
The Role of Surface-Charge Transport

https://doi.org/10.15407/ujpe65.6.521

V.V. DATSYUK, O.R. PAVLYNIUK
Taras Shevchenko National University of Kyiv, Faculty of Physics
(Kyiv 01601, Ukraine; e-mail: datsyuk@univ.kiev.ua)

THE ROLE OF SURFACE-CHARGE
TRANSPORT IN ELECTROHYDRODYNAMICS
AND ELECTROMECHANICS OF A DIELECTRIC SPHERE

To simulate the electrokinetic processes in weakly-conducting dielectric media, the Taylor–
Melcher leaky-dielectric model is widely used, though its applicability conditions are un-
known. To define them, the electric-potential distributions inside and outside a dielectric sphere
placed in an electric field are determined, by assuming the sphere and the environment are
weakly conducting and by considering the electric and diffusion interfacial currents and the
surface-charge decay. Earlier, an electric-field characteristic of a dielectric sphere, for exam-
ple, the real part of the Clausius–Mossotti factor found for a direct current (DC) field was
commonly thought to be a single-valued function of two parameters, the conductivities of the
sphere and the environment. Now, it depends on a larger number of parameters and, in the dc
case, can range from the perfect-dielectric to perfect-conductor values even for a particle of a
good insulator. Using the proposed theory, a variety of the experimental results on the electro-
hydrodynamic (EHD) fluid circulation and dielectrophoretic (DEP) motion of microparticles
in the dielectric drops are explained for the first time or in a new way. The dielectrophoretic
inflection and cross-over frequencies are defined allowing for the decay of the surface charge. A
dependence of the effective conductivity of a sphere on the angular field distribution is predicted
for the first time.
K e yw o r d s: dielectrophoresis, electrohydrodynamics, leaky-dielectric model.

1. Introduction

A new technology of the electric-field manipula-
tion, characterization, and separation of cells, micro-
organisms, macromolecules, DNA, viruses, and di-
electric microparticles was proposed and successfully
developed in the second half of the 20th century [1–
10]. During the past decade, a branch of this technol-
ogy was focused on the manipulation by microparti-
cles on the surface of a dielectric droplet [11–21]. In
particular, the attention was paid to the formation
of structures of microparticles at the surface of a
millimeter-sized drop [14, 15, 20]. It is of interest that
a silicone-oil drop covered by chains of highly con-
ducting microparticles was transformed into a perfect
dielectric in one experiment [14], but into a perfect
conductor in another one [20]. We found no explana-
tion of this feature in the literature. Similarly, the ap-
plicability conditions for two different approaches of
the electromagnetic theory have not yet defined. On
the one hand, the potential distribution for a perfect-
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dielectric sphere in a uniform electric field E is found,
maybe, in each textbook on the electromagnetic the-
ory and optics including modern ones [2, 6, 22]. For
a perfect dielectric sphere with the permittivity 𝐾2

in a perfect dielectric with the permittivity 𝐾1, the
potential 𝑉pd is presented in Table, where 𝑟 is the
radial coordinate in the spherical coordinate system
with the origin at the center of the sphere and the 𝑧
axis parallel to E. A perfect dielectric is a substance
that has no conductivity.

On the other hand, a sphere of a nonideal dielec-
tric can be treated as conductive, which gives 𝑉ld, the
potential of the model [21,23–25]. This model is com-
monly applied to simulate the electrohydrodynamic
(EHD) flows inside and outside a dielectric drop in a
uniform electric field. This approach was introduced
by Taylor [23] for the dc case and was generalized
by Torza, Cox, and Mason [26] (TCM) for the alter-
nating current (AC) case. The “electric” part of the
leaky-dielectric model is of use in the theory of dielec-
trophoresis, since the DEP force is proportional to the
real part 𝛽 of the Clausius–Mossotti factor 𝑓CM. This

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 6 521



V.V. Datsyuk, O.R. Pavlyniuk

factor is found from Table 1 as the term before the
multiplier (𝑎/𝑟)3 in the square brackets. In the the-
ory of dielectrophoresis, the Clausius–Mossotti factor
𝑓CM plays an important role. The product of this fac-
tor and 𝑎3, where 𝑎 is the radius, is the polarizability
𝛼 of the sphere. In particular, 𝑓CM determines the di-
rection and absolute value of the DEP force acting on
a particle in a homogeneous medium. The DEP force
acting on a particle attached to the drop interface
depends on the product 𝛽 (2 + 𝛽)𝛽′ [18, 20], where
𝛽 and 𝛽′ are the real parts of the Clausius–Mossotti
factors of the drop and particle in the ambient liq-
uid, respectively. The values of 𝛽 and 𝛽′ can read-
ily be found using the “electric” part of the Taylor–
Melcher leaky-dielectric model [23, 24, 26]. Here, we
will establish, for the first time to the best of our
knowledge, its applicability limits and define the ba-
sic electric properties of a weakly conductive sphere
beyond them.

To understand the distinction of this study, let
us address the following question: What potential
should be used in practice to determine the polariza-
tion of a dielectric sphere, 𝑉ld or 𝑉pd? At first glance,
the Taylor–Melcher leaky-dielectric model is prefer-
able, as it involves the conductivities 𝜎1 and 𝜎2 of
the ambient medium and drop, respectively, neglected
in the alternative model that considers the system
of ideal dielectrics. However, there are no dielectric
constants 𝐾1 and 𝐾2 in the formulas for 𝑉 in the
leaky-dielectric, or conductive [2], model. Therefore,
the Taylor–Melcher model is not more general than
the perfect-dielectric one. Indeed, the first line in Ta-
ble does not follow from the second line by setting
𝜎1 = 𝜎2 = 0. Secondly, both 𝑉ld and 𝑉pd depend

Potential distributions for dc
perfect-dielectric, leaky-dielectric,
perfect-conductor, and ac leaky-dielectric models

𝑉 𝑟 ≤ 𝑎 𝑟 ≥ 𝑎

𝑉pd −
3𝐾1

2𝐾1 +𝐾2
𝑧 𝐸

[︂
𝐾2 −𝐾1

2𝐾1 +𝐾2

(︁𝑎

𝑟

)︁3
− 1

]︂
𝑧 𝐸

𝑉ld −
3𝜎1

2𝜎1 + 𝜎2
𝑧 𝐸

[︂
𝜎2 − 𝜎1

2𝜎1 + 𝜎2

(︁𝑎

𝑟

)︁3
− 1

]︂
𝑧 𝐸

𝑉pc 0
[︂(︁𝑎

𝑟

)︁3
− 1

]︂
𝑧 𝐸

𝑉ac −
3 𝜀1

2 𝜀1 + 𝜀2
𝑧 𝐸

[︂
𝜀2 − 𝜀1

2 𝜀1 + 𝜀2

(︁𝑎

𝑟

)︁3
− 1

]︂
𝑧 𝐸

on the material parameters, whose numbers are the
same: 𝜎1, 𝜎2 and 𝐾1, 𝐾2, respectively.

