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MODIFIED MEAN-FIELD THEORY
OF ONE-DIMENSIONAL SPIN MODELS
WITH ANISOTROPY AND LONG-RANGE
DIPOLAR INTERACTIONS

The effects of interactions and anisotropy on the magnetic properties of linear chains of super-
paramagnetic nanoparticles are studied theoretically by mapping the problem onto spin mod-
els. With zero anisotropy, the magnetic dipole moments are free to rotate, and the system re-
sembles a classical ferromagnetic Heisenberg model with long-range dipolar interactions. With
strong anisotropy, they are constrained to align with the chain, and the system resembles the
classical ferromagnetic Ising model with long-range interactions. Using a modified mean-field
theory, expressions for the magnetization curve and initial magnetic susceptibility are derived
from the response of a single particle subject to an effective field arising from the applied
field and the interactions with the other particles. Various approximations for the effective
field are tested against results from Monte Carlo simulations. It is shown that, for physically
relevant interaction strengths, reliable theoretical predictions for both the zero-anisotropy and
strong-anisotropy cases can be derived in a simple closed form.
K e yw o r d s: Heisenberg model, Ising model, dipolar interactions, magnetization, magnetic
susceptibility, modified mean-field theory, Monte Carlo simulations.

1. Introduction

A superparamagnetic nanoparticle possesses a net
magnetic dipole moment 𝜇 which is aligned prefer-
entially along an easy axis defined by the crystal
structure of the constituent material. The dipole mo-
ment can reorient through the Néel mechanism at
a rate that depends on the energy barrier separat-
ing two degenerate orientations, which is character-
ized by the anisotropy constant 𝐾 of the magnetic
material. The Néel relaxation time is proportional to
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exp (𝜎), where 𝜎 = 𝐾𝑣/𝑘B𝑇 , 𝑣 is the volume of the
magnetic core of the particle, 𝑘B is Boltzmann’s con-
stant, and 𝑇 is the temperature [1]. In a fluid col-
loidal suspension, the nanoparticles (and their easy
axes) undergo Brownian rotation, and so the dipole
moments can reorient by a combination of the Néel
and Brownian mechanisms [1]. If the nanoparticles
are immobilized in a solid matrix, then the Brown-
ian mechanism is blocked, and the orientations of the
easy axes are fixed. It is important to understand how
the anisotropy and the orientational distribution of
easy axes affect the magnetization curve and initial



P.J. Camp, A.O. Ivanov

magnetic susceptibility of immobilized superparam-
agnetic nanoparticles, in order that new materials can
be developed and exploited for technological applica-
tions [2, 3]. Recently, this problem was studied using
a combination of theory and computer simulations
[4]. The theory was based on the so-called modified
mean-field (MMF) approach [5,6], where the problem
of interacting magnetic particles is reduced to a one-
particle calculation by defining an effective magnetic
field due to the applied field and the interactions with
the other particles. To calculate this effective field re-
quires a description of the orientational correlations
between particles. In the first-order MMF theory, cor-
relations are ignored. It was found that the MMF the-
ory works well in the case of zero anisotropy (𝜎 = 0)
or when the easy axes are oriented randomly in space,
as compared to numerical results from Monte Carlo
(MC) simulations. The reason for this is that the ef-
fective interactions between dipoles are short-ranged;
although the dipolar interaction is anisotropic and
decays with distance 𝑟 like 1/𝑟3, the longest-range
part of the orientationally averaged, isotropic inter-
action decays like −1/𝑟6 [7]. Hence, the orientational
correlations are weak, and a mean-field approach is
adequate to compute the magnetic properties. The
MMF approach is not very accurate in the case of
strong anisotropy (large 𝜎) and parallel alignment of
the easy axes with the field direction. In this case, the
interactions between dipoles remain anisotropic and
long-ranged, the orientational correlations are sub-
stantial, and the impact on the magnetic properties
is significant. To improve the accuracy of the MMF
theory, a better representation of the orientational
correlations is required.

In general, describing the orientational correlations
between strongly interacting dipolar particles is diffi-
cult, but there is at least one special case where the
problem can be simplified considerably. In the classi-
cal one-dimensional 𝑛-vector models [8], each spin 𝑆
has 𝑛 components, and the exchange energy is propor-
tional to −𝐽𝑆𝑖 ·𝑆𝑗 . The models with nearest-neighbor
ferromagnetic interactions have been studied exten-
sively, and the properties are known exactly: the
Heisenberg model corresponds to 𝑛 = 3 [9, 10]; and
the Ising model corresponds to 𝑛 = 1 [11]. With inter-
actions that decay with distance like 𝑟−𝑎, the Heisen-
berg model only exhibits ferromagnetism if 1 < 𝑎 < 2
[12–14], and the Ising model exhibits ferromagnetism
if 1 < 𝑎 ≤ 2 [15–19].

