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BEHAVIOR OF A BINARY ASYMMETRIC
MIXTURE OF INTERACTING PARTICLES
IN THE SUPERCRITICAL REGION

We propose a method for describing the phase behavior of a system consisting of particles of
two sorts. The interaction of each species is described by interaction potentials containing the
repulsive and attractive components. Asymmetry is ensured by different values of the inter-
action potentials of each sort. The grand partition function of a binary mizture is calculated
in the zero-mode approximation. A line of critical points, which correspond to different pro-
portions of the components, is calculated for specific values of parameters of the interaction
potential. We have obtained an equation that relates the introduced mizring parameter x to
the concentration of the system. An explicit expression of the pressure of the binary mizture
is derived as a function of the relative temperature and the mizing parameter x to plot the
Widom line. It is established that, for boundary values of this parameter (x =0 and x = 1),
the equation of state of a mizture turns into equations of state of its separate species.

Keywords: asymmetric binary mixture, cell fluid model, collective variables, equation of

state, Widom line.

1. Introduction

A crucial part of the theory of phase transitions in
multiparticle systems is the elaboration of functional
methods. The study of microscopic mechanisms lead-
ing to the diversity of the phase behavior in mixtures
is relevant for prognosticating the phase diagrams of
systems containing particles of different species. The
results obtained by both experimental and theoreti-
cal methods are essential in this regard. Among the
former are the works [1-3| by L.A. Bulavin. We ded-
icate the present article to the occasion of his 75th
birthday.

Theoretical approaches include publications [4, 5],
where the description of multicomponent systems is
carried out within the mean-field formalism, and work
[6], where the study of a binary system is performed in
a more general case. The compilation [7, 8] proposes
an original approach to explain phase transitions and
critical phenomena, which provides an exact func-
tional representation of the grand partition function
of a multicomponent model in the method of collec-
tive variables [9] with the reference system. There, a
hard-sphere system is the reference system, and the
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interaction potential contains repulsive and attrac-
tive parts. The obtained results were generalized to
the case of the Coulomb interaction (RPM) model
[10]. In [11, 12], the behavior of a binary symmetric
mixture was investigated in the framework of that
approach near the critical point using non-Gaussian
distributions.

More than 60 years ago, experiments on single flu-
ids identified distinct liquid-like and gas-like struc-
tures under supercritical conditions [13]. Since then,
the interest of the scientific community in the com-
prehensive study [14-16] of supercritical fluids for
their widespread technological applications [17, 18]
has been steadily increasing due to their high den-
sity, solubility, and transport properties. The line
between gas-like and liquid-like structures — the
Widom line [19] — is an extension to the coexistence
curve in the supercritical region, which is charac-
terized by maxima in the thermodynamic response
functions. Over the past decade, this crossover line
and the properties of supercritical single fluids have
been actively investigated [20,21]. Recently, M. Raju
et al. have presented an evidence for the existence of
Widom lines in binary mixtures from molecular dy-
namics simulations [22].
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The aim of the present article is a description of
the phase behavior of a binary fluid in the supercrit-
ical region using the cell fluid model |23, 24]. In con-
trast to the functional approaches mentioned above,
we use a “soft repulsion” as a feature of the reference
system. This provides calculating the grand partition
function of the model within a single approach of the
method of collective variables. The present work sum-
marizes the results of [25] in the case of an asymmetric
binary system. We have found that the critical tem-
perature of the mixture is a function of its composi-
tion, described a method for calculating the equation
of state of the mixture, and shown its pressure be-
havior along the Widom line.

2. Calculating the Grand Partition
Function of a Binary Asymmetric System

We use the results of [25] to describe the proper-
ties of a binary system of particles. Let the volume
V contain N, particles of species a and N, particles
of species b. The interaction potentials between par-
ticles of each sort are modeled as follows:

Us(r) = Cff) {asend =R s

tealra R s _ 267“5,33‘”)/%}. (1)

In the latter expression, the index § = a, b labels the
particle species. For the normalization constants

)
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we have the following conditions:
of Us(r) is at r5 = R(()(s)7 2) its absolute value equals
the energy of dissociation —D. For simplicity, assume
that a, = a3 = « is the effective interaction radius,
and R(a) R(b) Rg. Moreover, we use Rgp-units to
measure all the distance quantities. The interaction
potentials U, (r) and Uy(r) differ from each other by
the parameters 7, # 7, and nga) #* néb). The val-
ues of these parameters used in the present research
are given in Appendix A. However, they might be
changed to reflect other particular systems. The fluid
system is henceforth modeled as a cell fluid [26], in
which the total volume V of the system is divided
into N, cubic cells each of the side ¢ and the volume
v = 3. The lattice analog of (1) is expressed as
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Here, ar = «/Rp is a dimensionless quantity,
l1g = |l; — 15| is a distance between the cell vectors
1,1, € A:

A= {1 = (l.Lvly7lz)|ll =CNg; Ny = 1727 7Nl7
i=2yz N = ()2 (4)

In the thermodynamic limit V' — oo, N, — oo,
v = V/N, = const. The Fourier transform of (3) has
the form

(k) = Ts(k) + 25 (k) — 257 (h), (5)
where both @gr)(k;) and Us(k) are the repulsive parts

of the interaction between species §, and @ga)(k) is
the attraction. We have )

e 3 27~
Us(k) = C( )A587re ol e + | =Eck ,
0 n( )
0 0

3 27 2
(" (k) = C\D8rers/on (R) 1+<O‘Rckﬂ . (6)
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@ga)(k:) = 02)167761/0”“"@% {1 + (aRck)ﬂ -

Recall that § = a,b. According to the results of
[25], we write the expression for the grand partition
function of a binary cell fluid model as follows:

- (a Biig
== g/)gx(/) exp [Nv (ao = 3WL(0) X
Biij

ol o~ )]
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Here, fis = ps — u;’gﬂéé)/ﬂ, ps is a constant, and
,855) is the inverse critical temperature of species ¢
(6 = a,b). The effective potentials of interaction [25]

read
(9)

Wi(k) = @5 (k) — @5 (k) — Ws(k) + =~ 5(0),
) BT ®
Dy(k)=as — ———~, Dy(k)=by — ——+—.
W= gww DW= 5mm
o = [ @rswse)="/2 (9)
keB.
The cumulants a,, are as follows:
ag = IHTO(QZ,pa),
_ Tl(a:;,apa>
Tl(a;;,pa)7
as = T2(a:;,7pa> 2
Tl(a;;vpa) v (10)
T3(Oz*,pa) 3
as = 4 —aj + 3aias,
s Tl(a;:apa) ! 1
Ty(ay, pa) 4 2 2
as = 4 a7 — 6ajas — 4aijas — 3as,
* Tl(a;:apa) ! 1 v ?

o0
" (@)™ -
e = 3 D e )
Here, o = vexp[Be (@) 1], and the parameter p, is

expressed via the quantity ¥, (0):

gy, (0).

; (12

Pa =
So, it depends on the parameters no ) and o of the
interaction potential Ul(n) given by (3).

The cumulants b,, are expressed by the formulas
similar to (9), where the special functions S, (a;}, pp)

0 *\m
a "'L - m
o) = 30 O e (13)
m=0

are substituted for the functions T, (o}, p.), of =

= vexp[fe (® ),u?j] and py is as follows:

= S8W0) (1)
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At the present stage, expression (7) for the grand
partition function does not contain any approxima-
tions, but has infinite series in the exponent. To deal
with this case, we use the traditional approximation
for the phase transition theory, assuming that a,, and
b, with n > 5 are zero. In general, the calculation
scheme below allows us to account for the higher pow-
ers of the variable p( ). as we did in [27] when investi-
gating the second—order phase transition for the Ising
model.

So, we restrict the problem to the approximation of
the p*-model, make the change of Variables to elimi-

nate the third power of variables p , and get

= a a (a) a
== g9 [ @)V B expl (M, )]

g / (dp®)Ne N Fi explE(Mo, p ). (15)
For E,(fs), we have
B =00 gty e o+ i)
- g (0)+ 25,
s _
B =bo - 25&)0) I ( o Wfét))) T
+ %m%db(()) + ;32
W/z((LO) = My — a1 — madqa(0) + Z?
WIZEO) = My — by —mpdy(0) + 227
here m, = —Z—Z, my= —2—2. The functions E(Ms, pg))

are given by

E(Ma,pf(a)) = Nv apéa) + 5 Z d pk p(al)c

1 keB
a4
24 N Z p pk4)6k1 k47
k eB
1 (17)
B(Mo ) = NE Magl! + 5 > dk)ppl+
b 1 keBe
4 b
24 N, o By s
K<,
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The quantities ds(k) are expressed by