The situation is seemingly clear, if an ac field is
applied. For a time dependence of the form 𝑒−𝑖𝜔 𝑡,
the permittivities 𝐾 are commonly replaced with [2,
7, 22, 27]

𝜀 = 𝐾 + 𝑖𝜎/(𝜔 𝜀0), (1)

giving the potential 𝑉ac [2]. Here, 𝜀0 is the electric
constant. The potential 𝑉ac → 𝑉ld at low frequencies,
where 𝜔 𝜏𝛽 → 0, while 𝑉ac → 𝑉pd at high frequencies,
where 𝜔 𝜏𝛽 → ∞ [2, 7, 27, 28]. Here, 𝜏𝛽 = 𝜀0 (𝐾2 +
+2𝐾1)/(𝜎2+2𝜎1) is the Maxwell–Wagner relaxation
time [2, 6, 21, 27].

Here, we introduce a surface-charge decay time 𝜏𝛼
which, in particular, depends on the surface diffusion
coefficient. Our model gives the potential 𝑉 = 𝑉pd

at high frequencies, indeed. However, at low frequen-
cies or in the dc case, the potential can be pre-
sented in the form of a linear combination of 𝑉pd and
𝑉ld giving 𝑉 = 𝑉pd at 𝜏𝛽 ≫ 𝜏𝛼 and 𝑉 = 𝑉ld at
𝜏𝛽 ≪ 𝜏𝛼. Thus, there is a significant qualitative dis-
tinction between our model and the Taylor–Melcher
leaky-dielectric one.

Recently, many authors [1,3–7,9,18,27,29–38] took
the surface conductance 𝜅 into account using the con-
ductivity 𝜎 of a sphere of radius 𝑎,

𝜎 = 𝜎b + 2
𝜅

𝑎
, (2)

instead of the bulk conductivity 𝜎b. This formula
was likely to be derived for the first time by Schwan
in a study of the electric properties of cells [39],
see also [29]. The same formula (2) was also ob-
tained for a bare sphere in a uniform field [40]. A
theory of dielectric dispersion of colloidal particles
in electrolyte solutions [41] accounts for not only
the surface conductivity, but also the surface dif-
fusion. Despite the long history, it is not yet the
common practice to take the surface effects into ac-
count. Equation (2) explained the size dependence of
the motion of micron and submicron particles ob-
served in experiments [30, 31, 37, 42–44] in a very
broad range of the electrolyte conductivities. These
experimental data were discussed within the models
[5, 31, 34, 38, 42, 43, 45, 46] considering diverse elec-
trokinetic processes in the Stern and diffuse layers
[33, 47]. The theoretical studies of the polarization of
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the double layer of spherical particles were started
by Maxwell and Wagner. Their ideas were being de-
veloped since the 1960s (see Refs. [48, 49] and ref-
erences therein). For example, in Ref. [50] Dukhin
and Shilov set forth their theory of giant low-fre-
quency dispersion of the permittivity for dispersed
media of spherical particles and particles of other
shapes. They considered three possible mechanisms
of ion transport in an electrolyte through the mi-
gration in an electric field, diffusion, and ion mo-
tion caused by the fluid convection. In the dielectric-
relaxation spectroscopy[3,32,33,48,51], the relaxation
associated with the diffusion of ions at a surface was
called the low-frequency double layer relaxation or 𝛼-
relaxation. Simultaneously, the relaxation character-
ized with the Maxwell–Wagner (or Maxwell–Wagner–
O’Konski [3, 32, 33]) relaxation time was called the
high-frequency relaxation or 𝛽-relaxation. The previ-
ous studies [1, 5, 29, 31, 34, 38, 42, 43, 45, 46, 52, 53]
were focused mostly on the surface constitution and
mechanisms of the interfacial current. In particular,
the paper by Basuray, Wei, and Chang [45] was fo-
cused on the calculation of the cross-over frequency
𝜔c, at which the induced dipole reverses the direction
relative to the bulk field and 𝛽(𝜔c) = 0. The authors
considered three limiting cases: a) large Debye layer
asymptote, b) thin Debye layer asymptote, and c) po-
lar charging asymptote, when the charging occurs
only at the poles through the field focusing around the
insulated colloid. Their theory allowed for the follow-
ing mechanisms affecting the ac polarization: conduc-
tivity gradient between the layer and the bulk (which
accumulates a space charge) due to the surface charge
attraction, tangential diffusion/current, and normal
electric displacement. The cross-over frequencies cal-
culated without using the empirical parameters were
noted to collapse with the experimental data for latex
nanocolloids of various sizes in different electrolytes
with widely ranging ionic strengths.

Our study differs from those cited above in the task
statement. We consider 𝜅 and the surface-diffusion
coefficient 𝐷12 as given parameters and investigate
their influence on the DEP and EHD motions of
microparticles and liquids. Thereby, we follow Tay-
lor [23] and Melcher [24], Torza, Cox, and Mason
[26], who determined the polarization of an entire
sphere without considering the properties of its dou-
ble layer. This, in fact, phenomenological approach
can be applied successfully to the modeling of com-

plex systems with surfaces covered by thin films or
chains of highly-conducting particles.

In the rest of this paper, we will present a general
model of electric properties of a weakly conductive di-
electric sphere, compare it with other theories, and of-
fer new explanations for some experiments [18,43,54].
The principal distinction of our model from the leaky-
dielectric one [23, 24, 26] consists in the account for
diffusion currents. However, even the known process
of surface conductivity requires a careful considera-
tion. Thus, we will show that Eq. (2) is applicable,
only if the external field is uniform.