The ferromagnetic Ising model resembles a linear
chain of immobilized superparamagnetic nanoparti-
cles, with the easy axes aligned with the chain, an
anisotropy constant 𝜎 → ∞, and the magnetic field
applied in the chain direction. The long-range dipo-
lar interactions can be thought of as a perturba-
tion to the nearest-neighbor interactions in the Ising
model. Hence, in this special case, the effective field
felt by one superparamagnetic nanoparticle in the
chain could be estimated by using the properties of
the one-dimensional Ising model. Something similar
could be done for the 𝜎 = 0 case, but the necessary
expressions for the one-dimensional Heisenberg model
are much more complicated [10, 20].

This aim of this study is to compute the mag-
netic properties of a linear chain of interacting su-
perparamagnetic nanoparticles by mapping the prob-
lem onto one-dimensional spin models. Simple formu-
las will be obtained describing the dependence of the
magnetization curve and initial susceptibility on the
strength of the interactions. The theoretical predic-
tions will then be tested against numerical results
from MC simulations. The rest of this article is orga-
nized as follows. Section 2 summarizes various MMF
and mean-field (MF) approaches to the properties of
systems with zero anisotropy (𝜎 = 0, Heisenberg-like
spins) and with infinite anisotropy (𝜎 = ∞, Ising-like
spins). Section 3 describes the MC simulations. The
results are presented in Section 4, and Section 5 con-
cludes the article.

2. Theory

2.1. Model

𝑁 spins are equally spaced in a chain aligned with
the 𝑧 axis. The Hamiltonian ℋ is given by

𝛽ℋ =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

𝛽𝑈(𝑆𝑖,𝑆𝑗 , 𝑟) +

𝑁∑︁
𝑖=1

𝛽Φ(𝑆𝑖), (1)

where 𝛽 = 1/𝑘B𝑇 , 𝑈 is the pair interaction energy,
and Φ contains the interaction energy between a spin
and the applied field and, in the case of anisotropy,
a term constraining the spin to align with a partic-
ular axis. The function 𝑈 depends on the separation
between the spins, 𝑟 = |𝑖− 𝑗|, and can include a cut-
off at separation 𝑅. 𝑅 = 1 corresponds to nearest-
neighbor interactions, while 𝑅 = ∞ means long-range
interactions. A three-component spin is defined by
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a polar angle 𝜃 and an azimuthal angle 𝜑: 𝑆𝑖 =
= (𝑆𝑖𝑥, 𝑆𝑖𝑦, 𝑆𝑖𝑧) = (sin 𝜃𝑖 cos𝜑𝑖, sin 𝜃𝑖 sin𝜑𝑖, cos 𝜃𝑖).
The dipolar interaction energy between spins is

𝛽𝑈(𝑆𝑖,𝑆𝑗 , 𝑟) =
𝐽

2𝑟3
(𝑆𝑖 · 𝑆𝑗 − 3𝑆𝑖𝑧𝑆𝑗𝑧) =

=
𝐽

2𝑟3
[sin 𝜃𝑖 sin 𝜃𝑗 cos(𝜑𝑖 − 𝜑𝑗)− 2 cos 𝜃𝑖 cos 𝜃𝑗 ], (2)

if 𝑟 = |𝑖 − 𝑗| ≤ 𝑅, and it is zero otherwise. The cou-
pling constant 𝐽 is defined such that the minimum
interaction energy between nearest neighbors is −𝐽
(when cos 𝜃𝑖 = cos 𝜃𝑗 = 1). The single-spin energy is

𝛽Φ(𝑆𝑖) = −𝛼𝑆𝑖𝑧 − 𝜎𝑆2
𝑖𝑧, (3)

where 𝛼 is proportional to a magnetic field in the
𝑧 direction, and 𝜎 constrains the spins to lie along
the easy axis, which is taken to be the 𝑧 axis. The
fractional magnetization is

𝑚 =

1∫︁
−1

cos 𝜃𝜌(cos 𝜃)d cos 𝜃, (4)

where 𝜌(cos 𝜃) is the one-spin density,
∫︀ 1

−1
𝜌(cos 𝜃)×

×d cos 𝜃 = 1, 𝑚 = 0 means no alignment, and 𝑚 =
= ±1 means complete alignment.

