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NON-LOCAL EQUATION OF STATE: CRITICAL
PHENOMENA AND COLLECTIVE EXCITATIONS

Non-local properties of the thermal equation of state of a fluid system are observed for the
wide range of changes of thermodynamic parameters. Density profiles of a fluid, which are
constructed by the non-local equation of state, show that significant changes of system’s density
occur in a significant part of the volume in the case of approaching the critical liquid-vapor
point. The application of the non-local thermal equation of state as a closure of the equations
of classical hydrodynamics allowed us to obtain the spectrum of collective excitations which is
similar to the spectrum of excitations in liquid helium.
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1. Introduction

An opportunity to make the quantitative description
of uniform liquid systems is an important result of
the statistical physics in recent years [1]. The Gibbs
thermodynamic potential G and the Helmholtz free
energy F' are the most convenient quantities for the
thermodynamic consideration of this issue. However,
according to the numerous experiments, any real lig-
uid systems are non-uniform ones due to the influ-
ence of limiting surfaces, as well as due to the influ-
ence of external fields. The heterogeneity caused by
the presence of walls and obtained in the process of
calculation of the thermodynamic properties of real
systems is considered quite localized in the domain,
where surface forces act. For this reason the marginal
non-uniformity can be neglected in the calculations
of bulk properties of sufficiently large systems. The
heterogeneity caused by the presence of a gravita-
tional field for molecular distances is small enough in
most cases. Therefore, the fluid is considered as a sys-
tem composed of uniform subsystems with different
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intensive parameters. Both approximations allow one
to calculate the properties of thermodynamic systems
within the range of permissible errors. However, ac-
cording to some experimental results, the mentioned
approach does not allow one to make a satisfactory
description of the experiment in some cases — for ex-
ample, in the case of an external field that varies in
space or in the vicinity of the critical points [2—4]. Due
to this reason, in order to describe the properties of
the real system, its non-uniformity must be taken into
account. In general, the free energy of a non-uniform
system is no longer a function of the variables T" and
n. It is a functional F = N F [T (r),n(r)] of func-
tions of the spatial coordinates r: T (r) and n (r). The
calculation of physical quantities’ spatial distribution
using a statistical operator is an extremely difficult
task in this case [5]. Therefore, the behavior of the
system is usually considered under the local approxi-
mation. Using this approach, the system might be re-
garded as one that consists of “physically small” cells —
space regions that are sufficiently small to be con-
sidered uniform, and the thermodynamics of uniform
systems can be applied to each of these small space
regions. Moreover, the mentioned “physically small”
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cells contain enough particles to have an opportu-
nity to use the thermodynamics methods to describe
them. The density of the corresponding potential, for
example, the free energy density f (r), is introduced
to calculate the behavior of the system in an external
field [6]:

F= [ dr fintr), (1)
1%

In this case, the free energy is a function of 7" and
n, but those, in turn, are functions of the coordinates
r. Within this approach, the relationship between the
chemical potential i (r) of a heterogeneous liquid sys-
tem and the external field u (r) is described by the
well-known expression:

u(r) = po — p(r), (2)

where o — chemical potential of a uniform sys-
tem. But, as noted in [7], this approach is useful just
for the areas of changes of thermodynamic parame-
ters far from the limit of the system stability. Due
to this reason, the possibility of introducing a local
free energy density in the immediate vicinity of the
critical point requires a separate consideration. The
introduction of the densities of thermodynamic po-
tentials for heterogeneous systems was considered in
[8]. In particular, the obtained expression for the en-
tropy S can be presented in the form of a series [9]:

kTN

TS =T5y — T dI‘lFl (rl)lnFl (I‘l) +

kTN
/dr1 1HF1 1‘1 /dr2F2 I‘l,I‘Q)
kTN (N —1)
72(7/d1‘1/d1‘2]?2 (rl,rz)lan (I‘l,rg).
\%4 14

(3)

Here, Sy — the entropy of an ideal gas, Fi(r;) and
Fy(ry,ro) — partial distribution functions of the non-
uniform system of the first order and the second one,
respectively.