2. Methods

In this paper, we solve a problem of the electrostat-
ics for a simple spherical geometry, when the gen-
eral solution of the Laplace equation is known. The-
refore, our task reduces to the setting and solution of
a system of boundary conditions. There are two usual
boundary conditions for the electric potential and the
normal projection of the electric field vector. An ad-
ditional balance equation is introduced to determine
the surface charge. After the potential distribution is
defined, the common approaches [18, 23, 26] can be
applied to calculate a drop deformation and the fluid
flow and to predict the motion of microparticles at-
tached to the surface.

We adopt the Maxwell stress tensor in the form by
Torza et al. [26] to calculate the surface force at the
interface of a dielectric sphere. In particular, the tan-
gential stress that generates a fluid flow was defined
as follows

𝑆𝜃 = − 𝑠p 𝐸2 sin 𝜃 cos 𝜃, (3)

where 𝜃 is the polar angle, 𝑠p is the surface charge at
the north pole of the sphere, where 𝜃 = 0, and 𝐸2 is
the absolute value of the electric field vector at the
inner surface.

3. Polarization of a Weakly Conductive
Sphere in the Electric Field

3.1. Theoretical model

Consider a conductive sphere (medium 2) embedded
in conductive medium 1 in a uniform electric field
parallel to the 𝑧 axis. The superposition of the exter-
nal field with that of the polarized sphere is described
by the potentials 𝑉1 = −𝐸 𝑧 + (𝐶1/𝑟

2) cos 𝜃 at 𝑟 ≥ 𝑎
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and 𝑉2 = 𝐶2 𝑟 cos 𝜃 at 𝑟 ≤ 𝑎. The coefficients 𝐶1 and
𝐶2 are determined from the following boundary con-
ditions:

𝑉1 = 𝑉2, at 𝑟 = 𝑎; (4)

−𝐾1
𝜕𝑉1

𝜕𝑟
+𝐾2

𝜕𝑉2

𝜕𝑟
=

𝑠

𝜀0
, at 𝑟 = 𝑎, (5)

where 𝑠 is the surface charge which should be deter-
mined from a charge balance equation.

By using Eqs. (4) and (5), the potentials outside
and inside the sphere and the surface charge are found
to be

𝑉1 = −𝑧𝐸+
𝑧

𝐾2 + 2𝐾1

[︂
(𝐾2 −𝐾1)𝐸 +

𝑠p
𝜀0

]︂(︁𝑎
𝑟

)︁3
, (6)

𝑉2 =
𝑧

𝐾2 + 2𝐾1

(︂
− 3𝐾1𝐸 +

𝑠p
𝜀0

)︂
, 𝑠 = 𝑠p cos 𝜃. (7)

In order to determine 𝑠p, the charge balance at the
surface should be taken into account in addition to
the boundary conditions (4, 5).

Let us consider a variation of the surface charge
in the area between the arcs at the sphere sur-
face: 𝜃 = 𝜃0, 𝜃 = 𝜃0 + d𝜃, 𝜑 = 𝜑0, and 𝜑 =
= 𝜑0 + d𝜑, where the prefix d denotes an infinites-
imal increment, and 𝜑 is the azimuthal angle. The
charge that exits this area per unit time in the
direction of the r vector is equal to [𝑗1𝑟(𝑎, 𝜃0)−
− 𝑗2𝑟(𝑎, 𝜃0)+𝑠(𝑎, 𝜃0)/𝜏s] 𝑎

2 sin 𝜃0 d𝜃 d𝜑. Here, 𝜏−1
s is

the surface-charge decay rate that accounts for the
charge emission from the surface due to the vol-
ume diffusion, steaming, or ejection of a charged
liquid, etc. The charge that exits the area per unit
time through the arcs 𝜃 = 𝜃0 and 𝜃 = 𝜃0 + d𝜃 is
[sin(𝜃0+d𝜃) 𝑖𝜃(𝜃0+d𝜃, 𝜑0)−sin(𝜃0) 𝑖𝜃(𝜃0, 𝜑0)] 𝑎d𝜑 =
= 𝜕

𝜕𝜃 [sin(𝜃0) 𝑖𝜃(𝜃0, 𝜑0)] 𝑎d𝜃 d𝜑. Finally, there can be
a surface-charge flow in the direction of the unit vec-
tor e𝜑, that is [𝑖𝜑(𝜃0, 𝜑0 + d𝜑) − 𝑖𝜑(𝜃0, 𝜑0)] 𝑎 d𝜃 =
= 𝜕

𝜕𝜑 𝑖𝜑(𝜃0, 𝜑0) 𝑎d𝜃 d𝜑. By summarizing all the cur-
rents and dividing the sum by 𝑎2 sin 𝜃0 d𝜃 d𝜑, we get

𝜕𝑠

𝜕𝑡
= −𝑗1𝑟+ 𝑗2𝑟−

𝑠

𝜏s
− 1

𝑎 sin 𝜃

[︂
𝜕

𝜕𝜃
(sin 𝜃 𝑖𝜃) +

𝜕

𝜕𝜑
𝑖𝜑

]︂
.

(8)

In this model, the volume current densities are de-
termined by the Ohm’s law:

j𝑖 = 𝜎𝑖 E𝑖. (9)

However, we take the surface diffusion into account
in the definition of a surface current density:

𝑖𝜃 = 𝜅𝐸1𝜃 −𝐷12
1

𝑎

𝜕𝑠

𝜕𝜃
, 𝑖𝜑 = 𝜅𝐸1𝜑 −𝐷12

1

𝑎 sin 𝜃

𝜕𝑠

𝜕𝜑
,

(10)

where 𝜅 is the surface conductivity, 𝐷12 is the surface
diffusion coefficient. By substituting Eqs. (9) and (10)
into Eq. (8), we obtain

𝜕𝑠

𝜕𝑡
+

𝑠

𝜏s
− 𝐷12

𝑎2
Δ𝜃, 𝜑 𝑠 =

= 𝜎1
𝜕𝑉1

𝜕𝑟
− 𝜎b2

𝜕𝑉2

𝜕𝑟
+

𝜅

𝑎2
Δ𝜃, 𝜑 𝑉1, 𝑐𝑐, (11)

where Δ𝜃, 𝜑 denotes the spherical Laplace operator
1

sin 𝜃
𝜕
𝜕𝜃

(︀
sin 𝜃 𝜕

𝜕𝜃

)︀
+ 1

sin 𝜃2
𝜕 2

𝜕𝜑2 .
For a sphere in a uniform electric field, Eq. (11)

can be written in a simpler form:

𝜕𝑠

𝜕𝑡
+

𝑠

𝜏
= 𝜎1

𝜕𝑉1

𝜕𝑟
− 𝜎2

𝜕𝑉2

𝜕𝑟
, (12)

where 𝜏−1
𝛼 = 𝜏−1

s + 2𝐷12/𝑎
2, and Eq. (2) holds. A

contradiction arises here. The factor 2 staying in
Eq. (2) indicates that the electric field is presumed to
be uniform. This assumption was correct in O’Kon-
ski’s study [40], but is unacceptable in the DEP
research, when the electric field must be non-
uniform [7, 8].