2.2. Mapping the model
onto immobilized magnetic colloids

To make a connection with colloidal properties [1],
each spin corresponds to a magnetic dipole moment
𝜇 = 𝜇𝑆, and the spacing between spins is 𝑎. For
spherical superparamagnetic particles with diameter
𝑑, the dipolar coupling constant is given by

𝜆 =
𝜇0𝜇

2

4𝜋𝑘B𝑇𝑑3
=

𝐽

2𝜙
, (5)

where 𝜇0 is the vacuum permeability, and 𝜙 ∼ (𝑑/𝑎)3

is the volume fraction of particles. For typical mag-
netic colloids, 𝜆 ∼ 1 and 𝜙 ∼ 0.1, so that, in a random
dispersion of particles, 𝐽 = 2𝜆𝜙 ∼ 0.2. If the applied
field strength is 𝐻, then the Langevin parameter is

𝛼 =
𝜇0𝜇𝐻

𝑘B𝑇
. (6)

The initial susceptibility in the 𝑧 direction is given by

𝜒 =

(︂
𝜕𝑀

𝜕𝐻

)︂
𝐻=0

, (7)

where 𝑀 = 𝑚𝜇/𝑎3 is the real magnetization. In
terms of the fractional magnetization 𝑚 and the
Langevin parameter 𝛼,

𝜒 =
𝜇0𝜇

2

𝑘B𝑇𝑎3

(︂
𝜕𝑚

𝜕𝛼

)︂
𝛼=0

. (8)

2.3. Yvon–Born–Green equation

The aim is to calculate the one-spin density 𝜌(𝑆),
from which the magnetization curve and initial sus-
ceptibility can be obtained. The Yvon–Born–Green
(YBG) equation linking the one-spin density to the
pair distribution function 𝑔(𝑆,𝑆′, 𝑟) is [21]

d ln 𝜌(𝑆)

d𝑆
= −d𝛽Φ(𝑆)

d𝑆
−

− 2

𝑅∑︁
𝑟=1

∫︁
d𝑆′ d𝛽𝑈(𝑆,𝑆′, 𝑟)

d𝑆
𝜌(𝑆′)𝑔(𝑆,𝑆′, 𝑟), (9)

where the factor of 2 in the second term on the
right-hand side accounts for interactions between a
spin and the 𝑅 neighbors either side of it. The gen-
eral approach is to use approximations for 𝜌(𝑆′) and
𝑔(𝑆,𝑆′, 𝑟), and to obtain simple, closed-form expres-
sions for 𝜌(𝑆), 𝑚, and 𝜒. Two different cases will be
considered: zero anisotropy (𝜎 = 0) meaning that the
spins are free to rotate in all three directions; and in-
finite anisotropy (𝜎 = ∞) meaning that the spins are
constrained to lie parallel or antiparallel to the 𝑧 axis.

2.4. Zero anisotropy

With 𝜎 = 0, the spins are free to point in any direc-
tion in space. Two theories will be summarized below:
a modified mean-field theory based on non-interacting
spins; and conventional Weiss mean-field theory [22].

2.4.1. Modified mean-field
theory based on non-interacting spins

In what follows, the tilde (~) denotes a reference sys-
tem with known properties that are used to evaluate
the right-hand side of the YBG equation. For non-
interacting spins, the one-spin density is

𝜌(cos 𝜃) =
𝛼 exp (𝛼 cos 𝜃)

2 sinh𝛼
, (10)

and the fractional magnetization is

�̃� = coth𝛼− 1

𝛼
≡ 𝐿(𝛼), (11)
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which defines the Langevin function 𝐿. The initial
susceptibility for non-interacting spins is

𝜒0 =
𝜇0𝜇

2

3𝑘B𝑇𝑎3
, (12)

which is the equivalent of the Langevin susceptibility
for magnetic colloids. There are no correlations be-
tween non-interacting spins, and hence the pair dis-
tribution function in this case is 𝑔(𝑆,𝑆′, 𝑟) = 1. The
YBG equation with 𝑅 = ∞ is then

d ln 𝜌(cos 𝜃)

d cos 𝜃
= 𝛼+

∞∑︁
𝑟=1

2𝐽

𝑟3

1∫︁
−1

cos 𝜃′𝜌(cos 𝜃′)d cos 𝜃′ =

= 𝛼+ 2𝐽𝜁(3)�̃�, (13)

where 𝜁(3) =
∑︀∞

𝑟=1 1/𝑟
3 ≃ 1.20205. Note that dif-

ferentiating 𝑈 with respect to cos 𝜃 gives one term
proportional to cos (𝜑− 𝜑′) that disappears on the
integration over 𝜑′, and another term proportional to
cos 𝜃′ that does not depend on 𝜑′ at all. Integrating
the YBG equation gives the one-spin density

𝜌(cos 𝜃) =
𝛼eff exp (𝛼eff cos 𝜃)

2 sinh𝛼eff
(14)

and the magnetization curve

𝑚 = 𝐿(𝛼eff), (15)

where

𝛼eff = 𝛼+ 2𝐽𝜁(3)�̃� (16)

is the effective field felt by a single spin, containing
the bare-field term 𝛼, and the interactions with all
of the other spins. The susceptibility for interacting
spins, compared to that for non-interacting spins, is
given by

𝜒

𝜒0
= 3

(︂
𝜕𝑚

𝜕𝛼

)︂
𝛼=0

= 1 +
2𝐽𝜁(3)

3
. (17)

This theory is referred to as “MMF(NI)”, where “NI”
indicates that 𝜌 and 𝑔 are those of the non-interacting
system.