- 1 _ a3
da(k)—az—m, a2 = az—ﬂ as)
~ 1 ~ b2
dy(k) = Bo — ——— by =by— 2.
W= Emay =T,
According to (6), we have
@' (0) = Bs®\"(0),
5
(0) = 472 (0),
Bs = 27 exp [1_%} (19)
QR

’ n® _
AP = A; L‘; exp |[Zo— 8|
n((J ) QR

So, we can rewrite p, and p, given by (12) and (14)
as follows:

pa= 5SRO OAD, py=FOBP ALY, (20)
and

Wa(0) = ®57(0)[By — 1+ 7, A, o)
W,(0) = &7 (0)[By — 1+ 1, AL,

The quantites 7, and 73, are the relative temperatures
of pure components of the mixture (separately for
species a and b, respectively):

T — T T —T7®

Ta, = Tc(a) ’ Tb = Tc(b)

(22)

Obviously, the critical temperature of the mixture T¢
is different from TC((S)

write the following:

. Taking that into account, we

T, T, — T
Ta = a a 5
T:" T:" (23)
T, T, —TY
Ty = )
C(b) Tc(b)

where 7 is the relative temperature of the mixture:
T-T,

T.
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T =

(24)

From (22) and (24), we obtain

. T.—T9
_ &0 _ @_Le @,
W,(0)=20(0)[B, —1+7A¢ T§“)+ o AC
0 (25)
. T L LT
Wi0)=®(0)|By —1+7AY A9,
O 19

In the boundary case, either T, = Tc(a) or1T, = Tc(b)7
the expressions given by (25) transform into (21). The
quantities TC(5) are defined from the conditions

ds(0) = 0 and are equal to

a>04” (0)(Ba — 1),
b,®\" (0)(By — 1).

kT ™ = asW, (0, 78V) =

(26)
kpTY = bWy (0, 7)) =

Note that, because of (21), we can use the equalities

3 (0) A = 2pakpT ™,

(r) (0) () @7
(I)b (O)A»Y :2pkaTc

to find the critical temperature of the mixture.

3. The Zero-Mode Approximation

Recently in [25], we have shown that the zero-mode
approximation describes well the phase behavior of a
one-component fluid. It is a mean-field-type approxi-
mation considering the contribution from the variable
pk at k = 0. The contributions from py at k # 0 are
important near the critical point. Let us investigate
the role of pé‘” in the formation of a phase diagram
of the mixture.

The grand partition function of the mixture in the
zero-mode approximation is as follows:

(a) (b)

E 0 =9y 9y Nz)(E,Sa)+E,5b)+Ea(ﬁa)+Eb(ﬁb))]

(28)

exp |

The expressions of Eff;)

we have

are given in (16). For Fy(ps),

_ a
Ea(pa) = Mapa + d ( ) + 22%7
. (20)
Ey(py) = Mypy + db( )P3 21)53

It is convenient to use the Laplace method [28] to cal-
culate (28). Thereby, the values p, and p, correspond
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to maxima of the function Ey(p,) and Fo(py), respec-
tively. So, the following equations determine p, and

Do

M, + do(0)pa + 25

Eﬁj = 07

b (30)
My + dy(0)ps + < = 0.
Equalities (27) define the critical temperatures of
each subsystem, which are calculated in [25]. Exp-
ression (28) contains independent contributions from
the particles of different species.

Now, we introduce the mixing parameter x as fol-
lows:

Pa =aps, pp=(1—2)ps. (31)

It is easy to see that

P+ = Pa + Pb,

v = ﬁai7 1_90:75177. (32)
Pa + Po Pa T Po

The mixing parameter x is like the concentration in
a different space. In Section 4, we show the relation
between the parameter x and the concentration of a
solution. In terms of p; and z, expressions (29) have
the form

4 4 4

1 a
E.(z,py) = Myxpy + ida(O)pri + 2% P

Byl 1) = My(L—2)py + 5dy(0)(1 — 2?02 + (33)

ba !
Jrﬂ(lfac) Py

Their sum (see (28)) is as follows:

1
Eab(w, p+) = Map + 5 Davp’ — a4p, (34)
where we use notations
My =aM, + (1 - x)Mb,
Dap = 22da(0) 4 (1 — 2)?dy(0), (35)

ay = —xtay — (1 — x)%*by.