The above equation with 𝜕𝑠/𝜕𝑡 = −𝑖𝜔 𝑠 and 𝑉1, 𝑉2

defined by Eqs. (6) and (7) gives the following formula
for the parameters of Eq. (3):

𝑠p = 𝜀0 (𝛽ld − 𝛽pd) (𝐾2 + 2𝐾1)Θ𝐸; (13)

𝐸2 =

[︂
3𝜎1

𝜎2 + 2𝜎1
Θ+

3𝐾1

𝐾2 + 2𝐾1
(1−Θ)

]︂
𝐸, (14)

where 𝛽ld = (𝜎2 − 𝜎1)/(𝜎2 + 2𝜎1) is the Clausius–
Mossotti factor of a conductive sphere with 𝜎2 used
instead of 𝜎b2, and 𝛽pd = (𝐾2 − 𝐾1)/(𝐾2 + 2𝐾1)
is the Clausius–Mossotti factor of a perfect-dielectric
sphere, Θ =

[︀
1 + 𝜏𝛽 (−𝑖𝜔 + 𝜏−1

𝛼 )
]︀−1, 𝜏𝛽 = 𝜀0 (𝐾2 +

+2𝐾1)/(𝜎2 + 2𝜎1).
Then cproposed general conductive-sphere model

yields the following Clausius–Mossotti factor

𝑓CM = Θ𝛽ld + (1−Θ)𝛽pd, (15)

where 𝛽ld = (𝜎2 − 𝜎1)/(𝜎2 + 2𝜎1) is the Clausius–
Mossotti factor of a conductive sphere with 𝜎2 used
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instead of 𝜎b2, and 𝛽pd = (𝐾2 − 𝐾1)/(𝐾2 + 2𝐾1)
is the Clausius–Mossotti factor of a perfect-dielectric
sphere, Θ =

[︀
1 + 𝜏𝛽 (−𝑖𝜔 + 𝜏−1

𝛼 )
]︀−1, 𝜏𝛽 = 𝜀0 (𝐾2 +

+2𝐾1)/(𝜎2 + 2𝜎1). Equation (14) represents the
electric field inside a weakly conductive dielectric
sphere as a linear combination of the fields of the
leaky dielectric and perfect-dielectric spheres. Simi-
larly, Eq. (15) shows that the real part 𝛽 of the
Clausius–Mossotti factor of a conductive sphere varies
between two extreme values, 𝛽ld and 𝛽pd. From
Eqs. (13)–(15), we get the result of the TCM model
[26] by setting 𝜏−1

𝛼 = 0 and 𝜅 = 0. If, in addition, we
take 𝜔 = 0, the result of the original Taylor’s study
[23] is obtained.

3.2. Polarizabilities of high orders

To solve some problems, the potential of the external
field source is assumed to have the following form
[55, 56]:

𝑉0 = −
∑︁
𝑙,𝑚

𝐶𝑙,𝑚 𝑟𝑙 𝑌 𝑚
𝑙 (𝜃, 𝜑), (16)

where 𝑌 𝑚
𝑙 (𝜃, 𝜑) is the spherical harmonic of degree

𝑙. Then the potential of the sphere at 𝑟 ≥ 𝑎 is

𝑉 = 𝛼𝑙 𝑙,𝑚 𝐶𝑙,𝑚 𝑟−𝑙−1 𝑌 𝑚
𝑙 (𝜃, 𝜑), (17)

where is the polarizability of order 𝑙. Using the pro-
posed model, we get

𝛼𝑙 =
[︁
Θ𝑙 𝛽

(ld)
𝑙 + (1−Θ𝑙)𝛽

(pd)
𝑙

]︁
𝑎2 𝑙+1, (18)

where

𝛽
(ld)
𝑙 =

𝜎2 𝑙 − 𝜎1

𝜎2 𝑙 + 𝜎1 + 𝜎1/𝑙
,

𝛽
(pd)
𝑙 =

𝐾2 −𝐾1

𝐾2 +𝐾𝑠1 +𝐾1/𝑙
,

Θ𝑙 =
[︀
1 + 𝜏𝛽 𝑙 (−𝑖𝜔 + 𝜏−1

𝛼 𝑙 )
]︀−1

,

𝜏𝛽 𝑙 = 𝜀0
𝐾2 +𝐾1 +𝐾1/𝑙

𝜎2 𝑙 + 𝜎1 + 𝜎1/𝑙
,

𝜎2 𝑙 = 𝜎b2 + (𝑙 + 1)
𝜅

𝑎
,

𝜏−1
𝛼 𝑙 = 𝜏−1

s + 𝑙 (𝑙 + 1)
𝐷12

𝑎2
.

(19)

The term 𝑙 (𝑙+1) comes from the spherical Laplace
operator in the equation for the surface charge,
Eq. (11). In our previous study of nonlocal effects in

metals [57], the Laplace operator was present in a
formula for the electric current. Similarly, Eqs. (19)
show the dependences of the parameters 𝜎2 𝑙 and
𝜏𝛼 𝑙 on the field distribution that is taken into ac-
count with the parameter 𝑙. According to these equa-
tions, the higher the inhomogeneity of the electric
field, the higher the significance of the surface pro-
cesses. In particular, 𝜏𝛽 𝑙/𝜏𝛼 𝑙 → ∞ and, consequently,
𝛼𝑙 → 𝛽pd 𝑎

2 𝑙+1 at 𝑙 → ∞ or 𝑎 → 0. This property
of 𝛼𝑙 is likely to be important, when the expansions
in spherical harmonics neglecting the surface charge
transport converge slowly or diverge [55, 58, 59].

4. Extreme Values
of the Clausius–Mossotti Factor

The parameter 𝜏−1
𝛼 introduced in Eq. (12) is the sur-

face charge 𝛼-relaxation rate defined as a sum of
the surface-charge decay and diffusion rates, 𝜏−1

s and
𝜏−1
sd = 2𝐷12/𝑎

2, respectively. The parameter 𝜏−1
𝛼 has

a significant influence on the form of the potential
distribution. Below, we discuss some limiting cases
focusing on transformations of the Clausius–Mossotti
factor.

