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DYNAMICS OF THE CAVITY RADIATION
OF A CORRELATED EMISSION LASER COUPLED
TO A TWO-MODE THERMAL RESERVOIR

In this paper, the quantum properties of the cavity light beam produced by a coherently driven
nondegenerate three-level laser with an open cavity and coupled to a two-mode thermal reservoir
are thoroughly analyzed. We have carried out our analysis by putting the noise operators asso-
ciated with the thermal reservoir in normal order. Here we discussed more the effect of thermal
light and the spontaneous emission on the dynamics of the quantum processes. It is found that
the maximum degree of intracavity squeezing 43% below the vacuum-state level. Moreover, the
presence of thermal light leads to decrease the degree of entanglement.
K e yw o r d s: stimulated emission, photon statistics, quadrature squeezing, spontaneous
emission.

1. Introduction

Three-level cascade lasers have received considerable
attention over the years in connection with the strong
correlation between the modes of the generated radia-
tion that leads to a substantial degree of nonclassical
features [1–27]. When a three-level atom in a cas-
cade configuration makes a transition from the top
to the bottom level via the intermediate level, two
photons are generated. If the two photons have the
same frequency, then the three-level atom is called
a degenerate three-level atom. Otherwise, it is called
nondegenerate. The squeezing and statistical proper-
ties of the light produced by three-level lasers, when
the atoms are initially prepared in a coherent super-
position of the top and bottom levels or when these
levels are coupled by a strong coherent light, have
been studied by several authors [28–39]. These au-
thors have found that these quantum optical systems
can generate squeezed light under certain conditions.
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Moreover, Abebe [11] has studied the squeezing and
entanglement properties of the light generated by a
coherently driven nondegenerate three-level laser pos-
sessing an open cavity and coupled to a two-mode vac-
uum reservoir. He showed that the maximum quadra-
ture squeezing of the light generated by the laser, op-
erating below the threshold, is found to be 50% be-
low the vacuum-state level. Moreover, Abebe [27] also
studied the quantum properties of the light produced
by a coherently driven nondegenerate three-level laser
with a closed cavity and coupled to a two-mode vac-
uum reservoir. In this study, he found that the maxi-
mum quadrature squeezing is 43% below the vacuum-
state level, which is slightly less than the result found
on an open cavity [11]. He also found that the photon
numbers of two-mode light beams are correlated. The
analysis in [27] showed that the intracavity quadra-
ture squeezing is enhanced due to the driven coherent
light. It is found that the squeezing and entanglement
in the two-mode light are directly related. As a result,
an increase in the degree of squeezing directly implies
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Fig. 1. (Color online) Schematic representation of a coher-
ently driven nondegenerate three-level laser coupled to a two-
mode thermal reservoir

an increase in the degree of entanglement. This shows
that whenever there is the squeezing in the two-mode
light, there exists the entanglement in the system.

In this paper, we will study the quantum prop-
erties of the cavity light beams produced by a co-
herently driven nondegenerate three-level laser with
an open cavity and coupled to a two-mode thermal
reservoir via a single-port mirror. First, we obtain the
master equation for a coherently driven nondegener-
ate three-level atom with the cavity modes and the
quantum Langevin equations for the cavity mode op-
erators. Employing the master equation and the long-
time approximation scheme, we drive the equations
of evolution of the expectation values of the atomic
operators. Hence, we determine the steady-state solu-
tions of the resulting equations of evolution. Here, we
carry out our calculation by putting the noise opera-
tors associated with the two-mode thermal reservoir
in normal order. Applying the steady-state solutions
of the resulting equations of evolution along with the
quantum Langevin equations, we obtain the quadra-
ture squeezing, the entanglement of photon and cav-
ity atomic-states, the mean photon number, the pho-
ton number correlations, and the variance of a differ-
ence of intensities.

2. Operator Dynamics

We consider the case in which 𝑁 nondegenerate three-
level atoms in the cascade configuration are available
in an open cavity. We denote the top, intermediate,
and bottom levels of the three-level atom by |𝑎⟩𝑘,
|𝑏⟩𝑘, and |𝑐⟩𝑘, respectively. As shown in Fig. 1 for the
nondegenerate cascade configuration, when the atom
makes a transition from level |𝑎⟩𝑘 to |𝑏⟩𝑘 and from lev-
els |𝑏⟩𝑘 to |𝑐⟩𝑘, two photons with different frequencies
are emitted. The emission of light, when the atoms

makes the transition from the top level to the inter-
mediate level, is light mode 𝑎, and the emission of
light, when the atom makes the transition from the
intermediate level to the bottom level, is light mode
𝑏. We assume that the cavity mode 𝑎 is at resonance
with transition |𝑎⟩𝑘 → |𝑏⟩𝑘, and the cavity mode 𝑏
is at resonance with the transition |𝑏⟩𝑘 → |𝑐⟩𝑘, with
the top and bottom levels of a three-level atom cou-
pled by coherent light. The interaction of a three-level
atom with the cavity modes and the driving coherent
light can be described by the Hamiltonian

�̂�𝑆 = 𝑖𝑔
[︀
�̂�†𝑘
𝑎 �̂�− �̂�†�̂�𝑘

𝑎 + �̂�†𝑘
𝑏 �̂�− �̂�†�̂�𝑘

𝑏

]︀
+

+
𝑖Ω

2

[︀
�̂�†𝑘
𝑐 − �̂�𝑘

𝑐

]︀
, (1)

where 𝑔 is the coupling constant between the atom
and cavity mode 𝑎 or 𝑏, �̂� and �̂� are the annihilation
operators for light modes 𝑎 and 𝑏, and

�̂�𝑘
𝑎 = |𝑏⟩𝑘 𝑘⟨𝑎|, �̂�𝑘

𝑏 = |𝑐⟩𝑘 𝑘⟨𝑏|, �̂�𝑘
𝑐 = |𝑐⟩𝑘 𝑘⟨𝑎| (2)

are lowering atomic operators. Here, Ω = 2𝜀𝜆, in
which 𝜀, considered to be real and constant, is the
amplitude of the driving coherent light, and 𝜆 is the
coupling constant between the driving coherent light
and the three-level atom.