2.4.2. Mean-field theory

Of course, the conventional Weiss mean-field theory
[22] gives an effective field precisely of the form of

Eq. (16), but with 𝑚 determined self-consistently ac-
cording to the relation

𝑚 = 𝐿(𝛼+ 2𝐽𝜁(3)𝑚). (18)

Linearizing this equation gives the result

𝜒

𝜒0
=

[︂
1− 2𝐽𝜁(3)

3

]︂−1

, (19)

which erroneously signals a transition to the ferro-
magnetic phase at 𝐽c = 3/2𝜁(3) ≃ 1.24786. Note that
an expansion of this result with respect to 𝐽 gives a
linear term in agreement with Eq. (17). This theory
is indicated with “MF” for “mean field”.

2.5. Infinite anisotropy

If a spin is strongly aligned with the 𝑧 axis, then
𝑆2
𝑖𝑥 + 𝑆2

𝑖𝑦 = 𝜖 and 𝑆𝑖𝑧 ≈ ±(1 − 1
2𝜖). It is necessary

to keep 𝑆𝑖 as a continuous variable in order to define
and integrate the YBG equation. In the limit 𝜎 → ∞,
𝑆𝑖 = (0, 0, 𝑆𝑖) with 𝑆𝑖 = ±1, and so the fractional
magnetization is

𝑚 = 𝜌(+1)− 𝜌(−1) = 2𝜌(+1)− 1 = 1− 2𝜌(−1) (20)

and the one-spin density can be written as

𝜌(𝑆) =
1

2
(1 + 𝑆�̃�) [𝛿(𝑆 − 1) + 𝛿(𝑆 + 1)] , (21)

where 𝑆 is constrained to ±1 by the Dirac 𝛿 func-
tions. The one-dimensional dipolar Ising model and
extensions have been used to study inhomogeneous
nanowires [23], structure in organic ferroelectrics [24],
and the ordering of water in one-dimensional nanopo-
res [25–27]. Three theories will be detailed below: two
modified mean-field theories will be derived, based on
non-interacting spins, and the nearest-neighbor Ising
model; and the Weiss mean-field model.

2.5.1. Modified mean-field
theory based on non-interacting spins

For non-interacting particles in the limit 𝜎 → ∞, the
one-spin density is

𝜌(𝑆) =
exp (𝛼𝑆) [𝛿(𝑆 − 1) + 𝛿(𝑆 + 1)]

2 cosh𝛼
, (22)

the magnetization curve is

�̃� = tanh𝛼, (23)
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and the pair distribution function is 𝑔(𝑆, 𝑆′, 𝑟) =
1. Hence, the YBG equation becomes

d ln 𝜌(𝑆)

d𝑆
= 𝛼+ 2𝜎𝑆 +

∞∑︁
𝑟=1

2𝐽

𝑟3

1∫︁
−1

𝑆′𝜌(𝑆′)d𝑆′ =

= 𝛼+ 2𝜎𝑆 + 2𝐽𝜁(3)�̃�. (24)

Integrating this equation gives

ln

[︂
𝜌(+1)

𝜌(−1)

]︂
= 2𝛼+ 4𝐽𝜁(3)�̃�. (25)

Hence,

𝑚 =

𝜌(+1)
𝜌(−1) − 1

𝜌(+1)
𝜌(−1) + 1

= tanh𝛼eff , (26)

where the effective field is

𝛼eff = 𝛼+ 2𝐽𝜁(3)�̃�. (27)

The initial susceptibility is given by

𝜒

𝜒0
=

(︂
𝜕𝑚

𝜕𝛼

)︂
𝛼=0

= 1 + 2𝐽𝜁(3), (28)

where, for Ising-like spins,

𝜒0 =
𝜇0𝜇

2

𝑘B𝑇𝑎3
. (29)

This theory is referred to as “MMF(NI)”.