4.1. Perfect-dielectric limit

The absolute value of the factor Θ is small, Θ ≃ 0,
and Eq. (15) reduces to

𝑓CM ≃ 𝛽pd, (20)

when

𝜔 𝜏𝛽 ≫ 1 or 𝜏𝛼 ≪ 𝜏𝛽 . (21)

If one of the above conditions is satisfied, we get the
potential 𝑉pd defined in Table 1. Hence, a sphere has
properties of a perfect dielectric not only in a high-
frequency ac field, but also at arbitrary 𝜔 including
𝜔 = 0, when the leakage of the surface charge is fast.

4.2. Modified Taylor–Melcher
leaky-dielectric limit

The absolute value of the factor 1−Θ is small, 1−Θ ≃
≃ 0, and Eq. (15) reduces to

𝑓CM ≃ 𝛽ld, (22)

if

𝜔 𝜏𝛽 ≪ 1 and 𝜏𝛼 ≫ 𝜏𝛽 . (23)
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Fig. 1. Frequency dependence of the real part of the Clausius–
Mossotti factor calculated for polystyrene spheres in water

Hence, despite the common opinion [2, 7, 27, 28], the
first condition (23) alone is not sufficient for the valid-
ity of the leaky-dielectric model. The potential 𝑉ac of
the ac leaky-dielectric model [2,26] with 𝜎b2 replaced
by 𝜎2 is obtained at 𝜔𝜏𝛼 ≫ 1.

4.3. Surface conductor limit

Let us assume that the following inequalities are satis-
fied: 𝜅/𝑎 ≫ 𝜎b2 and 𝜅/𝑎 ≫ 𝜎1. If so, both quantities
𝜎1 and 𝜎b2 can be omitted in Eqs. (13) and (15) which
may be written as follows:

𝑠p =
3 𝜀0 𝐾1 𝐸

1 + 𝜗
, (24)

𝑓CM =
1 + 𝜗𝛽pd

1 + 𝜗
, (25)

𝜗 =
(︀
−𝑖𝜔 + 𝜏−1

𝛼

)︀
𝜀0 (𝐾2+2𝐾1) 𝑎/𝜅. According to the

above equation, the properties of a surface-conductor
sphere can change in a broad range. Thus, at 𝜏𝛼 ≪
≪ 𝜀0 (𝐾2 + 2𝐾1) 𝑎/𝜅, we get

𝑠p ≃ 0 and 𝑓CM ≃ 𝛽pd, (26)

as for a perfect-insulator sphere. For 𝜔 = 0 and 𝜏𝛼 ≫
≫ 𝜀0 (𝐾2+2𝐾1) 𝑎/𝜅, we obtain the potential 𝑉pc and
other characteristics of a perfect-conductor sphere:

𝑠p = 3 𝜀0 𝐾1 𝐸; (27)

𝑓CM = 𝛽pc = 1. (28)

Both perfect-dielectric and perfect-conductor mod-
els predict a diminution of the EHD flow, i.e. the tan-
gential stress 𝑆𝜃 which is proportional to the prod-
uct 𝑠p 𝐸2 should be zero. According to the perfect-
dielectric model, 𝑆𝜃 = 0, because 𝑠p = 0 at 𝐸2 ̸= 0.
On the contrary, the perfect-conductor model gives
𝑠p ̸= 0; but 𝑆𝜃 = 0, since 𝐸2 = 0.

4.4. Frequency dependence
of the Clausius–Mossotti factor

To study how the polarization of a sphere depends
on the parameter 𝜅12 and surface-charge 𝛼-relaxation
time, we consider Fig. 1. It presents the theoreti-
cal dependences of the factor 𝛽 on the frequency
𝜈 = 𝜔/(2𝜋) for polystyrene spheres immersed in wa-
ter. The calculations were executed with 𝑅 = 10𝜇m
and other parameters determined in experiments
[29]. Figure 1 demonstrates a huge spread of the dc
values of 𝛽, while, at high frequencies, all curves ap-
proach the perfect-dielectric limit. Comparing curves
1, 5 and 6 we see that properties of a small sphere
with 2 𝑎 = 1𝜇m differ dramatically from those of
large spheres. It is of interest that the micrometer-
sized particle of a good insulator with 𝜎b1 = 0 can
be considered at low frequencies as a good-conductor
particle. Indeed, 𝛽(𝜔 = 0) = 0.86 of curve 1 is close
to the ultimate value 𝛽pc = 1 of the perfect conduc-
tor. The comparison of curves 1–4 shows that val-
ues of 𝛽dc decrease with increasing the ratio of the
Maxwell–Wagner relaxation time 𝜏𝛽 to the surface-
charge 𝛼-relaxation time 𝜏𝛼. The cross-over frequency
defined by the condition 𝛽(𝜔 c) = 0 is a nonmonotonic
function of 𝜏𝛽/𝜏𝛼.

From experiments, it is known that the DEP force
can be changed by varying the frequency. If the fac-
tors 𝛽pd and 𝛽ld are of different signs, the cross-over
frequency [5–7, 30, 31, 36, 43, 45] (or critical frequency
[2]) can be introduced as the frequency dividing the
regions of negative and positive dielectrophoreses at
which the real part of the Clausius–Mossotti factor
equals zero. From Eq. (15) and the definition of the
parameter Θ, we get

𝜔 c = 𝜏−1
𝛽

[︂(︂
− 𝛽ld

𝛽pd
− 𝜏𝛽

𝜏

)︂(︁
1 +

𝜏𝛽
𝜏

)︁]︂1/2
. (29)

At 𝜏−1
𝛼 = 0, the above equation gives the formula

known in the literature [4, 6, 36, 43, 45]:

𝜔 c =

[︂
𝜎2 − 𝜎1

(𝐾1 −𝐾2) 𝜀0
𝜏−1
𝛽

]︂1/2
. (30)

According to Fig. 1 and Eq. (15), the factor 𝛽 =
= ℜ𝑓CM attains maximum at 𝜔 = 0, when the param-
eter Θ is equal to Θ0 = (1 + 𝜏𝛽/𝜏𝛼)

−1
, and minimum

at 𝜔 → ∞, when Θ = 0. The frequency

𝜔 i = 𝜏−1
𝛽 + 𝜏−1

𝛼 , (31)
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at which ℜΘ = Θ0/2, is called the inflection fre-
quency [60].