2.1. The master equation

In order to study the dynamics of the cavity radi-
ation of the combined system, it is necessary to ob-
tain the relevant equations of evolution. To begin, the
contribution of the initial thermal light in the cavity
and the two-mode vacuum reservoir to the master
equation is sought. To this end, one can start with
the well-established fact that the time evolution of
the reduced density operator for the cavity radiation
coupled to a reservoir has, in the Born approximation
[28], the form

𝑑

𝑑𝑡
𝜌(𝑡) = −𝑖

[︀
�̂�𝑆(𝑡), 𝜌(𝑡)

]︀
− 𝑖

[︀
⟨�̂�𝑆𝑅(𝑡)⟩𝑅, 𝜌(0)

]︀
−

−
𝑡∫︁

0

[︀
⟨�̂�𝑆𝑅(𝑡)⟩𝑅,

[︀
�̂�𝑆(𝑡

′), 𝜌(𝑡′)
]︀]︀
𝑑𝑡′ −

−
𝑡∫︁

0

𝑇𝑟𝑅
[︀
�̂�𝑆𝑅(𝑡),

[︀
�̂�𝑆𝑅(𝑡

′), 𝜌(𝑡′)�̂�
]︀]︀
𝑑𝑡′, (3)

where 𝑆 and 𝑅 refer to the system and reservoir vari-
ables, and 𝜌(0) represents the radiation initially in the
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cavity. The interaction Hamiltonian for 𝑁 nondegen-
erate three-level atoms coupled to thermal reservoir is

�̂�𝑆𝑅(𝑡) = 𝑖
∑︁
𝑗

𝜆𝑗

[︀
�̂�†𝑘
𝑎 �̂�𝑗 − �̂�†𝑗 �̂�

𝑘
𝑎 + �̂�†𝑘

𝑏 �̂�𝑗 − �̂�†𝑗 �̂�
𝑘
𝑏

]︀
, (4)

where 𝜆𝑗 is the coupling constant for the 𝑗th mode of
the reservoir, (�̂�𝑗 , �̂�𝑗) are the annihilation operators
of the two-mode thermal reservoir. Now, using the
density operator of the thermal reservoir

�̂� =

∞∑︁
𝑛=0

�̄�𝑛
th

(1 + �̄�th)𝑛+1
|𝑛⟩⟨𝑛|, (5)

one can easily check that

⟨�̂�𝑗⟩𝑅 =

∞∑︁
𝑛=0

�̄�𝑛
th

(1 + �̄�th)𝑛+1
Tr𝑅(|𝑛⟩⟨𝑛|�̂�𝑗) =

=

∞∑︁
𝑛=0

�̄�𝑛
th

(1 + �̄�th)𝑛+1
⟨𝑛|𝑛− 2⟩ = 0. (6)

Following the same procedure, we obtain
⟨�̂�𝑗⟩𝑅 = ⟨�̂�2𝑗 ⟩ = ⟨�̂�2𝑗 ⟩ = ⟨�̂�†𝑗 �̂�𝑗⟩𝑅 = 0,

⟨�̂�†𝑗 �̂�𝑗⟩𝑅 = ⟨�̂�𝑗 �̂�𝑗⟩𝑅 = ⟨�̂�𝑗 �̂�𝑗⟩𝑅 = 0.
(7)

In view of these results, we see that
⟨�̂�𝑆𝑅(𝑡)⟩𝑅 = 0. (8)

Therefore, the second commutation relation in
Eq. (3) is zero. This confirms that the thermal light
in the cavity does not directly contribute to the mas-
ter equation. In addition, applying the commutation
relation [�̂�𝑗 , �̂�

†
𝑗 ] = 1, we note that ⟨�̂�𝑗 �̂�†𝑗⟩ = = �̄�th + 1

and ⟨�̂�†𝑗 �̂�𝑗⟩ = �̄�th, where �̄�𝑎 = �̄�𝑏 = �̄�th is the mean
photon number for the thermal reservoir. As a result,
solving the remaining terms by following the standard
approach yields [2]
𝑑

𝑑𝑡
𝜌(𝑡) = 𝑔

[︀
�̂�†𝑘
𝑎 �̂�𝜌− �̂�†�̂�𝑘

𝑎𝜌+ �̂�†𝑘
𝑏 �̂�𝜌− �̂�†�̂�𝑘

𝑏 𝜌− 𝜌�̂�†𝑘
𝑎 �̂�+

+ 𝜌�̂�†�̂�𝑘
𝑎 − 𝜌�̂�†𝑘

𝑏 �̂�+ 𝜌�̂�†�̂�𝑘
𝑏

]︀
+

Ω

2

[︀
�̂�†𝑘
𝑐 𝜌− �̂�𝑘

𝑐 𝜌− 𝜌�̂�†𝑘
𝑐 +

+ 𝜌�̂�𝑘
𝑐

]︀
+

𝛾

2
�̄�th

[︀
2�̂�†𝑘

𝑎 𝜌�̂�𝑘
𝑎 − �̂�𝑘

𝑎 �̂�
†𝑘
𝑎 𝜌− 𝜌�̂�𝑘

𝑎 �̂�
†𝑘
𝑎

]︀
+

+
𝛾

2
(�̄�th + 1)

[︀
2�̂�𝑘

𝑎𝜌�̂�
†𝑘
𝑎 − �̂�†𝑘

𝑎 �̂�𝑘
𝑎𝜌− 𝜌�̂�†𝑘

𝑎 �̂�𝑘
𝑎

]︀
+

+
𝛾

2
�̄�th

[︀
2�̂�†𝑘

𝑏 𝜌�̂�𝑘
𝑏 − �̂�𝑘

𝑏 �̂�
†𝑘
𝑏 𝜌− 𝜌�̂�𝑘

𝑏 �̂�
†𝑘
𝑏

]︀
+

+
𝛾

2
(�̄�th + 1)

[︀
2�̂�𝑘

𝑏 𝜌�̂�
†𝑘
𝑏 − �̂�†𝑘

𝑏 �̂�𝑘
𝑏 𝜌− 𝜌�̂�†𝑘

𝑏 �̂�𝑘
𝑏

]︀
, (9)

where 𝛾𝑎 = 𝛾𝑏 = 𝛾 = 2ℎ𝜆2, considered to be the
same for levels |𝑎⟩ and |𝑏⟩, is the spontaneous emission
decay constant.

2.2. Quantum Langevin equations

We recall that the laser cavity is coupled to a two-
mode thermal reservoir via a single-port mirror. In
addition, we carry out our calculation by putting the
noise operators associated with the thermal reservoir
in normal order. Thus, the noise operators will not
have any effect on the dynamics of the cavity mode
operators [2, 11, 27]. Therefore, we can drop the noise
operators and write the quantum Langevin equations
for the operators �̂� and �̂� as
𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑖[�̂�, �̂�], (10)

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑖[�̂�, �̂�], (11)

where 𝜅 is the cavity damping constant. Then in view
of Eq. (1), the quantum Langevin equations for the
cavity mode operators �̂� and �̂� turn out to be
𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑔�̂�𝑘

𝑎 , (12)

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑔�̂�𝑘

𝑏 . (13)

Following the procedure described by Abebe [11, 27],
for 𝑁 atoms, we have
𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�+

𝑔√
𝑁

�̂�𝑎, (14)

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�+

𝑔√
𝑁

�̂�𝑏. (15)

The sum of Eqs. (14) and (15) yields

𝑑𝑐

𝑑𝑡
= −𝜅

2
𝑐+

𝑔√
𝑁

�̂�. (16)

Employing the master equation (9) and following a
straightforward algebra described by [11, 27], it is
possible to obtain the steady-state solution of the
stochastic differential equation of the atomic oper-
ators
⟨�̂�𝑎⟩ =