According to the analysis of expression (3) in [§],
the entropy can be represented as the integral of
a function far from the critical point, where the
function Fy (R,r) is short-range. However, with ap-
proaching the critical point, the correlation functions
become long-range, and the integration of the last
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term of expression (3) of the inner integral gives a
function that has the infinite range of its action (in
the case of unlimited systems) or the range reaching
a characteristic size L of the system. For this reason,
the entropy cannot be represented in the form of a
volumetric integral of a local function in the vicin-
ity of the critical point. Consequently, the concept
of appropriate spatial density cannot be introduced
for the Helmholtz free energy and thermodynamic
Gibbs potential near the critical point. This leads to
the consequence that the regarded system no longer
has local properties, but has the properties peculiar
to the whole system. Sufficiently far from the criti-
cal point, the susceptibility of any system to external
fields is small, so they have little effect on the physi-
cal properties of the system. Moreover, the suscepti-
bility of the system to external fields tends to infinity
with approaching the critical point. In this case, the
sharp spatial distribution of the physical properties of
a substance, including the liquid density or concentra-
tion and density of a solution in a gravitational field
(gravitational effect), is generated by external forces
[10, 11]. The further development of the theoretical
approach has been associated with the construction
of a consistent theory of the fluid density n (r) as a
functional p (r). According to the free energy density
functional method, the evaluation of the local density
profile n (r) in an external field « (r) requires one to
solve the task of a free energy minimization, consider-
ing it to be a function of the functional n (r) [12]. An
expression for the free energy density f(r) of fluids as
a density functional was obtained by J.W. Cahn and
J. Hilliard in the smooth inhomogeneity approximat-
ing [13]:

f(x) = fo(n(r))+ +(u(r) — p(r)n(r), (4)

where fo(n(r)) — the free energy density in the local
approximation, 4 = &2 /X, & — the correlation radius

)

and y = ((‘%)T — compressibility.

For the construction of a consistent thermody-
namic theory, which will describe the behavior of one-
component heterogeneous system, the fundamental
approach based on the calculation of the contribution
of each layer between equipotential surfaces not in the
corresponding thermodynamic potentials, but in the
Hamiltonian of the system was proposed [15]. In this
case, expression (5) should be taken instead of (2):

U (I‘) = Mo — M(?) + AMcor (I‘)7 (5)
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where Ajico, — the contribution of correlation effects
for which the following expression in the form of an
infinite series was obtained:

1 1
k—TAycor (r)= §V2An (r) /dr102 (r,ry) (r; —r)° +

v
1
+ 3 (VAn (r))Q/drl /dr203 (r,r1,12)(r; — 1) X
v v

X (ro —r) 4+ VAn(r) {/drlC’g (r,ry)(r1 —r)+
v

+ An (I‘)/drl/dl‘203 (r,rq,r2)(r; —r)} +.... (6)
% \%

In this expression, Cs (r,r1) and Cs (r,rq,ry) are
direct correlation functions of the second order and
the third one, respectively, and T is system’s temper-
ature.

This non-local equation of state can be used, for
example, for calculating the density profile and the
concentration of a binary solution in a wide range of
variation of the thermodynamic variables, including
the neighborhood of the critical points of evaporation
or stratification, as well as for obtaining the spectrum
of collective excitations in the liquid by means of clas-
sical hydrodynamics.