5. Experimental Evidences
of Surface Conductivity

5.1. EHD fluid circulation

A deformation and the fluid circulation in a dielec-
tric drop embedded into an immiscible dielectric liq-
uid in uniform ac and dc electric fields were theo-
retically and experimentally studied by Torza, Cox,
and Mason [26]. They introduced a classification in-
cluding three classes: class A at 𝑞 ≤ 𝑍, class B at
0 < 𝑞 − 𝑍 < 𝛿 𝑍 (𝑍 − 1)2, and class C at 𝑞 − 𝑍 ≥
≥ 𝛿 𝑍 (𝑍 − 1)2, where 𝑞 = 𝐾2/𝐾1, 𝑍 = 𝜎2/𝜎1, and
𝛿 = (5𝜇1 + 5𝜇2/(16𝜇1 + 19𝜇2); 𝜇1 and 𝜇2 are the
viscosities of the ambient medium and a drop, respec-
tively. The electrically induced flows on both sides of
the interface are directed from the equator to the
poles in systems of class A and from the poles to
the equator in systems of classes B and C. In sys-
tems of classes A and B, the drop becomes a prolate
spheroid. In systems of class C, the drop is oblate at
low frequencies and prolate at high frequencies.

According to Torza et al [26] and other researchers
[25, 61], the types of deformation and flow direc-
tions changed to the opposite ones under the inver-
sion. For example, pure silicone oil drops in castor
oil were of class C and had an oblate deformation in
a dc electric field. Castor-oil drops in silicone oil be-
longed to class A and were prolate. However, in one
experiment, both a drop of polymethyl phenylsilox-
ane (PMPS) in spindle oil and a drops of spindle oil
in PMPS were reported to stretch along the direction
of the electric field [54] as for a system of class A.

Here, we propose an explanation for this result
based on a proper account of the surface conductiv-
ity. If no other processes are taken into account, the
extension of the TCM model reduces to a new defini-
tion of the parameter 𝑍:

𝑍 =
𝑅

𝑎
+

𝜎b2

𝜎1
. (32)

By increasing 𝜅 or decreasing 𝑎, one can increase a
value of 𝑍. As a result, a system of class C can go to
class B and then to class A.

The importance of the surface conductance was
confirmed by experiments [14, 20] reporting the tran-
sition of a system of class C to class A. Thus, Mik-

kelsen et al. [20] studied properties of separate milli-
meter-sized silicone oil drops suspended in castor oil
in uniform dc or ac electric fields. Drops were covered
by different spherical particles: silver coated hollow
glass microspheres with average diameters of 15 and
55 𝜇m, pure and two types of sulfonated polystyrene
particles with a mean diameter of 40 𝜇m. The elec-
trical conductivities of the microbeads ranged from
10−11 S m−1 of polystyrene to 107 S m−1 of silver. A
pure silicone oil drop with 𝜀2 = 2.8 and 𝜎b2 = 5–
10 pSm−1 in castor oil with 𝜀1 = 4.7 and 𝜎1 = 50–
100 pS m−1 belongs to class C of the TCM classi-
fication. Indeed, the drop was oblate in the dc case
and prolate in the ac case at a frequency 𝜈 = 𝜔/(2𝜋)
of 200 Hz, when 𝜏𝛽 was about 1 s. Fluid flows were
directed from the poles to the equator in agreement
with the theory. The authors reported various pro-
cesses including the drop deformation, fluid flows, mi-
gration of microparticles at the interface, and forma-
tion of surface structures. Drastic changes of drop’s
properties were observed in the dc field, when surface
particles formed longitudinal chains spanning from
pole to pole and thereby increasing 𝜅. These were the
oblate-to-prolate morphology transition and the re-
verse of the fluid flow, which confirms the transition
of the system from TCM class C to class A. Other
results of Ref. [20] are discussed below.

5.2. DEP force

The surface conductivity can change the sign of 𝛽
or 𝛽′. In this case, the direction of the DEP force is
changed, accordingly. Amah and co-authors [18] ma-
nipulated by microparticles absorbed at the surface
of a millimeter-sized silicone-oil drop. They demon-
strated the possibility to collect particles either on
the poles or equator or to move the particles from
the equator to the poles and vice versa. Experiments
were performed with the use of silicone oil I from Dow
Corning with 𝐾2 = 6.85 and 𝜎b2 = 56 pS m−1 and
silicone oil II from United Chemical Technology with
𝐾2 = 2.75 and 𝜎b2 = 3.6 pS m−1. Castor oil with
𝐾1 = 4.7 and 𝜎1 = 32 pS m−1 was used as an ambi-
ent liquid. The particles trapped on drop’s interface
had approximately the spherical shape. Those made
of soda lime glass with 𝐾 = 6.9 had diameters from
1 to 3 𝜇m. The particles made of hollow glass with
𝐾 = 1.2 had diameters from 6 to 32 𝜇m, and the
particles of polystyrene with 𝐾 = 2.0 had a diameter
of 4 𝜇m.
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Fig. 2. Theoretical frequency dependences of the normalized EHD drag force (solid lines) and DEP force acting on microparticles
of soda lime glass (lines with diamond marks), hollow glass (lines with circle marks), and polystyrene (lines with star marks)
adsorbed on the surface of a silicone oil-I drop [(a) and (b)] or silicone oil-II drop [(c) and (d)] suspended in castor oil calculated
neglecting [(a) and (c)] and allowing for [(b) and (d)] the surface conductivity of microparticles

It was of importance that Amah et al. [18] pre-
sumed that the DEP force was independent of the
frequency and expressed through drop’s 𝛽pd and mi-
croparticle’s 𝛽′

pd. The model of Torza, Cox and Mason
was applied to determine the tangential stress that
produces the fluid flow which drags the microparti-
cles. The observed reversal of particles’ velocities was
explained by a competition between the EHD drag
and DEP forces. Namely, these forces acting on the
hollow glass and polystyrene microparticles at a dc
electric field were assumed to be of the opposite di-
rections with a stronger EHD drag. With increasing
the field frequency, the tangential stress, the flow ve-
locities, and EHD drag force decreased. Therefore,
the DEP force should dominate at high-frequency
ac fields. According to Amah et al., particles’ veloc-
ities reversed at a critical frequency, when the EHD
and DEP forces had equal amplitudes, but opposite
directions.