[︂
Ω2

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

]︂
𝑁, (17)

⟨�̂�𝑏⟩ =
[︂

Ω2

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

]︂
𝑁, (18)

⟨�̂�𝑐⟩ =
[︂
(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + Ω2

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

]︂
𝑁, (19)

⟨�̂�𝑐⟩ =
[︂

Ω(𝛾𝑐 + 𝛾)(�̄�th + 1)

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

]︂
𝑁. (20)
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3. Quadrature Squeezing

The squeezing properties of the two-mode cavity light
are described by two quadrature operators

𝑐+ = 𝑐† + 𝑐, (21)
𝑐− = 𝑖(𝑐† − 𝑐), (22)

where 𝑐+ and 𝑐− are Hermitian operators represent-
ing the physical quantities called plus and minus
quadratures, respectively, while 𝑐 = �̂�+ �̂� is the anni-
hilation operator for the two-mode cavity light. To
this end, the two quadrature operators satisfy the
commutation relation

[𝑐−, 𝑐+] = 2𝑖
𝛾𝑐
𝜅

[︂
�̂�𝑎 − �̂�𝑐

]︂
. (23)

In view of this result, the uncertainty relation for the
plus and minus quadrature operators of the two-mode
cavity light is

Δ𝑐+Δ𝑐− ≥ 𝛾𝑐
𝜅

⃒⃒⃒⃒
⟨�̂�𝑎⟩ − ⟨�̂�𝑐⟩

⃒⃒⃒⃒
. (24)

Fig. 2. (Color online). Plots of Δ𝑐2− [Eq. (29)] versus Ω

for 𝛾𝑐 = 0.4, 𝜅 = 0.6, 𝑁 = 50, �̄�th = 0.2 and for different
values of 𝛾

Fig. 3. (Color online). Plots of Δ𝑐2− [Eq. (29)] versus Ω

for 𝛾𝑐 = 0.4, 𝜅 = 0.6, 𝑁 = 50, 𝛾 = 0.2 and for different
values of �̄�th

With regard for Eqs. (17) and (19), one can find

Δ𝑐+Δ𝑐− ≥ 𝛾𝑐
𝜅
𝑁

⃒⃒⃒⃒
(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1)

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

⃒⃒⃒⃒
.

(25)

In the case where the coherent light is absent, (Ω =
= 0), it is possible to see that

Δ𝑐+Δ𝑐− ≥ 𝛾𝑐
𝜅
𝑁. (26)

This is the minimum uncertainty relation for the two-
mode cavity vacuum state.

In view of Eqs. (21) and (22), the variance of the
plus and minus quadrature operators of the two-mode
cavity light can be described as

Δ𝑐2± = ⟨𝑐𝑐†⟩+ ⟨𝑐†𝑐⟩ ± ⟨𝑐2⟩ ± ⟨𝑐†2⟩ ∓ ⟨𝑐⟩2∓

∓⟨𝑐†⟩2 − 2⟨𝑐⟩⟨𝑐†⟩. (27)

Then it follows that

Δ𝑐2± =
𝛾𝑐
𝜅

[︀
𝑁 + ⟨�̂�𝑏⟩ ± 2⟨�̂�𝑐⟩

]︀
. (28)

With regard for Eqs. (18) and (20), the quadrature
variance of the two-mode cavity light in a steady state
takes the form

Δ𝑐2± =
(︁𝛾𝑐
𝜅
𝑁
)︁[︂

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1)

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2
+

+
4Ω2 ± 2Ω(𝛾𝑐 + 𝛾)(�̄�th + 1)

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

]︂
. (29)

In the case where Ω = 0, it is not difficult to verify
that

(Δ𝑐+)
2
𝑣 = (Δ𝑐−)

2
𝑣 =

𝛾𝑐
𝜅
𝑁, (30)

which is the normally ordered quadrature variance of
the two-mode cavity light in the vacuum state. It is
also observed that the uncertainties in the plus and
minus quadratures are equal and satisfy the minimum
uncertainty relation.

The plots in Fig. 2 present the quadrature vari-
ance of the two-mode cavity light beams versus Ω for
𝛾𝑐 = 0.4, 𝑁 = 50, 𝜅 = 0.8, �̄�th = 0.2 and for differ-
ent values of 𝛾. These plots show that the minimum
value of the quadrature variance for 𝛾 = 0.2, 𝛾 = 0.1,
and 𝛾 = 0 is Δ𝑐2− = 16 and occurs at Ω = 0.4343,
Ω = 0.3636, and Ω = 0.2929, respectively. Moreover,
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from the plots of the same figure, we observe that the
quadrature variance increases with the spontaneous
emission decay constant with the same value of Ω.

Furthermore, Fig. 3 shows the quadrature vari-
ance of the two-mode cavity light beams versus Ω for
𝛾𝑐 = 0.4, 𝛾 = = 0.2 and for different values of �̄�th. In
Fig. 3, we see that the minimum values of the quadra-
ture variance for �̄�th = 0.5, �̄�th = 0.2, and �̄�th = 0
are Δ𝑐2− = 16, Δ𝑐2− = 15.17, and Δ𝑐2− = 14.14 and
occur at Ω = 0.4343, Ω = = 0.3232, and Ω = 0.2626,
respectively.

The result presented in Fig. 4 indicates that the
quadrature variance increases with a decrease in 𝛾
and Ω, since more atoms are expected to partici-
pate in the spontaneous emission process. It is also
not difficult to realize from Fig. 5 that the degree of
squeezing increases, when �̄�th decreases. The maxi-
mum degree of squeezing occurs at the point, where
the minimum quadrature variance occurs. Therefore,
from this plot, the maximum degree of squeezing
is found to be 62.4% when �̄�th = 0 and occurs at
Ω = 0.2929. This result indicates that the presence
of thermal light decreases the degree of quadrature
squeezing.

Next, we proceed to calculate the quadrature
squeezing of the two-mode cavity light in the entire
frequency interval relative to the quadrature variance
of the two-mode vacuum state. We define the quadra-
ture squeezing of the two-mode cavity light by

𝑆 =
(Δ𝑐−)

2
𝑣 −Δ𝑐2−

(Δ𝑐−)2𝑣
. (31)

In view of Eqs. (29) and (30), the quadrature squeez-
ing of the two-mode cavity light turns out to have the
form

𝑆 =

[︂
2Ω(𝛾𝑐 + 𝛾)(�̄�th + 1)− Ω2

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

]︂
. (32)

We observe from this equation that, unlike the
quadrature variance, the quadrature squeezing does
not depend on the number of atoms. This implies that
the quadrature squeezing of the two-mode cavity light
is independent of the number of atoms.

