quasis-
tationary states whose lifetime diverges, if the num-
ber of particles tends to infinity. Therefore, in the
thermodynamic limit, the interacting systems can-
not relax to an equilibrium. The modern statistical
description of non-equilibrium states considers only
probable structures in a self-gravitating system, but
does not describe metastable states and says noth-
ing about the time scales of the kinetic theory. In

this work, a new approach has been proposed which
uses the non-equilibrium statistical operator involv-
ing the inhomogeneous particle and temperature dis-
tributions.

To find the dominant contribution to the distribu-
tion function, the saddle-point method is used, which
made it possible to obtain all thermodynamic param-
eters of the system and, thus, shed light on the prob-
lem of self-gravitation in systems with the inhomo-
geneous particle and temperature distributions. Pro-
bable features in the behavior of self-gravitating
system under various conditions are predicted. The
equation of state for a self-gravitating system is de-
rived. The new length of a statistical instability and
the parameters of spatially inhomogeneous particle
and temperature distributions are found for real grav-
itational systems.

An approach allowing the quantitative prediction
of a particle distribution in a self-gravitating system
is suggested. The formation of spatially inhomoge-
neous particle distributions accompanied by changes
in the temperature is described for the first time. The
statistical description of the system is used to inter-
pret the behavior of gravitating particles in the case
of arbitrary spatially inhomogeneous particle distri-
butions. Starting from general initial conditions, the
system evolves to one of plenty of macroscopically
stationary states.

Thus, we can solve a difficult problem dealing
with the statistical description of systems with long-
range interaction. In addition, this method can be
used to develop further the physics of self-gravitating
and similar systems in the non-equilibrium state. The
approach to describe non-equilibrium states of a
macroscopic system is proposed. On the basis of the
Fokker–Planck equation for the non-equilibrium dis-
tribution function of a macroscopic system, station-
ary solutions are obtained. The proposed approach
allows one to analyze the Brownian dynamics between
various states of the system that are induced by the
energy dissipation and the influence of the environ-
ment, both factors depending on the energy of the
system. It is shown that the equilibrium state of the
system, when the energy exchange between the sys-
tem and the environment is in balance, can be re-
garded as a stationary state. Such state is a result
of the balance between the direct action of the en-
vironment on the system and the dissipation process
induced by the interaction with the environment.
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СТАТИСТИЧНЕ ОПИСАННЯ
НЕРIВНОВАЖНИХ БАГАТОЧАСТИНКОВИХ СИСТЕМ

Р е з ю м е

Системи частинок, що взаємодiють, в багатьох випадках є
нерiвноважними. В даному оглядi представлено новий пiд-
хiд, заснований на застосуваннi нерiвноважного статисти-
чного оператора, який дає змогу врахувати неоднорiдний
розподiл частинок i температури. Такий метод використо-
вує процедуру сiдлової точки для знаходження основних
внескiв у статистичну суму i надає можливостi отримати
всi термодинамiчнi параметри систем. Передбачено можли-
вi особливостi поведiнки взаємодiйних систем, таких як ґра-
вiтiвнi системи, системи з кулонiвським вiдштовхуванням
тощо для рiзних термодинамiчних умов. Запропоновано но-
вий пiдхiд для описування нерiвноважних систем в енер-
гетичному просторi, що є розширенням пiдходу Гiбса для
макроскопiчних систем за нерiвноважних умов. Цей пiдхiд
уможливлює описати стацiонарнi стани нерiвноважних си-
стем та їхню динамiку.
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