2. Distribution of the Concentration
of a Binary Solution Near the Critical
Point of Stratification

To illustrate the application of the obtained expres-
sions — nonlocal equation of state — we will evalu-
ate the distribution of the first component concentra-
tion Az (z) of a binary solution in a non-ideal pore
(pore, in which it is impossible to ignore the influ-
ence of forces at the wall surface) in the gravitational
field near the critical point of stratification. Let us
consider the case where the system includes an in-
finite flat-parallel pore (layer) 2L in thickness. The
forces of the gravitational field are directed along the
z direction (axis z is normal to the pore-limiting sur-
faces). The potential of these forces can be written in
form:

ua (2) = —moagz,
up (2) = —moBY=,

(7)

where w4 (z) and up (2) — potential of the gravity
field acting on particles of A and B types, respec-
tively, moa and mgp — mass of particles of A and B
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types, respectively, and g — gravity acceleration. In
addition, near the walls, there are forces of attraction
(repulsion), whose potential has an exponential form
and can be written as

ua(z) = Bare T2 4 Bype  E2) =

= (Ba1+ Baz)e #lchkz + (Bay— Baz)e FEshkz,
(®)

up(z) = Bpre M3 4+ Bpoe MET2) =

= (Bp1+ Bps)e "chkz 4 (Bgi— Bpa)e *shkz,

where By (Bp1) and Bas (Bp2) — amplitudes of ex-
ponential surface potentials at the left (z = —L ) and
right (z = L) borders of the system for components
A and B, respectively, and k& — parameter of the ex-
ponential decay potential.

Solving Eq. 5, we obtain the profile of a binary
solution in the form [21]:

1
Az (z) = —A mopag (KZChHL z) —

k 1 sh kL

kL

— A(Bpa1+ Bpa2)e EkQ—QOChKZ_
k 1 h kL

—~ A(Bpai1 — Bpaz)e F-= S sk +

Kk k2 — k2 chkL

+ A (Bpay + Bpaz)e "t S chkz+
+A(Bpa1 — Bpas) e " g shkz+
1
+ A (Bpay + Bpag) e "t o2l shkL. (9)

where Bpa1 = Bp1 — Bai, Bpas = Bpao — Bag, A=
= A (&) — value depending on the parameters of the
critical point of a solution, and k = ¢.

The spatial distribution of the concentration of a
binary model solution Az (z) for different values of
the correlation radius ¢ and a fixed value mgpa for
systems with different values of constants Bg 41 and
Bpas is shown in Figs. 1 and 2. From the analysis
given above, the concentration profiles give evidence
that if the system is sufficiently far from the criti-
cal point, the concentration profiles are determined
exclusively by the external gravitational field at any
constant values of Bg 41 and Bgas. The local approx-
imation in this case also leads to the emergence of
concentration profiles that match the density profile
of the system with ideal walls and are determined
by the presence of the gravitational field only. The
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existence of the walls in this case leads to a defor-
mation of the profiles on the boundaries of the sys-
tem at the distances, where the wall surface forces
effectively act, i.e. these effects cannot be observed
experimentally at the present time. The spatial dis-
tributions shown in Figs. 1 and 2 indicate that, in
the middle of the system (in the layer bounded by
the planes with coordinates z ~ +0.3L), the grav-
itational field leads to minor (= 2%) concentration
variations that, by sign, match the ones calculated in
the local approximation. A significant deviation oc-
curs near the walls of the system with the value of
the deviation being determined only by the intensity
of the wall potential [14]. Furthermore, the analysis
of data indicates that, although the overall behav-
ior of the system is determined by the concentra-
tion of the gravitational field (solution concentration
increases with coordinates), the distribution of the
concentration throughout the volume of the system
significantly deviates from the classical gravitational
effects, especially near the walls.

So, in general, the presence of imperfect walls leads
to the fact that the concentration profiles are losing
properties of a coordinate odd function that must be
considered in the experimental study of the critical
properties of the fluid and in the calculation of the
corresponding critical amplitudes in the scaling equa-
tions [16]. In addition, such walls substantially change
the spatial distribution of the concentration gradient,
which should influence the results of experiments on
the scattering of light and neutrons in the vicinity of
the critical point of separation.