In addition, we consider the case where the spon-
taneous emission and the thermal reservoir is absent
(�̄�th = 𝛾 = 0). Then the quadrature squeezing in this
case takes the form

𝑆 =

[︂
2Ω𝛾𝑐 − Ω2

𝛾2
𝑐 + 3Ω2

]︂
. (33)

Fig. 4. (Color online). A plot of Δ𝑐2− [Eq. (29)] versus Ω and
𝛾 for 𝛾𝑐 = 0.4, 𝜅 = 0.6, 𝑁 = 50, and �̄�th = 0.2

Fig. 5. (Color online). A plot of Δ𝑐2− [Eq. (29)] versus Ω and
�̄�th for 𝛾𝑐 = 0.4, 𝜅 = 0.6, 𝑁 = 50, and 𝛾 = 0.2

This result is exactly the same as the one obtained
by Abebe [27].

The plots on Fig. 6 indicate the quadrature squeez-
ing versus Ω for 𝛾𝑐 = 0.4, �̄�th = 0.2, and for differ-
ent values of 𝛾. From these plots, we find that the
maximum quadrature squeezing to be the same in
the presence and in the absence of spontaneous emis-
sion. The plots in Fig. 6 show that the quadrature
squeezing for 𝛾 = 0 is greater than for 𝛾 = 0.1 in the
interval 0 ≤ Ω ≤ 0.36, and the quadrature squeezing
for 𝛾 = 0 is less than for 𝛾 = 0.1 for Ω > 0.361. The
quadrature squeezing, when 𝛾 = 0, is greater than
when 𝛾 = 0.2 in the interval 0 ≤ Ω ≤ 0.38, and the
quadrature squeezing for 𝛾 = 0 is less than for 𝛾 = 0.2
for Ω > 0.38. Moreover, the plots in the same figure
show that the quadrature squeezing, when 𝛾 = 0.1, is
greater than when 𝛾 = 0.2 in the interval 0 ≤ Ω ≤ 0.4,
and the quadrature squeezing, when 𝛾 = 0.1, is less
than when 𝛾 = 0.2 for Ω > 0.4. Furthermore, from
the same plots, the maximum squeezing is found to
be 36% for 𝛾 = 0.2 (dashed curve), for 𝛾 = 0.1 (dot-
ted curve), and for 𝛾 = 0 (solid curve) below the
vacuum-state level. This occurs, when the three-level
laser is operating at Ω = 0.4343, Ω = 0.3636, and
Ω = 0.2929, respectively.
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Fig. 6. (Color online). Plots of the quadrature squeezing
[Eq. (32)] versus Ω for 𝛾𝑐 = 0.4, �̄�th = 0.2, and for different
values of 𝛾

Fig. 7. (Color online). Plots of the quadrature squeezing
[Eq. (32)] versus Ω for 𝛾𝑐 = 0.4, 𝛾 = 0.2, and for different
values of �̄�th

Fig. 8. (Color online). A plot of the quadrature squeezing
[Eq. (32)] versus Ω and �̄�th for 𝛾𝑐 = 0.4, and 𝛾 = 0.2

On the other hand, the plots in Fig. 7 show the
quadrature squeezing by Eq. (32) versus Ω for 𝛾𝑐 =
= 0.4, 𝛾 = 0.2, and for different values of �̄�th. From
these plots, we see that, for �̄�th = 0.5, �̄�th = 0.2,
and �̄�th = 0, the corresponding maximum quadrature
squeezings are 36%, 39.3%, and 43.42%. This occurs,
when the three-level laser is operating at Ω = 0.4343,
Ω = 0.3232, and Ω = 0.2626, respectively.

Fig. 9. (Color online). A plot of the quadrature squeezing
[Eq. (32)] vesus Ω and 𝛾 for 𝛾𝑐 = 0.4 and �̄�th = 0.2

We observe from Fig. 8 that the squeezing is sig-
nificantly degraded by the thermal light. Even then,
a considerable quadrature squeezing is achievable
via controlling the thermal noise entering the cav-
ity by adjusting the transmittance of the mirror. A
maximum degree of squeezing of nearly 39.3% oc-
curs, when the cavity is coupled to a thermal reser-
voir with the mean photon number �̄�th = 0.2 for
𝛾𝑐 = 0.4, 𝛾 = 0.2, and Ω = 0.3232. Figure 9 shows
the plot of two-mode quadrature squeezing vesus Ω
and 𝛾 for 𝛾𝑐 = 0.4 and �̄�th = 0.2. We see from
this figure that the degree of two-mode squeezing in-
creases with the the spontaneous emission decay con-
stant 𝛾.

4. Entanglement

In this section, we study the degree of entanglement
of photon-states and the atom entanglement of the
two-mode cavity light produced by a system under
consideration.

4.1. Photon Entanglement

Here, we prefer to analyze the entanglement of
photon-states in the laser cavity. Quantum entangle-
ment is a physical phenomenon that occurs, when
pairs or groups of particles cannot be described in-
dependently. Instead, a quantum state may be given
for the system as a whole. Measurements of physical
properties such as the position, momentum, spin, po-
larization, etc. performed on entangled particles are
found to be appropriately correlated. A pair of par-
ticles is taken to be entangled in quantum theory, if
its states cannot be expressed as a product of the
states of its individual constituents. The preparation
and manipulation of these entangled states that have
nonclassical and nonlocal properties lead to a bet-
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ter understanding of the basic quantum principles. It
is in this spirit that this section is devoted to the
analysis of the entanglement of the two-mode photon
states. In other words, it is a well-known fact that
a quantum system is said to be entangled, if it is
not separable. In other words, if the density opera-
tor for the combined state cannot be described as a
combination of the product density operators of the
constituents,

𝜌 ̸=
∑︁
𝑘

𝑝𝑘𝜌
(1)
𝑘 ⊗ 𝜌

(2)
𝑘 , (34)

in which 𝑝𝑘 ≫ 0 and
∑︀

𝑘 𝑝𝑘 = 1 are related to the
normalization of the combined density states. On the
other hand, a maximally entangled CV state can be
expressed as a co-eigenstate of a pair of EPR-type
operators [40] such as �̂�𝑎 − �̂�𝑏 and 𝑃𝑎 − 𝑃𝑏. The to-
tal variance of these two operators reduces to zero
for maximally entangled CV states. According to the
inseparable criteria given by Duan et al. [41], cavity
photon-states of a system are entangled, if the sum
of the variances of a pair of EPR-like operators,

𝑠 = �̂�𝑎 − �̂�𝑏, (35)
𝑡 = 𝑝𝑎 + 𝑝𝑏, (36)

where �̂�𝑎 = (�̂� + �̂�†)/
√
2, �̂�𝑏 = (�̂� + �̂�†)/

√
2, 𝑝𝑎 =

= 𝑖(�̂�† − �̂�)/
√
2, and 𝑝𝑏 = 𝑖(�̂�†−�̂�)/

√
2 are quadrature

operators for modes 𝑎 and 𝑏, satisfy

Δ𝑠2 +Δ𝑡2 < 2𝑁 (37)

and recalling the cavity mode operators �̂� and �̂� are
Gaussian variables with zero mean, we readily get