2.5.2. Modified mean-field theory
based on interacting spins with 𝑅 = 1

Using a more accurate expression for the pair distri-
bution function 𝑔(𝑆, 𝑆′, 𝑟) should give improved re-
sults. To this end, 𝜌(𝑆′) and 𝑔(𝑆, 𝑆′, 𝑟) in the YBG
equation can be approximated by the known func-
tions for the nearest-neighbor Ising model [11], which
corresponds to the current model with 𝑅 = 1 and
𝜎 = ∞. The magnetization curve is given by

�̃� =
sinh𝛼√︁

exp (−4𝐽) + sinh2 𝛼
, (30)

and the one-spin density is given by Eq. (21). As
shown in the Appendix, the pair distribution func-
tion is given by

𝑔(𝑆, 𝑆′, 𝑟) =
1 + (𝑆 + 𝑆′)�̃�+ 𝑆𝑆′𝐶𝑟

(1 + 𝑆�̃�)(1 + 𝑆′�̃�)
, (31)

where 𝐶𝑟 is the spin-spin correlation function. 𝐶𝑟 is
given by

𝐶𝑟 = ⟨𝑆𝑖𝑆𝑖+𝑟⟩ = �̃�2 +

(︂
𝜆−

𝜆+

)︂𝑟 (︀
1− �̃�2

)︀
, (32)

where

𝜆± = 𝑒𝐽 cosh𝛼±
√︀
𝑒−2𝐽 + 𝑒2𝐽 sinh2 𝛼. (33)

Now, these results are strictly for 𝑆𝑖 = ±1, but to
integrate the YBG equation, 𝑔(𝑆, 𝑆′, 𝑟) should be a
function of continuous variables. Therefore, the as-
sumption is made that Eq. (31) applies for all val-
ues of −1 ≤ 𝑆, 𝑆′ ≤ 1, and that the orientational
correlations are independent of 𝜑 and 𝜑′. With these
assumptions, the YBG equation is

d ln 𝜌(𝑆)

d𝑆
= 𝛼+2𝜎𝑆+

∞∑︁
𝑟=1

2𝐽

𝑟3

1∫︁
−1

𝑆′𝜌(𝑆′)𝑔(𝑆, 𝑆′, 𝑟)d𝑆′ =

= 𝛼+ 2𝜎𝑆 +

∞∑︁
𝑟=1

2𝐽

𝑟3

(︃
�̃�+ 𝑆𝐶𝑟

1 + 𝑆�̃�

)︃
. (34)

Integrating this expression and using Eq. (26) gives a
magnetization curve with an effective field

𝛼eff = 𝛼+

∞∑︁
𝑟=1

𝐽

𝑟3

[︃(︃
1− 𝐶𝑟

�̃�2

)︃
ln

(︂
1 + �̃�

1− �̃�

)︂
+

2𝐶𝑟

�̃�

]︃
.

(35)

In a strong field and/or at large distances, 𝐶𝑟 ≈ �̃�2

and, hence, 𝛼eff ≈ 𝛼 + 2𝐽𝜁(3)�̃�, which agrees
with the MMF theory based on non-interacting spins
[Eq. (27)]. The initial susceptibility is given by

𝜒

𝜒0
= 1 + 2𝐽𝜁(3)

(︂
1 + tanh 𝐽

1− tanh 𝐽

)︂
, (36)

where 𝜒0(1 + tanh 𝐽)/(1 − tanh 𝐽) is the initial sus-
ceptibility of the Ising model with 𝑅 = 1. This theory
is referred to as “MMF(𝑅 = 1)”, which indicates that
𝜌 and 𝑔 are those of the system with 𝑅 = 1.

2.5.3. Mean-field theory

Solving the linearized version of the self-consistent
equation

𝑚 = tanh (𝛼+ 2𝐽𝜁(3)𝑚) (37)
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Fig. 1. The ratio 𝜒/𝜒0 as a function of 𝐽 for systems with
𝜎 = 0 and 𝜎 = ∞. The points are from MC simulations,
and the lines are from theory: MF theory with 𝜎 = 0 (black
dotted line); MMF(NI) theory based on non-interacting spins
with 𝜎 = 0 (black dashed line); MC simulations with 𝜎 = 0

(black filled circles); MF theory with 𝜎 = ∞ (red dotted line);
MMF(NI) theory based on non-interacting spins with 𝜎 = ∞
(red dashed line); MMF(𝑅 = 1) theory based on interacting
spins with 𝑅 = 1 and 𝜎 = ∞ (red solid line); MC simulations
with 𝜎 = ∞ (red unfilled squares)

gives for the initial susceptibility

𝜒

𝜒0
=

1

1− 2𝐽𝜁(3)
, (38)

which predicts a critical coupling constant 𝐽c =
= 1/2𝜁(3) ≃ 0.415954. It is known that there is no
phase transition for the one-dimensional dipolar Ising
model [15–19]. The linearized version of this formula
agrees with the MMF result in Eq. (28). This theory
is referred to as “MF”.