3. Thermodynamic Theory
of Collective Excitations in Classical Liquids

Consider the collective excitations in the fluid in
terms of the classical equations of hydrodynamics.
We note that the experimental studies by means of
the neutron scattering in atomic, molecular and ion-
electron (liquid metals) liquids made in the 1960s—
1970s gave evidence on the existence of the spec-
trum of collective excitations of the phonon and roton
types, the explicit form of which is given on Fig. 3.
Before that, it was considered that the spectrum of
this kind is typical not of classical liquids [17], but
exclusively of quantum liquids, in particular of liquid
helium. But in the 1970s, the quantum-mechanical
calculations in [18] have shown that the spectrum
of this kind really corresponds to the collective mo-
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Fig. 1. Spatial distribution of the concentration Az (z) of
a binary solution in a flat non-ideal pore in the gravitational
field for the the system with L = 107% m, k=1 =3 x 10710 m,
Bpa1 = 10724 J, Bgaa = 10724 J, C1 = 2 x 105, C2 = 0,
at different values of ¢&: 1 —10~7, 2106, 8- 5x 1076, 4 -
10~5, 5 — local approximation
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Fig. 2. Spatial distribution of the concentration Az (z) of
a binary solution in a flat non-ideal pore in the gravitational
field for the system with L = 107° m, k=1 = 3 x 10710 m,
Bpai1 = 1072 J, Bpas = 10724 J, C; = 2 x 10°%, C; = 0,
at different values of ¢&: 1 —10~7, 2106, 8- 5x 1076, 4 -
10~5, 5 — local approximation
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(k)

Fig. 3. Landau energy spectrum of elementary excitations [19]

tions in non-quantum liquids (argon, lead, classical
helium). In those works, the quantum calculations
were made by means of two-time Green functions in
the quasiharmonic approximation. This approxima-
tion corresponds to the description of a phonon in
the self-consistent field of other phonons. The draw-
back of the calculations made is that the averag-
ing by the probabilities of coordinates of two par-
ticles was made twice. In order to study the collec-
tive excitations in liquids, an unproblematic hydro-
dynamic approach was proposed. This method has no
above-mentioned drawback because there is no aver-
aging with the radial distribution function. Instead,
the non-local equation of state of non-uniform sys-
tem is used.

Let us consider the hydrodynamic continuity equa-
tions and the Euler equation for a one-component lig-
uid [20]:

9 = —div pv,
ot

ov (10)
p (at + (v grad) v) = —gradp.

Using (10), let us consider the dynamics of density
fluctuations in the regarded system. In order to do
it, we will represent the time-spatial variables of local
density, velocity, and pressure in the following form:

p(r,t) = po + p1 (r,1),
v(r,t) = v+ vy (r,t),
p(ra t) =Dpo + D1 (I‘,t),

(1)

where pg,vg, and pg — density, velocity, and pres-
sure of a system without the fluctuations, which are,
in this case, considered to be constants. By pi, v,
and pi, we denote the fluctuations of these variables,
which will be considered small and dependent on both
spatial and time variables:

Pler, [P« (12)
Po Po
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In the case where there are no fluctuations, vg is
equal to zero. Then the elementary excitations are re-
garded in terms of classical hydrodynamics as fluctu-
ations of the density. Substituting (11) into (10) and
keeping only the terms linear in fluctuations, we get a
system of linearized hydrodynamic equations, which
describe the dynamics of fluctuations:

0
ﬂ = 7diV(p0V1)’
ot (13)
9pov1) _ V()
ot PAr)-

Differentiating the first equation with respect to
the time and acting by the divergence operator on
the second one, we get

82;)1
ot?

= V. (14)

In order to build the solution of the incomplete
system of classical hydrodynamic equations, in par-
ticular, Eq. (13), the ordinary local equation of state
of a uniform finite system at fixed density and tem-
perature is used:

p=p(p.T). (15)

In the case of fixed density p and entropy S, we can
use another equation of state:

p=p(p,9). (16)

In the local case, the variation of the pressure is
given by the expressions:

6p>
op= (=1 dp,
P (aPT P

Jp
op = () ép.
8psp

Regarding the shape of acoustic waves at small
magnitudes of the wave vector, it becomes clear that
Eq. (17) or (18) can be used. In this case, we get
w (k) = ¢sk for the dispersion curve, where ¢ is the
adiabatic sound velocity.