In terms of py and z, the grand potential of the mix-
ture reads

Q=—kgTInZo(x,ps).
772

(36)

In order to minimize it with respect to p;, we have
to solve the equation

OEqp(z, p+)
=0, 37
9ps (37)
namely,
a
May, = —Dap(z, 7)ps + ipf’r. (38)

6

An equation of this type also holds for a single sys-
tem. Equation (38) is peculiar for the coefficients
Dgp(z,T) and a(x) which are functions of the mix-
ing parameter x. Moreover, D,; also depends on the
relative temperature of the mixture 7, while the rela-
tive temperatures 7, and 7, characterize pure species
a and b, respectively.

The effective chemical potential of the mixture My,
is a variable of the same type as either M, for the
subsystem of particles of species a, or M, for species
b. Each of them associate with p, and pp. Using the
quantity Mgy (or My, Mp) is convenient, because the
first-order phase transition occurs at M, = 0 for the
subsystem of particles of species a, M, = 0 for the
subsystem of particles of species b and My, = 0 for
the mixture of particles of both species a and b.

Both Egs. (38) and (30) are of the same type.
Therefore, the condition
Dap(z,Tc) =0 (39)
defines the critical temperature of the liquid-gas
phase transition of a binary system. Taking (35) into
account, we obtain the equation for T, = T, (x):

1

2% 1 _
BCWQ(O,TC)}M_”;) [I” AT )

1‘2 dg —
(40)

We use (26) and (27) to solve the latter equation and
get

d2Wa(07 Tc) = Tca + 2d2paTC7

- - (41)
baWy(0,Te) = Top + 2b2ppTe,
where
Tca = Tc(a) 1—-2a a)s
( 2p ) (42)

\ .
Toy = T (1 — 2bopy).
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Then we rewrite (40) as follows:

@iy W, (0, Te)ba Wi (0, T) — 22 Teby Wi (0,T.) /by —
— (1 — 2)*T.asW,(0,T¢) /ag = 0. (43)

Here, expression (40) is multiplied by W,(0,T;) x
x Wp(0,Tc) # 0 and, for #, reads

@’ M (44)

Substituting expressions (41) in formula (43), we ob-
tain the quadratic equation

LT+ fiT. + fo =0, (45)
where
fo = deepappsbs — 22%py — 2(1 — )pa,
_ = T
fl = 2%(a2pach + b2prca) - x2~7b -
T bo (46)

(11— 24ca

( x) &2 )
fO = %Tcach-

The critical temperature of the mixture as a function

of the mixing parameter z € [0, 1] is shown in Fig. 1.
The parameters of the interaction used for the

plotting are given in Appendix 5. Note that, at

x = 0, we have a single system of species b, for which

Tc(b) = 4.8028. The case x = 1 means the existence of

a single system of species a, for which TC(“) = 3.9502.
The reduced form of Eq. (38) is

pi +psp+ +¢s =0, (47)
where
6D T 6M,
L R P (18)
ay ay
For all 7 > 0, Eq. (47) has a single solution
3 \!/3
ps = () (a1 4 B'7) (49)
a4
where
A= Map + V Ma2b - MOngbv
(50)

B = My, — /M2, — My, D3,.
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Fig. 1. Plot of the line of critical temperatures of the binary
mixture

In these expressions,

8

Moy, = ——.
0 9a+

(51)

We find the temperature dependence of D, from
(35). Write an identity Dy = Dap(2z,T) — Dap(z, T¢),
namely, according to (39), subtract zero from
Dgp. Then

T. T
Doy = 2° < —
b= (Wam,n) Wa<o>>+

T. T
+-ay (Wbm,Tc) - Wb(O))'

In view of the relation
aaWo(0) = Teq + 2a2p.T =
= asW,(0,T¢) + 27a2p, T,
bWy (0) = Tup + 2bapy T =
= baW3(0,T¢) + 27bapy T,

(52)

we obtain D, in a more compact form
W,(0,T.) — 2p,
Doy = 2°1 -
b /BcWa (07 Tc)/Bch(O)
W(0,T¢) — 2py
+(1-2)r .
( ) Bch(Oa Tc)ﬂcWa(O)

+

(54)

The coefficient D, is negative for all 7 > 0 and pos-
itive at T' < T¢. It is proportional to 7, like a similar
coefficient in the case of a single system [25].

773



M.P. Kozlovskii, O.A. Dobush

0.04 4

0.03 4

0.02 4

0.014

0 0.2 0.4 0.6 0.8 1
X

Fig. 2. Plot of the coefficient a4 given in (35) as a functi-
on of x

Solutions of Eq. (47) are similar to solutions of the
analogous equation in the case of a single system (see
[25]). The difference is that the critical temperature
of the mixture depends on the mixing parameter z,
as well as the coefficient a4 = a4 (z). The latter case
is shown in Fig. 2.