Δ𝑠2 +Δ𝑡2 = 2Δ𝑐2−, (38)

where Δ𝑐2− is given by (29). One can immediately
notice that this particular entanglement measure is
directly related to the two-mode squeezing. This di-
rect relationship shows that, whenever there is a two-
mode squeezing in the system, there will be entan-
glement in the system as well. It is noted that the
entanglement disappears, when the squeezing van-
ishes. This is due to the fact that the entanglement is
directly related to the squeezing as given by (29). It
also follows that, like the mean photon number and
quadrature variance, the degree of entanglement de-
pends on the number of atoms. With the help of cri-
terion (37) that a significant entanglement between

Fig. 10. (Color online). Plots of the photon entanglement
of the two-mode cavity light [Eq. (38)] versus Ω for 𝛾𝑐 = 0.4,
𝛾 = 0.2, and for different values of �̄�th

Fig. 11. (Color online). Plots of the photon entanglement
of the two-mode cavity light [Eq. (38)] versus Ω for 𝛾𝑐 = 0.4,
𝛾 = 0.2, and for different values of �̄�th

the states of the light generated in the cavity. This
is due to the strong correlation between the radiation
emitted, when the atoms decay from the upper energy
level to the lower one via the intermediate level.

The plots on Fig. 10 show that, as the spontaneous
emission decay constant increases, the photon entan-
glement decreases. Similarly, as we observe from the
data of Table 5.1, the photon entanglement is de-
creased with increasing the spontaneous emission de-
cay constant. From these plots and values of 𝜅 = 0.8,
𝛾𝑐 = 0.4, �̄�th = 0.5, and 𝑁 = 50, we determined the
maximum photon entanglement is 36% and it occurs
at Ω = 0.2929, Ω = 0.3636, and Ω = 0.4343 for 𝛾 = 0,
𝛾 = 0.1, and 𝛾 = 0.2 respectively.

We observe from the plots in Fig. 11 that, as a
thermally seeded light mean photon number value in-
creases, the photon entanglement also increases. Si-
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Fig. 12. (Color online). A plot of the photon entanglement
of the two-mode cavity light [Eq. (38)] versus Ω and �̄�th for
𝛾𝑐 = 0.4 and 𝛾 = 0.2

Fig. 13. (Color online). A plot of the photon entanglement
of the two-mode cavity light [Eq. (38)] versus Ω and 𝛾 for
𝛾𝑐 = 0.4 and �̄�th = 0.5

milarly, as we observe from the data of Table 5.1,
the photon entanglement increases with a thermally
seeded light mean photon number value. From these
plots and the values of 𝜅 = 0.8, 𝛾𝑐 = 0.4, 𝛾 = 0.2
and 𝑁 = 50, we determined that the maximum pho-
ton entanglements are 𝐸 = 28.3%, 𝐸 = 30.34%,
𝐸 = 32%. This occurs at Ω = 0.2626, Ω = 0.3232,
and Ω = 0.4343 for �̄�th = 0, �̄�th = 0.2, and �̄�th = 0.5,
respectively.

It is clearly shown in Figs. 12 and 13 that the pho-
ton entanglement increases, as �̄�𝑡ℎ and 𝛾 decrease,
respectively. On both figures, the maximum degree
of entanglement occurs for Ω = 0.2929, where the
maximum degree of squeezing occurs, as we observe
from the plots of Figs. 4 and 5. This indicates that
the entanglement is directly related to the two-mode
quadrature squeezing.

4.2. Cavity Atomic-States Entanglement

The quantum entanglement between the two cavity
modes 𝑎 and 𝑏 proposed by Duan, Giedke, Cirac, and
Zoller (DGCZ) in [41], which is a sufficient condi-
tion for the entangled quantum states. According to
DGCZ, a quantum state of the system is said to be
entangled, if the sum of the variances of the EPR-like

quadrature operators, �̂� and 𝑣, satisfy the inequality

Δ𝑢2 +Δ𝑣2 < 2𝑁2. (39)

On the other hand, the cavity atomic-states of the
system are entangled, if the sum of the variances of a
pair of EPR-like operators,

�̂� = �̂�′
𝑎 − �̂�′

𝑏, (40)

𝑣 = 𝑝′𝑎 + 𝑝′𝑏, (41)

where �̂�′
𝑎 = (�̂�𝑎 + �̂�†

𝑎)/
√
2, �̂�′

𝑏 = (�̂�𝑏 + �̂�†
𝑏)/

√
2,

𝑝′𝑎 = 𝑖(�̂�†
𝑎−�̂�𝑎)/

√
2, and 𝑝′𝑏 = 𝑖(�̂�†

𝑏−�̂�𝑏)/
√
2 are the

atomic quadrature operators. Since �̂�𝑎 and �̂�𝑏 are
Gaussian variables with zero means, one can easily
verify that

Δ𝑢2 +Δ𝑣2 =
[︀
⟨�̂�†

𝑎�̂�𝑎⟩+ ⟨�̂�𝑎�̂�
†
𝑎⟩+ ⟨�̂�†

𝑏�̂�𝑏⟩+

+ ⟨�̂�𝑏�̂�
†
𝑏⟩ − ⟨�̂�†

𝑏�̂�
†
𝑎⟩ − ⟨�̂�𝑎�̂�𝑏⟩

]︀
. (42)

It follows that

Δ𝑢2 +Δ𝑣2 = 𝑁
[︀
𝑁 + ⟨�̂�𝑎⟩ − 2⟨�̂�𝑐⟩

]︀
. (43)

In view of Eqs. (17) and (20), the entanglement
of cavity atomic-states of the two-mode cavity light
takes, at a steady-state, the form

Δ𝑢2+Δ𝑣2=𝑁2

[︂
(𝛾𝑐 + 𝛾)2(�̄�th + 1)[(2�̄�th + 1)

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2
+

+
4Ω2 − 2Ω(𝛾𝑐 + 𝛾)(�̄�th + 1)

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

]︂
. (44)

As we see from Eq. (43), the entanglement of cavity
atomic-states of the two-mode cavity light strongly
depends on the number of atoms.

On the other hand, in the absence of a driving co-
herent light, Ω = 0, Eq. (44) turns out to be

Δ𝑢2 +Δ𝑣2 = 𝑁2. (45)

We see from the plots in Fig. 14 that, as the spon-
taneous emission decay constant increases, the atom
entanglement decreases. This occurs at the same
value of Ω. Similarly, as we observe from the data
in Fig. 14, the atom entanglement is decreased with
increasing the spontaneous emission decay constant
𝛾. From these plots and values of 𝜅 = 0.8, 𝛾𝑐 = 0.4,
�̄�𝑡ℎ = 0.5, and 𝑁 = 50, we determined that the max-
imum atom entanglement is 36%, and this occurs at
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Ω = 0.2929, Ω = 0.3636, and Ω = 0.4343 for 𝛾 = 0,
𝛾 = 0.1, and 𝛾 = 0.2, respectively.