3. Monte Carlo Simulations

To test the accuracy of the theories, MC simulations
were carried out on chains of 𝑁 = 1000 spins, with
periodic boundary conditions applied [28]. One MC
sweep consisted of 𝑁 attempted rotations of ran-
domly selected spins. With 𝜎 = 0, a spin was rotated
about a randomly generated axis by a randomly cho-
sen angle in the range [−𝜋, 𝜋]. With 𝜎 = ∞, a spin
was flipped from 𝑆 to −𝑆. Each simulation consisted
of between 1×105 and 1×106 MC sweeps, depending
on the parameters 𝑅, 𝐽 , and 𝛼. The initial suscepti-
bility was calculated using the standard fluctuation

formula

𝜒

𝜒0
=

𝑛
⟨︀
𝑀2
⟩︀

𝑁
, (39)

where 𝑀 =
∑︀𝑁

𝑖=1 𝑆𝑖𝑧, 𝑛 = 3 for 𝜎 = 0, and 𝑛 = 1 for
𝜎 = ∞.

4. Results

Figure 1 shows the ratio 𝜒/𝜒0 as a function of 𝐽 for
models with 𝜎 = 0 and 𝜎 = ∞. The initial suscepti-
bility with 𝜎 = ∞ increases much more rapidly than
that with 𝜎 = 0, because the spins are constrained to
lie parallel or antiparallel to the 𝑧 axis. With 𝜎 = 0,
both the MF theory and the MMF(NI) theory are
in reasonable agreement with the MC simulation re-
sults. The MF theory predicts a divergence in 𝜒 at
𝐽c ≃ 1.24786, which is an artifact. With 𝜎 = ∞, the
MF theory predicts a divergence at 𝐽c ≃ 0.415954,
which renders it highly inaccurate except at very low
values of 𝐽 . The two MMF theories perform very dif-
ferently. The MMF(NI) theory is only accurate at low
values of 𝐽 , while the MMF(𝑅 = 1) theory is accurate
up to 𝐽 ≃ 0.7. This shows that including correlations
has a huge effect on the results for systems with strong
anisotropy.

Near the critical temperature 𝑇c, the initial sus-
ceptibility follows the scaling law 𝜒 ∼ (𝑇 − 𝑇c)

−𝛾 ,
where 𝛾 is a critical exponent that depends on the
universality class of the Hamiltonian [29]. The clas-
sical Curie–Weiss law of (anti)ferromagnetism states
that 1/𝜒 ∝ (𝑇 − 𝑇c). In the present case, 𝑇c = 0,
because there is no long-range order at finite tem-
perature. Since 𝜒0 ∝ 𝐽 [Eqs. (12) and (29)], it is
clear that 1/𝜒 ∝ 𝜒0/𝐽𝜒. Fig. 2 shows a plot of
𝜒0/𝐽𝜒 as a function of the dimensionless temperature
1/𝐽 . These plots show that, at high temperature, the
initial susceptibility follows the Curie–Weiss law. MC
simulations show that, at low temperature, the sus-
ceptibility does not diverge according to any scaling
law, since there is no phase transition in these mod-
els. The MF theories for both 𝜎 = 0 and 𝜎 = ∞
erroneously signal phase transitions. With 𝜎 = 0,
both the MF theory and the MMF(NI) theory are in
good agreement with the simulation results at high
temperatures. With 𝜎 = ∞, the superiority of the
MMF(𝑅 = 1) theory over the MF and MMF(NI)
theories is clear. All of the MMF theories are qual-
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Fig. 2. The ratio 𝜒0/𝐽𝜒 as a function of 1/𝐽 for systems
with 𝜎 = 0 and 𝜎 = ∞. The points are from MC simulations,
and the lines are from theory: MF theory with 𝜎 = 0 (black
dotted line); MMF(NI) theory based on non-interacting spins
with 𝜎 = 0 (black dashed line); MC simulations with 𝜎 = 0

(black filled circles); MF theory with 𝜎 = ∞ (red dotted line);
MMF(NI) theory based on non-interacting spins with 𝜎 = ∞
(red dashed line); MMF(𝑅 = 1) theory based on interacting
spins with 𝑅 = 1 and 𝜎 = ∞ (red solid line); MC simulations
with 𝜎 = ∞ (red unfilled squares)

itatively correct in that they do not predict a phase
transition at finite temperatures.

Figures 1 and 2 show that, with a moderate value
of 𝐽 = 0.5, the 𝜎 = 0 case is well described by
both the MF and MMF(NI) theories. Figure 3 shows
the magnetization curve for this case, on both an
expanded scale (𝛼 ≤ 5) and in the linear-response
regime (𝛼 ≤ 0.5). The magnetization curve for the
non-interacting system [Eq. (11)] is clearly inade-
quate. Both the MMF(NI) theory [Eq. (15)] and the
the MF theory [Eq. (18)] are in good agreement with
the MC simulations, and there is not much to choose
between them. The MF theory slightly overestimates
the initial susceptibility, while the MMF(NI) slightly
underestimates it.