In the temperature range T < T, Eq. (47) has
three real solutions, which can be found with the use
of the method suggested in work [25].

The solutions p4 are functions of the temperature
T, the effective chemical potential M,;, and the mix-
ing parameter x. Therefore, it is possible to visualize
the function py (T, M,p,x) only as separate projec-
tions on the surfaces:

(1)
er|T const — P+ ( ab; & )7

2
p+|a: const ( ab; )7 (55)
p+‘M ab=const _p( )(T LL')

Each of these projections reflects a particular physical
process. The quantity p( ) is of importance, since it
determines the Widom line of a binary mixture. It is
easy to verify that, for all T > T. at My, = 0, we
have p;(Mga = 0) = 0. Then we find the pressure,
by using the well-known formula

PV =kgTInE.
774

We obtain
1 a
Pv=keT |~ In(g{g") + B + BY|,  (56)
v
where, according to (16), we have
B = a0 — S+ mafa + ) +
2 4
+ %da(o) + 8(1—33,
®) B (W2 ) (57)
By =bo = 5 )2+ mp(br+ )+
2 4
my Aﬁ
moreover,
W) _ a3
Ha = —a; — ad (0) + ?7
S (58)
W) _ b3
ey, = —by — mbdb(O) + b7
4

The temperature dependence hides in the quantities
ds(0). It is easy to see from the above formulas that
the pressure along the Widom line is a function of
the relative temperature 7 and the parameter z. The
dependence on x eventuates from ds(0) containing the
critical temperature T.(z), which is a function of the
mixing parameter:

T. 1—wo,
a(0) = vy T L
TC + WoaTa

T — TS 11— woq
T2
Te

db(O) sz

14 woeTa
T 1-— wop
(b) 1+ w()bn,
~n—ﬂ“1ﬂm
’ 7 14 woTy’

(59)

where 7, and 7, are given in (22). For ws, we have

Woa = 2z, wop = 2bs. (60)
At £ = 0 and = = 1,we get, respectively, the Widom
lines of a single subsystem of species b and a. For all

€ (0,1), the set of Widom lines forms a surface

represented in Fig. 3.
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4. The Equation for Density

The general principles of statistical mechanics give
the equation for average numbers of particles of both
species (N,) and (Np). Denote

(V)
N TN, oy

Then, according to [23, 25], we have

n _ 1 9lmE n _ 1 9lmE (62)
aiNvaﬁﬂav biNv aﬁ/’éb

With regard for (28), we find

Ng = _Ma + nga) + d?’VTapnv (63)

ny = — My + ngb) + l;g’yprn.

The quantities M,, M, are given in (30), which means
that they are functions of 7 and py. Equalities (30)
yield

33302 + gaTpn +qq =0, (64)
where
~ (a)
6a 6(ne’ —ng
go= 22 g, = Ol ) (65)
aq ay
From (63), we have
(1= 2)°p5 + go(1 — 2)pn + g5 = 0, (66)
where
6b 6 ngb) -n
b= @= M. (67)
by by

Before writing the solutions of Eqs. (64) and (66),
we introduce the total density of the mixture ny and
the concentration n using the equations

Po =g, 7= (1= ). (69)
Then

ny = ng + Ny, 772%, 1—77::%- (69)
From (64), we have

Tpp = —2a COS (an;— W), (70)

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 9

Fig. 3. Plot of the surface of the pressure extremum

where
(a) _ = \1/2
Qu, = arccos (7%()7]Tl+>7 a= <%) . (71)
ne’ a4

From (66), we have
(1 —z)p, = —2bcos (W), (72)
where

(b) 7 \1/2

¢ = (11— - 2b
B =arccos (n(bn)mr)’ b= (— 2) . (73)

n ba

The sum of expressions (70) and (72) equals
Pn = —2a.COos <ozn;— W) — 2bcos ('Bn; W).

Note that p,, fails to be a function of the tempera-
ture. It has a restricted range, since @ and b are finite
quantities. The subtraction of (70) and (72) gives the
equation

(74)

a cos (O‘";' ”) —bcos (ﬁ"%)

which allows us to find the relation between the mix-
ing parameter x and the concentration n for an arbi-
trary value of the total density n.
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5. Conclusions

In this article, we represent the investigation of
the behavior of a binary asymmetric mixture at
T > T.. Among the results is a two-dimensional ana-
log of the Widom line for different values of the mix-
ing parameter x € [0, 1]. The equation of state of the
system, which includes the dependence on the param-
eter x, is calculated. This parameter links to the con-
centration and is also used to determine the critical
temperature of the mixture. In the boundary cases
x = 0 and z = 1, the formulas obtained here describe
separately the subsystems of particles of species b and
a, respectively. In the case of = € (0,1), we have a
mixture of components, that is characterized by the
critical temperature T¢. (see Fig. 1). The Widom line
shifts on the surface shown in Fig. 3, as the composi-
tion of the mixture changes.