The plots in Fig. 15 indicate that, as a thermally
seeded light mean photon number value increases, the
atom entanglement also increased. Similarly, as we
observe from the plots in this figure, the photon en-
tanglement increases with the thermally seeded light
mean photon number. From these plots and the val-
ues of 𝜅 = 0.8, 𝛾𝑐 = 0.4, 𝛾 = 0.2 and 𝑁 = 50, we
determined that the maximum atom entanglements
are 𝐸 = 43.44%, 𝐸 = 39.32%, and 𝐸 = 36%. This
occurs at Ω = 0.2626, Ω = 0.3232, and Ω = 0.4343
for �̄�th = 0, �̄�th = 0.2, and �̄�th = 0.5, respectively.

It is clearly shown in Figs. 16 and 17 that the atom
entanglement increases with a decrease in �̄�th and 𝛾,
respectively. In both figures, the maximum degree of
entanglement occurs for Ω = 0.2929 with the max-
imum degree of squeezing, as we observe from the
plots of Figs. 4 and 5. This indicates that, similarly

Fig. 14. (Color online). Plots of the atom entanglement of
the two-mode cavity light [Eq. (44)] versus Ω for 𝛾𝑐 = 0.4,
𝛾 = 0.2, and for different values of �̄�th

Fig. 15. (Color online). Plots of the atom entanglement of
the two-mode cavity light [Eq. (44)] versus Ω for 𝛾𝑐 = 0.4,
𝛾 = 0.2, and for different values of �̄�th

Fig. 16. (Color online). A plot of the atom entanglement of
the two-mode cavity light [Eq. (44)] versus 𝛾 and Ω for 𝛾𝑐 = 0.4

and �̄�th = 0.5

Fig. 17. (Color online). A plot of the atom entanglement
of the two-mode cavity light [Eq. (44)] versus Ω and �̄�th for
𝛾𝑐 = 0.4 and 𝛾 = 0.2

to the photon entanglement, the atom entanglement
is also directly related to the two-mode quadrature
squeezing.

On the basis of criteria (37) and (39), we clearly see
that the two states of the generated light are strongly
entangled in the steady state. Moreover, the absence
of thermal light leads to an increase in the degree of
entanglement.

5. Photon Statistics

5.1. The mean photon number

The mean photon number of the two-mode light beam
represented by the operators 𝑐 and 𝑐†, is defined by

�̄� = ⟨𝑐†𝑐⟩. (46)

The steady-state solution of Eq. (16) is

𝑐 =
2𝑔

𝜅
√
𝑁

�̂�. (47)

Hence, in the steady state, the mean photon number
goes into

�̄� =
𝛾𝑐
𝜅

[︁
⟨�̂�𝑎⟩+ ⟨�̂�𝑏⟩

]︁
. (48)
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Fig. 18. (Color online). Plots of the mean photon number
of the two-mode cavity light [Eq. (49)] versus Ω for 𝛾𝑐 = 0.4,
�̄�th = 0.5, and for different values of 𝛾

Fig. 19. (Color online). Plots of the mean photon number
of the two-mode cavity light [Eq. (49)] versus Ω for 𝛾𝑐 = 0.4,
𝛾 = 0.2, and for different values of �̄�th

It follows that

�̄� =
𝛾𝑐
𝜅
𝑁

[︂
2Ω2

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

]︂
. (49)

The plots in Fig. 18 show that, as the sponta-
neous emission decay constant 𝛾 increases, the global
mean photon number of the two-mode cavity light
decreases. In addition, the plots in Fig. 18 indicate
that, as Ω increases, the mean photon number also
increases.

From the plots in Fig. 19, we see that, as the ini-
tially seeded thermal light �̄�th increases, the global
mean photon number of the two-mode cavity light
decreases. In addition, the plots in Fig. 19 indicate
that, as Ω increases, the mean photon number slightly
increases as well. Therefore, the absence of thermal
light increases the global mean photon number of the
two-mode cavity light beams.

Fig. 20. (Color online). Plots of the mean photon number of
the two-mode cavity light [Eq. (49)] versus �̄�th for 𝛾𝑐 = 0.4,
Ω = 2, and for different values of 𝛾

Fig. 21. (Color online). Plots of the mean photon number
of the two-mode cavity light [Eq. (49)] versus 𝛾 for 𝛾𝑐 = 0.4,
�̄�th = 0.5, and for different values of Ω

The plots in Fig. 20 describe the global mean pho-
ton number of the two-mode light beams versus �̄�th

for 𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑁 = 50, Ω = 2, Ω = 2,
and for different values of 𝛾. From these plots, we
observe that the global mean photon number of the
two-mode cavity light decreases, as 𝛾 increases. We
can see from the same plots that the mean photon
number decreases, as �̄�th increases.

We observe from the plots in Fig. 21 that the mean
photon number of the two-mode light beam has a
higher value for the case Ω = 2 than for Ω = 1. This
indicates that the photon number higher in mean de-
pends on the pumping amplitude. This means that a
higher pumping gives more bright light. On the other
hand, Fig. 21 shows that, as the spontaneous emission
decay constant 𝛾 increases, the mean photon number
decreases.
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The plots in Fig. 22 describe the global mean pho-
ton number of the two-mode light beams versus �̄�th

with values of 𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑁 = 50, Ω = 2,
Ω = 2, and for different values of 𝛾. From thee
plots we observe that the global mean photon num-
ber of the two-mode cavity light decreases as 𝛾 in-
creases. We can see also that, from the same plots,
the mean photon number decreases, as �̄�th increases.

We observe from the plots in Fig. 23 that the
mean photon number of the two-mode light beam
has greater value for the case Ω = 2 than when
Ω = 1. This indicates that the greater in mean photon
number is depending on the amplitude of the pump-
ing. This means that the more intense pumping gives
brighter light. On the other hand, Fig. 23 shows that,
as the spontaneous emission decay constant, 𝛾, in-
creases, the mean photon number decreases.