Figures 1 and 2 show that the 𝜎 = ∞ case de-
mands a more sophisticated theory. The magnetiza-
tion curve with 𝐽 = 0.5 is shown in Fig. 4. For clarity,
Fig. 4, a and b show the results for non-interacting
spins and from MMF(NI) theory, and Fig. 4, c and
d show the results for interacting spins with 𝑅 = 1
and from MMF(𝑅 = 1) theory. The comparisons with
MC simulation results are made on both expanded
scales [(a) and (c)] and in the linear-response regime
[(b) and (d)]. The MF theory is not shown because

Fig. 3. The magnetization curve with 𝜎 = 0 and 𝐽 = 0.5:
expanded scale (a); linear-response regime (b). The points
are from MC simulations, and the lines are from theory: MF
theory (dotted line); non-interacting (NI) spins (dashed line);
MMF(NI) theory based on non-interacting spins (solid line)

Fig. 4. The magnetization curve with 𝜎 = ∞ and 𝐽 = 0.5:
expanded scale (a) and (c); linear-response regime (b) and (d).
The points are from MC simulations, and the lines are from
theory: non-interacting (NI) spins (red dashed line) (a) and
(b); MMF(NI) theory based on non-interacting spins (red solid
line) (a) and (b); interacting spins with 𝑅 = 1 (blue dashed
lines) (c) and (d); MMF(𝑅 = 1) theory based on interacting
spins with 𝑅 = 1 (blue solid line) (c) and (d)

𝐽 = 0.5 is above the apparent value of 𝐽c. The results
for non-interacting spins and from MMF(NI) are not
in good agreement with the MC simulation data. The
MMF(𝑅 = 1) theory, however, shows excellent agree-
ment with the MC simulations.

Figure 5 shows a direct comparison of the
MMF(NI) and MMF(𝑅 = 1) theories for systems
with 𝜎 = ∞ and 𝐽 = 0.25, 0.50, and 1.00. The re-
sults show that the deviation between the two theo-
ries grows rapidly with 𝐽 . With 𝐽 = 0.25 and 0.50,
the MMF(𝑅 = 1) theory is essentially perfect. Even
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Fig. 5. The magnetization curves with 𝜎 = ∞ and 𝐽 = 0.25,
0.50, and 1.00. The points are from MC simulations: 𝐽 =

= 0.25 (black circles); 𝐽 = 0.50 (red squares); 𝐽 = 1.00 (blue
diamonds). The lines are from theory: MMF(NI) theory based
on non-interacting spins (dashed lines); MMF(𝑅 = 1) theory
based on interacting spins with 𝑅 = 1 (solid lines)

with 𝐽 = 1.00, where the initial susceptibility is not
very accurate, the MMF(𝑅 = 1) theory is in moder-
ate agreement with the MC simulation results.

5. Conclusions

Motivated by a recent study of the magnetic prop-
erties of immobilized superparamagnetic particles
[4], this work was devoted to the influence of
the anisotropy in one-dimensional spin models with
long-range dipolar interactions. Various theories were
tested against computer-simulation results for the ini-
tial susceptibility and the magnetization curve. It is
shown that increasing the anisotropy (and changing
from Heisenberg-like to Ising-like spins) increases the
initial susceptibility, in line with earlier work. The
self-consistent mean-field theory and a modified
mean-field theory based on non-interacting spins (no
correlations) work quite well in the case of zero
anisotropy. Physically, this is due to the unhindered
rotation of the spins and to the fact that the effective
dipolar interactions become short-ranged. In the limit
of infinite anisotropy, both of these theories fail badly
with strong interactions between the spins. A modi-
fied mean-field theory based on spins with nearest-
neighbor interactions is shown to work extremely
well. The inclusion of strong ferromagnetic correla-
tions, albeit approximately, gives a much more accu-
rate estimation of the effective field felt by an individ-
ual spin, modified by long-range interactions with the

other spins. The resulting formulas for the magnetiza-
tion curve and initial susceptibility are simple and in
closed form. Possibly, a similar approach can be found
to treat spatially disordered systems such as strongly
interacting ferrofluids, ferrogels, and composites with
immobilized superparamagnetic particles.
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within the state assignment of the Ministry of Sci-
ence and Higher Education of the Russian Federation
(theme “Magnet” and Contract No. 02.A03.21.006).