APPENDIX A
Parameters of the Model

The following values of the interaction potential parameters
are used for numerical calculations and plots.

For both species, aq = ap = «, as well as Réa) = Réb) = Ro:
Ry = 5.3678, o« =1.8167, ap = 0.3385, (A1)
which coincide with the parameters of the Morse potential for
sodium [29, 30]. We choose the following values of the parame-
ters v and néa)

to species a:

of the potential Uy (7) (see (1)) corresponding

Yo = 1.6500, n{" =1.7255. (A2)
The values (A2) give
Pa =1, a; =5, (A3)

see (12). This set of parameters eventuates in the following
values of the coefficients a,, (see (11) and (18)):

ap = 1.1220, a1 = 0.7506,  as = 0.3413, M
asz = 0.0265, a4 = —0.0407, a2 = 0.3500. (A4)

The values of the parameters v, and néb) of the potential
Uy (r) differ from v, and néa):
v = 1.6000, n{") =1.7613. (A5)
They give
pp=1 a;=55 (AB)
and the following values of the coefficients by,:
bo = 1.1951, b1 = 0.7832, ba = 0.3437,

- (A7)

b3 = 0.0231, b4 = —0.0302, by = 0.3526.
776

The normalization constants given in (2) equal

" = 12544, A, =0.2217,

(A8)
o —1.2938, A, =0.2742.

The values of the critical temperatures of separate single sys-
tems of species a and species b are

kT ™ =3.9502, kT ¥ = 4.8028. (A9)
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M.II. Koaaoscvruti, O.A. lobyw

IMIOBEJIHKA BIHAPHOI
ACUMETPUYHOI CYMIIII B3BAEMO/IIIOUYNX
YACTUHOK B HAJIKPUTUYHIN OBJIACTI

Peszmowme

3anponoHOBaHO METO OIUCY (Ha30BOI MOBEIIHKH CUCTEMH, SKa
CKJIQJIA€ThCS 13 YaCTUHOK JBOX COpTiB. B3aemoniss Ko>XHOrO
i3 COPTIB OMUCYETHCSI BJIACTUBUM WOMY IOTEHI[AJIOM B3aEMO-
Ail, M0 MICTUTB BiAIITOBXYyBaJIbHY Ta IPUTATAJIBHY YACTUHU.
AcuMeTpuYHICTD 3a0€311eUy€eThCsl PISHUMU 3HAYEHHSMU [apa-
MeTpIB MOTEHIa/JIiB B3ae€MO/Iil KOXKHOro i3 coprti. IIposene-
HO PO3PaxyHOK BEJIMKOI CTATHUCTUYHOI cyMHu OGiHApHOI cucremu
B Hab/IMXKeHHI HYJIbOBOI Mojau. Jlyisi KOHKpETHUX 3HAYEHb IIa-
paMeTpiB IOTEHIiaJly B3a€MOJil pPO3PaxXOBAaHO JIiHIIO KPUTHY-
HUX TOYOK, Kl BiJ[IIOBI/IaI0Th PI3HUM HPOIOPIsIM KOMIIOHEHT.
OTpuMaHO PiBHSIHHSI, sIK€ IOB’sI3y€ BBEJEHMUII HAMU IapaMeTp
3MINIyBaHHA & 13 KOHIIGHTPAIIEIO CUCTEMH. SHANHIEHO SABHUMN
BUIJIsI]] BUpa3y JJIsi TUCKY OiHapHOI cucreMu K DYHKINHT Bij-
HOCHOI TeMIIepaTypy Ta IapaMerpa 3MINIyBaHHS & IJIs IOOY-
nosu JiHiT Bigoma. BeranosiieHo, 1o /ijisi rpaHUYHUX 3HAYEHD
nporo mapamerpa (r = 0 ta z = 1) piBHAHHA cTaHy CyMinn
IIePEeXOUTDh Y PIBHAHHS CTaHy OJHI€l 3 OKPEMHUX KOMIIOHEHT.
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