5.2. The normalized photon
number correlation

In order to determine whether the photon numbers
of mode 𝑎 and mode 𝑏 are correlated or not, we must
examine the normalized correlation of photon num-
bers. Thus, these correlations for light mode 𝑎 and
light mode 𝑏 can be defined as [3, 28, 37]

𝑔
(2)
(𝑎,𝑏)(𝑡) =

⟨�̂�𝑎�̂�𝑏⟩
⟨�̂�𝑎⟩⟨�̂�𝑏⟩

, (50)

where ⟨�̂�𝑎⟩ = ⟨�̂�†�̂�⟩, ⟨�̂�𝑏⟩ = ⟨�̂�†�̂�⟩, ⟨�̂�𝑎�̂�𝑏⟩ =

= ⟨�̂�†�̂��̂�†�̂�⟩. Since �̂� and �̂� are Gaussian variables with
zero means, one can verify that

𝑔
(2)
(𝑎,𝑏)(𝑡) = 1 +

⟨�̂�†�̂�†⟩⟨�̂��̂�⟩+ ⟨�̂�†�̂�⟩⟨�̂��̂�†⟩
⟨�̂�†�̂�⟩⟨�̂�†�̂�⟩

. (51)

It then follows that

𝑔
(2)
(𝑎,𝑏)(𝑡) = 1 +

⟨�̂�𝑐⟩2

⟨�̂�𝑎⟩⟨�̂�𝑏⟩
. (52)

In view of Eqs. (17), (18), and (20), one can shown
that

𝑔
(2)
(𝑎,𝑏)(𝑡) = 1 +

(𝛾 + 𝛾𝑐)
2(�̄�th + 1)2

Ω2
. (53)

This result indicates that the correlation of photon
numbers is different from one. Thus, the photon num-
bers of mode 𝑎 and mode 𝑏 of a pair of two-mode laser
light beams are correlated. It can be shown from this

Fig. 22. (Color online). A Plot of the mean photon number
of the two-mode cavity light [Eq. (49)] versus 𝛾 for 𝛾𝑐 = 0.4,
�̄�th = 0.5, and for different values of Ω

Fig. 23. (Color online). A plot of the mean photon number
of the two-mode cavity light [Eq. (49)] versus 𝛾 for 𝛾𝑐 = 0.4,
�̄�th = 0.5, and for different values of Ω

result that the second-order correlation function of
the two-mode light does not depend on the number
of atoms. Moreover, we can see from Eq. (52) that
the expectation value of the product of number oper-
ators, ⟨�̂�𝑎�̂�𝑏⟩ is different from ⟨�̂�𝑎⟩⟨�̂�𝑏⟩. This implies
that there is an intermode correlation. Thus, this in-
termode correlation must be due to the atomic coher-
ence induced by the atoms in the coherent coupling
of the top and bottom levels.

Moreover, in the absence of a thermal reservoir,
(�̄�th = 0), the variance of the intensity difference for
this case has the form

𝑔
(2)
(𝑎,𝑏)(𝑡) = 1 +

𝛾2
𝑐

Ω2
. (54)

Now, it is essential to calculate the second-order
correlation function for the individual mode to have
an insight for the previous result. To this end, the se-
cond-order correlation function for mode 𝑎 is given by

𝑔
(2)
(𝑎,𝑎)(0) =

⟨: �̂�𝑎�̂�𝑎 :⟩
⟨�̂�𝑎⟩2

, (55)
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Fig. 24. (Color online). Plots of 𝑔
(2)
(𝑎,𝑏)

(0) of the two-mode
cavity light versus Ω for 𝛾𝑐 = 0.4, 𝛾 = 0.2, and for different
values of �̄�th

Fig. 25. (Color online). Plots of 𝑔
(2)
(𝑎,𝑏)

(0) of the two-mode
cavity light versus Ω for 𝛾𝑐 = 0.4, 𝛾 = 0.2, and for different
values of �̄�th

Fig. 26. (Color online). A plot of 𝑔
(2)
(𝑎,𝑏)

(0) of the two-mode
cavity light versus Ω for 𝛾𝑐 = 0.4, 𝛾 = 0.2, and for different
values of �̄�th

Fig. 27. (Color online). A plot of 𝑔
(2)
(𝑎,𝑏)

(0) of the two-mode
cavity light versus Ω for 𝛾𝑐 = 0.4, 𝛾 = 0.2, and for different
values of �̄�th

where :: represent the normal ordering, and �̂�𝑎 = �̂�†�̂�
is the photon number operator for mode 𝑎. Since �̂�
is a Gaussian variable with vanishing mean, one can
easily verify that

𝑔
(2)
(𝑎,𝑎)(0) = 2. (56)

Similarly, the second-order correlation function for
mode 𝑏 is found to be

𝑔
(2)
(𝑏,𝑏)(0) = 2. (57)

From expressions (56) and (57), we note that the
second-order correlation function for light indicates
a chaotic state. So, the cavity modes 𝑎 and 𝑏 are sep-
arately in a chaotic or thermal state.

Figure 24 shows that the second-order correlation
function for the two-mode light versus Ω in the pres-
ence (𝛾 ̸= 0) and absence (𝛾 = 0) of the spontaneous
emission. One can see from this figure that 𝑔

(2)
(𝑎,𝑏)(0)

decreases, when Ω increases, in both cases. It can be
observed from Figs. 24 and 25 that the second-order
correlation function vanishes for Ω < 0.05. Moreover,
the effect of the spontaneous emission is an increase
in the second-order correlation function. In addition,
it is clearly shown in Figs. 26 and 27 that the second-
order correlation function increases with �̄�th and 𝛾,
respectively. In both figures, the maximum degree of
second-order correlation function occurs at the mini-
mum value of Ω.

Furthermore, in order to quantify the correlation
between the two modes, we introduce the linear cor-
relation coefficient in terms of a covariance as [11]

𝐽(�̂�𝑎,�̂�𝑏) =
cov(�̂�𝑎, �̂�𝑏)√︀
Δ�̂�2

𝑎

√︀
Δ�̂�2

𝑏

, (58)

where Δ�̂�2
𝑎 and Δ�̂�2

𝑏 are the variances of the pho-
ton number for modes 𝑎 and 𝑏, respectively. So, the
covariance of the photon numbers is defined by

cov(�̂�𝑎, �̂�𝑏) = ⟨�̂�𝑎�̂�𝑏⟩ − ⟨�̂�𝑎⟩⟨�̂�𝑏⟩. (59)

One can easily verify, using the fact that �̂� and �̂� are
Gaussian variables, in the steady state that

cov(�̂�𝑎, �̂�𝑏) = ⟨�̂��̂�⟩𝑠𝑠⟨�̂�†�̂�†⟩𝑠𝑠. (60)

Since the cavity modes are separately in a chaotic
state the variances of the photon numbers obey the
relation for a chaotic state,

Δ�̂�2
𝑎 = ⟨�̂�𝑎⟩+ ⟨�̂�𝑎⟩2, (61)
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Δ�̂�2
𝑏 = ⟨�̂�𝑏⟩+ ⟨�̂�𝑏⟩2. (62)

In view of this fact and (60), the correlation function
can be rewritten as

𝐽(�̂�𝑎,�̂�𝑏) =
⟨�̂��̂�⟩𝑠𝑠⟨�̂�†�̂�†⟩𝑠𝑠√︀

⟨�̂�𝑎⟩𝑠𝑠 + ⟨�̂�𝑎⟩2𝑠𝑠
√︀
⟨�̂�𝑏⟩𝑠𝑠 + ⟨�̂�𝑏⟩2𝑠𝑠

. (63)

In Figure 28, the linear correlation coefficient ver-
sus the amplitude of the driving coherent light, Ω is
plotted. It is also found from this figure that for Ω
very close to 0 the the intermode correlation would
be significantly large, since the mean photon numbers
of the light in modes 𝑏 is very close to zero, when al-
most all atoms are initially populated in the lower
level. Moreover, similarly to the second-order corre-
lation function, the plots of Figure 28 show that the
linear correlation coefficient vanishes, when Ω < 0.05.