APPENDIX
Pair Distribution Function
of the Nearest-Neighbor Ising Model

The pair distribution function is defined as [21]

𝑔(𝑆, 𝑆′, 𝑟) =
𝜌(𝑆, 𝑆′, 𝑟)

𝜌(𝑆)𝜌(𝑆′)
, (A.1)

where 𝜌(𝑆) and 𝜌(𝑆, 𝑆′, 𝑟) are, respectively, the one-spin and
two-spin densities. The two-spin density must fulfill the follow-
ing four conditions:∑︁
𝑆

∑︁
𝑆′

𝜌(𝑆, 𝑆′, 𝑟) = 1, (A.2a)

∑︁
𝑆

∑︁
𝑆′

(𝑆 + 𝑆′)𝜌(𝑆, 𝑆′, 𝑟) = 2�̃�, (A.2b)

∑︁
𝑆

∑︁
𝑆′

𝑆𝑆′𝜌(𝑆, 𝑆′, 𝑟) = 𝐶𝑟, (A.2c)

𝜌(+1,−1, 𝑟) = 𝜌(−1,+1, 𝑟). (A.2d)

These conditions allow the computation of the four values
of 𝜌(𝑆, 𝑆′, 𝑟) from the known functions �̃� [Eq. (30)] and 𝐶𝑟

[Eq. (32)]:

𝜌(+1,+1, 𝑟) =
1

4
(1 + 2�̃�+ 𝐶𝑟), (A.3a)

𝜌(+1,−1, 𝑟) = 𝜌(−1,+1, 𝑟) =
1

4
(1− 𝐶𝑟), (A.3b)

𝜌(−1,−1, 𝑟) =
1

4
(1− 2�̃�+ 𝐶𝑟). (A.3c)

Combining these relations with 𝜌(𝑆) = 1
2
(1 + 𝑆�̃�) gives

Eq. (31).
Figure 6 shows examples of 𝑔(𝑆, 𝑆′, 𝑟) for systems with

𝑅 = 1, 𝐽 = 0.5, and 𝛼 = 0.0 and 0.2, from MC simula-
tions and Eq. (31). The agreement between theory and simu-
lation is perfect. In zero field (𝛼 = 0), 𝑔(1, 1, 𝑟) = 𝑔(−1,−1, 𝑟),
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Fig. 6. Pair distribution functions with 𝜎 = ∞: (a) 𝐽 = 0.5

and 𝛼 = 0.0; (b) 𝐽 = 0.5 and 𝛼 = 0.2. The unfilled symbols
are for the nearest-neighbor Ising model (𝑅 = 1), and the filled
symbols are for the long-range dipolar model (𝑅 = ∞). The
lines are for the system with 𝑅 = 1, from Eq. (31)

and these ferromagnetic correlations are stronger than the an-
tiferromagnetic ones [𝑔(1,−1, 𝑟) = 𝑔(−1, 1, 𝑟)]. In an applied
field (𝛼 > 0), most spins are parallel to the field, and hence
𝑔(1, 1, 𝑟) ≃ 1, while the pairs of spins antiparallel to the field
are attracted to one another [𝑔(−1,−1, 𝑟)], and the spins oppo-
site to one another are repelled [𝑔(1,−1, 𝑟) = 𝑔(−1, 1, 𝑟)]. Fi-
gure 6 also shows the pair distribution functions for systems
with long-range dipolar interactions (𝑅 = ∞), calculated in
MC simulations. The results show that the correlations are
qualitatively similar, but longer ranged, as expected.
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МОДИФIКОВАНА ТЕОРIЯ СЕРЕДНЬОГО
ПОЛЯ ДЛЯ ОДНОВИМIРНИХ СПIНОВИХ
МОДЕЛЕЙ З АНIЗОТРОПIЄЮ
I ДАЛЕКОСЯЖНИМИ ДИПОЛЬНИМИ
ВЗАЄМОДIЯМИ

Р е з ю м е

Розвинено теорiю впливу взаємодiй i анiзотропiї на магнiтнi
властивостi лiнiйних ланцюжкiв суперпарамагнiтних нано-

частинок на основi формулювання проблеми в рамках спi-
нових моделей. У вiдсутностi анiзотропiї, магнiтнi диполь-
нi моменти вiльно обертаються, i система нагадує класи-
чну модель Гейзенберга для феромагнетика з далекосяжни-
ми дипольними взаємодiями. У випадку сильної анiзотро-
пiї, моменти змушенi вирiвнюватися у ланцюжку, i система
схожа на класичну модель Iзiнга для феромагнетика з да-
лекосяжними взаємодiями. В рамках модифiкованої теорiї
середнього поля отримано формули для кривої магнетиза-
цiї i вихiдної магнiтної сприйнятливостi, виходячи з реакцiї
однiєї частинки на вплив ефективного поля. Останнє визна-
чається зовнiшнiм полем i взаємодiями з iншими частинка-
ми. Рiзнi наближення для ефективного поля перевiряються
порiвнянням з результатами моделювання методом Монте-
Карло. Показано, що можна отримати надiйнi теоретичнi
передбачення в простому замкненому виглядi для фiзично
прийнятних iнтенсивностей взаємодiї як для нульової, так
i для сильної анiзотропiї.
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