In Fig. 2, the normalized EHD drag force 𝐹EHD(𝜔)/
/𝐹EHD(0)| = 𝑆𝜃(𝜔)/|𝑆𝜃(0)| is compared with the nor-
malized DEP force [20]

𝐹DEP(𝜔)

|𝐹DEP(0)|
=

𝛽 (2 + 𝛽)𝛽′

|𝛽ld (2 + 𝛽ld)𝛽′
ld|

. (33)

Left-column figures 2, a and 2, c present the forces
calculated with the original Taylor–Melcher leaky-
dielectric model, and right-column figures 2, b and
2, d show the results of the model allowing for the sur-
face conductivity. This figure reveals a mistake in the
previous theoretical model. Contrary to Ref. [18], the
frequency dependence of the DEP force can be more
sharp than that of the EHD drag force in the region
of 0 < 𝜔 < 10 s−1, and 𝐹DEP(𝜔) can even change
its sign. If this mistake is corrected, and the original
leaky-dielectric model is used, the theory will disagree
with experiment. Namely, Amah and co-authors [18]
noted that the DEP force and EHD force acting on
glass particles in drops of both silicone oil I and sil-
icone oil II were always of the same direction. These
experimental findings are in the qualitative disagree-
ment with the results of calculations of 𝐹DEP(𝜔) pre-
sented in Figs. 2, a and 2, c. This contradiction can
be resolved by accounting for the surface conductivity
of particles 𝜅 estimated by us as 𝜅 = 𝜎1×10𝜇m. Ho-
wever, it is the correction that leads to a dramatic
change in the interpretation of the experimental re-
sults. Indeed, according to Figs. 2, b and 2, d, the
EHD and DEP forces are always of the same direc-
tion. So, there is no competition between the forces.
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According to our calculations presented in Fig. 2, b,
the DEP force acting on a polystyrene sphere with
a diameter of 4 𝜇m changes the sign at an angu-
lar frequency of 𝜔0 = 6.8 s−1 determined by for-
mula (30). This value should be smaller than the crit-
ical angular frequency 𝜔 c at which the microparticles
change the direction of motion because of the pres-
ence of the opposite EHD drag. In the experiment
[18], the value of 𝜔 c was determined to be of the order
of 10 s−1, i.e. the theoretical 𝜔0 is about the experi-
mental 𝜔 c. In this case, the EHD drag could be ne-
glected. In the experiment with hollow glass particles
of different sizes from 6 to 32 𝜇 the change in the di-
rection of motion was observed at frequencies decreas-
ing with the size [18]. Namely, 𝜔 c was about 5 s−1 for
the smallest particles, while 𝜔 c was theoretically es-
timated to be 2.1 s−1 for the particles of the average
size equal to 18 𝜇m. We find 𝜔0 = 4.2 s−1 very close
to the experimental 𝜔 c for the smallest hollow glass
particles and 𝜔0 = 1.3 s−1 for the average-size ones.
Additional arguments in favor of the proposed model
can be found in Ref. 62.

6. Experimental Evidences of 𝛼-Relaxation

6.1. EHD fluid circulation

In the research by Dommersnes et al. [14], the clay
clusters were dispersed throughout a millimeter-sized
silicone oil drop at concentrations of about 1 wt%. In
dc and low-frequency ac electric fields, the chains of
highly conducting clusters were formed along the field
direction at the surface of a silicone oil drop immersed
in castor oil. At sufficiently high fields and clay con-
centrations, the drop deformation was observed to
change from oblate to prolate. Simultaneously, the
EHD flow was suppressed. According to the conclu-
sion of the previous subsection, there are two ways to
explain this result. The first way is to use the perfect-
dielectric model, as was, in fact, done by Dommersnes
and co-authors [14] who concluded that the strongly
enhanced surface conductivity should diminish the
charge buildup on the drop and thereby suppress the
EHD flow. However, this model does not explain the
stretching and breakdown of a silicone-oil drop cov-
ered by highly conductive microparticles, which was
observed in Ref. [20].

According to Mikkelsen et al. [20], at a sufficiently
strong dc field of 200 V mm−1 and a high particle
coverage of 0.6–0.8, chains of highly conducting mi-

croparticles connected drop’s poles. In this extreme
case, the drop is elongated and broken apart, whereas
the EHD fluid flows are suppressed. The authors of
the research inferred that, in a dc field, “the particle
chains redistribute the free charges at the drop inter-
face until the electric field component, which is paral-
lel to the drop surface, becomes zero”. This statement
is in complete agreement with our engagement of the
perfect-conductor model.

6.2. DEP force

There were a few experiments which reported on
an increase of the cross-over frequency with decreas-
ing the particle radius. For instance, Ermolina and
Morgan [43] reported on the cross-over frequencies
𝜈c = 𝜔 c/(2𝜋) for polystyrene latex beads suspended
in aqueous KCl solutions with conductivities rang-
ing from 10−4 to 10−1 S/m. By using Eq. (30), they
determined the surface conductance 𝜅 falling in the
range 0.9 to 1.2 nS for particles with diameters from
110 to 1900 nm and 𝜅 = 0.75 nS for particles with a
diameter of 44 nm.

Let us consider the formula of the cross-over
Eq. (29), by assuming that the particles are extremely
small, so that the surface conductance dominates on
the right-hand side of Eq. (2): 𝛽ld approaches unity,
and the term 2𝐷12/𝑎

2 dominates in the definition of
𝜏−1
𝛼 . Under these conditions, Eq. (29) takes the form

𝜔 c =
2𝜅

𝜀0 (𝐾2 + 2𝐾1)