5.3. Intensity difference Fluctuations

On the other hand, the variance of the intensity dif-
ference can be defined as

Δ𝐼2𝐷 = ⟨𝐼2𝐷⟩ − ⟨𝐼𝐷⟩2, (64)

where the intensity difference is

𝐼𝐷 = �̂�†�̂�− �̂�†�̂�. (65)

Hence, making use of Eq. (65), the variance of the
intensity difference can finally take the form

Δ𝐼2𝐷 = ⟨�̂�†�̂�⟩[1+⟨�̂�†�̂�⟩]+⟨�̂�†�̂�⟩[1+⟨�̂�†�̂�⟩]−2⟨�̂��̂�⟩2. (66)

It then follows that

Δ𝐼2𝐷 =
2𝛾𝑐
𝜅

[︀
⟨�̂�𝑎⟩+ ⟨�̂�𝑎⟩2 − ⟨�̂�𝑐⟩2

]︀
. (67)

On account of Eqs. (17) and (20), Eq. (67) can be
rewritten as

Δ𝐼2𝐷 =

=
2𝛾𝑐
𝜅

[︂
𝑁Ω2((𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2)(︀

(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2
)︀2 ]︂

+

+
2𝛾𝑐
𝜅

[︂
𝑁2Ω4 − 2Ω2𝑁2(𝛾𝑐 + 𝛾)2(�̄�th + 1)2(︀
(𝛾𝑐 + 𝛾)2(�̄�th + 1)(2�̄�th + 1) + 3Ω2

)︀2 ]︂. (68)

This is the steady-state variance of the intensity dif-
ference produced by the coherently driven nondegen-
erate three-level laser with an open cavity and cou-
pled to a two-mode thermal reservoir.

Fig. 28. (Color online). Plots of 𝐽(�̂�𝑎,�̂�𝑏)
of the two-mode

cavity light at steady-state versus Ω for 𝛾𝑐 = 0.4, 𝜅 = 0.8,
𝑁 = 50, and for different values of 𝛾

Fig. 29. (Color online). Plots of Δ𝐼2𝐷 of the two-mode cavity
light at steady-state versus Ω for 𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑁 = 50,
�̄�th = 5, and for different values of 𝛾

Fig. 30. (Color online). Plots of Δ𝐼2𝐷 of the two-mode cavity
light at steady-state versus Ω for 𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑁 = 50,
𝛾 = 0.2, and for different values of �̄�th

The plots of Fig. 29 show the variance of the inten-
sity difference (Δ𝐼2𝐷) versus Ω for 𝛾𝑐 = 0.4, 𝜅 = 0.8,
𝑁 = 50, �̄�th = 5, and for different values of 𝛾. From
these results, we understand that the variance of
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the intensity difference increases with Ω. In addition,
the variance of the intensity difference also increases,
when the spontaneous emission decay constant (𝛾)
decreases.

On the other hand, from Fig. 30, we see the plots of
the variance of the intensity difference (Δ𝐼2𝐷) of the
two-mode cavity light in the steady state versus Ω for
𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑁 = 50, 𝛾 = 0.2, and for different
values of �̄�th. These plots indicate that the variance
of the intensity difference decreases, as the initially
seeded thermal light increases. In addition, the vari-
ance of the intensity difference increases with Ω.

6. Conclusions

In conclusion, the squeezing and entanglement prop-
erties of a non-degenerate three-level laser driven by
coherent light and coupled to a two-mode thermal
reservoir via a single-port mirror whose open cav-
ity contains 𝑁 nondegenerate three-level atoms, are
thoroughly analyzed. It is carried out the analysis by
putting the noise operators associated with the ther-
mal reservoir in the normal order and by considering
the interaction of the three-level atoms with the ther-
mal reservoir outside the cavity. The master equation
and the quantum Langevin equations for the cavity
light is obtained. Applying these equations, the equa-
tions of evolution of the cavity mode and the atomic
operators are solved. Making use of the steady-state
solutions of atomic and cavity mode operators, the
quadrature variance, the quadrature squeezing, and
the entanglement for the two-mode cavity light, at
steady state, are determined. In addition, the nor-
malized second-order correlation function is obtained
for the individual mode, as well as for the super-
position of the two modes. Moreover, it is obtained
that the linear correlation coefficient between the two
modes. Finally, we obtained the intensity difference
fluctuations.

The analysis showed that the intracavity quadra-
ture squeezing is enhanced due to the absence of a
spontaneous emission, as well as the initially seeded
thermal light. It is found that the squeezing and en-
tanglement in the two-mode light are directly related
to each other. As a result, an increase in the degree
of squeezing directly implies an increase in the de-
gree of entanglement and vice versa. This shows that
whenever there is squeezing in the two-mode light,
there exists the entanglement in the system. In addi-
tion, it is shown that the photons in the laser cavity

are highly correlated, and the degree of photon num-
ber correlation increases with the spontaneous emis-
sion decay constant, 𝛾. Therefore, the presence of the
spontaneous emission leads to an increase in the de-
grees of entanglement, squeezing and photon number
correlation.

It is found that the maximum quadrature squeez-
ing is 43.43% in the absence of thermal light. When
the thermal light intensity increases, the squeezing
decreases. Moreover, we found that the mean photon
number increases, as the spontaneous emission de-
creases. Therefore, the more the mean photon num-
ber, the higher the light brightness. Hence, the ab-
sence of a spontaneous emission gives bright and
squeezed light beams. On the other hand, the thermal
reservoir causes a decrease in both the mean photon
number and the squeezing.
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ДИНАМIКА КОРЕЛЬОВАНОГО
ВИПРОМIНЮВАННЯ РЕЗОНАТОРА
ЛАЗЕРА, ПОЄДНАНОГО З ДВОМОДОВИМ
ТЕПЛОВИМ РЕЗЕРВУАРОМ

Аналiзуються квантовi властивостi променя свiтла iз резо-
натора когерентно збуджуваного невиродженого трирiвне-
вого лазера, поєднаного з двомодовим тепловим резервуа-
ром. Аналiз виконано iз застосуванням нормально впоряд-
кованих операторiв шуму теплового резервуара. Обговорю-
ється вплив теплового та спонтанного випромiнювань на
динамiку квантових процесiв. Показано, що максимальна
ступiнь стиснення у порожнинi на 43% нижче рiвня для
вакуумного стану. Бiльше того, наявнiсть теплового випро-
мiнювання викликає зменшення ступеня переплутування.

Ключ о в i с л о в а: стимульоване випромiнювання, стати-
стика фотонiв, квадратурне стиснення, спонтанне випромi-
нювання.
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