1

𝑎

[︂(︂
1

𝛽pd
− 𝐿

𝑎

)︂(︂
1 +

𝐿

𝑎

)︂]︂1/2
,

(34)

where 𝐿 = 𝐷12 (𝐾2+2𝐾1) 𝜀0/𝜅. According to Fig. 3,
the above equation is in good agreement with the
experimental data taken from Fig. 1 of Ref. [43] at
𝜎1 = 0.7 × 10−4 S/m. Here, the quantities 𝜅 and
𝐷12 are considered as adjustable parameters. A fit
gave 𝜅 = 0.91 nS and 𝐷12 = 1.8 × 10−8 m2/s. The
straight dotted line drawn, by neglecting the surface
diffusion, is presented for comparison. As seen from
Fig. 3, a better fit is obtained, when the surface dif-
fusion is taken into account. At that, the solid line
crosses the experimental marks when 1/𝑎 = 9.3 and
18.2 𝜇m−1| above the straight line and falls below this
line at 1/𝑎 ≥ 45 𝜇m−1. Despite the good agreement
between the experiment and the theory, Fig. 3 illus-
trates the dependence of the cross-over frequency on
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Fig. 3. Cross-over frequencies 𝜈c = 𝜔 c/(2𝜋) measured for
ultra-tin polystyrene microparticles of various sizes in an aque-
ous KCl solution (marks) and their theoretical fits by Eq. (34)
with 𝜅 = 0.91 nS, 𝐷12 = 1.8 × 10−8 m2/s (solid line) and
𝐷12 = 0 (dotted line)

the parameter 1/𝑅, but the estimated value of 𝐷12

may be incorrect. This value of 𝐷12 is much higher
than diffusivities of both cations and anions in bulk
electrolytes [32, 34, 45, 63, 64], 1.96× 10−9 m2s−1 ac-
cording to Ref. [64] or 5 × 10−9 m2s−1 according to
Refs. [34, 45] for K+ and Cl−. A lower value of 𝐷12

will be obtained, if one considers additional mecha-
nisms of surface-charge dissipation, for example, the
charge diffusion normal to the interface.

7. Conclusion

We have derived a general formula for the potential
distribution inside and outside a conductive sphere in
a uniform electric field allowing for the interfacial con-
ductivity and the 𝛼-relaxation of the surface charge
due to the interfacial diffusion and the charge emis-
sion from the interface. This formula yields the known
potentials of the leaky-dielectric, perfect-dielectric,
and perfect-conductor models in limiting cases. In ad-
dition, we have defined a new surface-conductor limit
that should be of particular importance in microflu-
idics. The theoretical description of all the states of
a polarized sphere beyond the leaky-dielectric model
is in accord with recent experiments.

We emphasize that, in the dc case, the leaky-
dielectric model is valid, only if the surface relaxation
time 𝜏𝛼 is much larger than the Maxwell–Wagner re-
laxation time 𝜏𝛽 , 𝜏𝛼 ≫ 𝜏𝛽 , while, at 𝜏𝛼 ≪ 𝜏𝛽 and
𝜔 ≃ 0, the perfect dielectric model is applicable con-
trary to the common concept. The last model can also
be used at high frequencies, when 𝜔 𝜏𝛽 ≫ 1, and ar-
bitrary 𝜏𝛼.

Experimental evidences demonstrating the impor-
tance of the surface conductivity and the surface-

charge 𝛼-relaxation of a drop and embedded mi-
croparticles in the DEP and EHD processes have been
presented. The tangential Maxwell stress at the sur-
face of a weakly conducting sphere, or EHD drag
force, has been shown to vanish at high and low val-
ues of the 𝛼-relaxation rate introduced in this pa-
per. It is worth noting that both these cases were
observed in a silicone oil drop suspended in castor
oil, when the surface was covered by highly conduct-
ing microparticles [14, 20]. Lamellar clay micropar-
ticles with sharp edges transformed the conductive
drop into a perfect dielectric [14]. While, under simi-
lar conditions, silver-coated hollow glass microspheres
and sulfonated polystyrene microbeads enabled the
perfect-conductor limit to be achieved [20].

The current understanding of the experiment on a
manipulation by microparticles attached to the inter-
face of a silicone-oil drop with varying the frequency
of the electric field [18] has been shown to be mis-
leading. Due to the surface conductivity of the mi-
croparticles, at zero or low frequencies, the electrohy-
drodynamic (EHD) drag and dielectrophoretic (DEP)
forces are in the same direction, but not opposite, as
stated previously. The motion of microparticles turns
back, because of the reversal of the DEP force with
varying the field frequency. The surface conductivity
of a drop can also explain experiments, in which the
prolate deformation persists after liquids of the drop
and the ambient medium are interchanged [54]. The
model allowing for the diffusion of a surface charge
has been found to be in good agreement with the ex-
perimental dependence of the cross-over frequency on
the size of ultra-tin microparticles [43].

We have shown that the surface-charge trans-
port processes depend on the angular distribution of
an electric field. Namely, it has been established a
quadratic dependence of the surface-charge diffusion
rate and a linear dependence of the total conductivity
of a sphere on the degree of the spherical harmonic of
the external electric field. This effect can be impor-
tant in systems of closely spaced particles and in the
DEP process.
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РОЛЬ ТРАНСПОРТУ ПОВЕРХНЕВОГО
ЗАРЯДУ В ЕЛЕКТРОГIДРОДИНАМIЦI
ТА ЕЛЕКТРОМЕХАНIЦI ДIЕЛЕКТРИЧНОЇ КУЛI

Р е з ю м е

Для моделювання електрокiнетичних процесiв у слабопро-
вiдних дiелектричних середовищах широко використову-
ють модель неiдеального дiелектрика Тейлора–Мелчера,
хоча умови її застосування невiдомi. Для визначення цих
умов знайдено розподiл електричного потенцiалу всереди-
нi i зовнi дiелектричної кулi в електричному полi у при-
пущеннi, що куля i зовнiшнє середовище є поганими про-
вiдниками струму, а також iз врахуванням електричних i
дифузiйних поверхневих струмiв та розпаду поверхневого
заряду. Ранiше будь-яка характеристика електричного по-
ля дiелектричної кулi, зокрема, реальна частина фактора
Клаузiуса–Моссоттi, знайдена для поля сталого струму, як
правило, вважалася однозначною функцiєю двох параме-
трiв, а саме, провiдностей кулi та зовнiшнього середовища.
У нас ця величина залежить вiд бiльшої кiлькостi параме-
трiв i, у випадку сталого струму, може змiнюватися вiд зна-
чення, визначеного для iдеального-дiелектрика, до значен-
ня iдеально провiдника, навiть для частинки гарного iзо-
лятора. Використовуючи пропоновану теорiю, рiзноманiтнi
експериментальнi результати щодо електрогiдродинамiчної
(ЕГД) циркуляцiї рiдини та дiелектрофорезу (ДЕФ) мiкро-
частинок у дiелектричних краплях ми пояснюємо вперше
або по-новому. Частоти iнверсiї та перегину дiелектрофоре-
зу визначено з урахуванням затухання поверхневого заря-
ду. Вперше передбачено залежнiсть ефективної провiдностi
кулi вiд кутового розподiлу поля.
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