Alongside with the transition to high-frequency
acoustic waves, the wavelength in a classical lig-
uid may decrease from meters to nanometers, which
causes an increase of the density gradient by nine or-
ders. It is obvious, that, in this case, the local equa-
tions (15)—(18) cannot be used, and it is required

(17)

(18)
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to regard the pressure not as a function of the den-
sity, but as a functional of the whole density curve
[21, 22]. Tt is the usage of the non-local dependence
between dp (r) and dp (r'), where r,r’ — spatial coor-
dinates. Hence, the classic hydrodynamic equations
give the opportunity to calculate the spectrum of col-
lective excitations qualitatively similar to Fig. 4.

In this case of large values of the density gradient,
Egs. (17) and (18) should be replaced by
dp(r) = /G(r —1")ép(r')dr’, (19)
where G(r —r’) — a binary correlation function with
the d-singularity defined in the corresponding ensem-
ble or in the k-space

5p1(k) = G(k)dp(k) = (a + bk* + ck* + ..)ép,  (20)

where a, b, c — correlation function moments of the
0th, 274 and 4" order, correspondingly:

a =4 / G (r)yridr = (gi)s,
0

oo

4T n
bzi/G(r)r dr,

0
00

dn 6
c= E-/G(r)r dr.

0

In the case of small k, Eq. (21) allows evaluating
the sound dispersion law in the standard form:

w? = Bg ' pk?. (22)
In the general case in view of the non-locality of the
equation of state, the dispersion relation can be pre-
sented in a more complicated form:

2 k?

pr— . 2
a + bk? + ck* + ... (23)

The dispersion relation (23) is valid in the case
where the reciprocal value of the absolute value of
the wave vector k is larger than the effective distance,
on which the external field changes (and as a conse-
quence, system’s local density changes as well) [3].

Under the condition ¢ = 0 the dispersion curve has
a form presented in Fig. 4. With regard for the 4"
moment of the correlation function ¢, the dispersion
curve has a form given in Fig. 5. Thus, considering
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Fig. 4. Dependence w (k) in the case where the fourth moment
of the correlation function is zero, as well as all aspects of higher
order for classical fluids

(k)

k
Fig. 5. Dependence w (k) in the case where the sixth moment
of the correlation function is zero, as well as all aspects of
higher order for classical fluids

(k)

k

Fig. 6. Dependence w (k) of classical fluids provided vanishing
eighth time correlation functions, as well as all aspects of a
higher order, the sixth moment is negative

the 6th moment of the correlative function, we get
the dispersion curve shown in Fig. 6, which is quali-
tatively similar to the dispersion curve of helium in
Fig. 3.

The proposed method of the description of the
phonon spectrum of liquid systems is similar to the
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one proposed by L.D. Landau and E.M. Lifshitz and
used to get the spectrum of magnons in magnetic
materials. They constructed the phenomenological
(“hydrodynamic”) Landau—Lifshitz equations that de-
scribe the local magnetization of the system, M (r),
in the external magnetic field H (r’) and the non-local
connection between M (r) and H (r') is used [23].

4. Conclusion

The usage of the non-local equation of state, the the-
ory of which was developed to study the spatial distri-
bution of the density and concentration of binary so-
lutions, leads to the conclusion that this spatial distri-
bution caused by the presence of the external field in
the case of spatially limited systems strongly depends
on the geometry and size of the system. Moreover, the
different nature of the walls of a container causes sig-
nificant deflections of the concentration found in the
local approximation. This influences, in turn, the val-
ues of critical amplitudes calculated with regard for
experimental results. The non-local equation of state
makes a closure of the classical hydrodynamic equa-
tions and allows one to evaluate a spectrum of collec-
tive excitations in liquid systems, which is similar to
the one of liquid helium obtained earlier in the frame
of quantum statistics.
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JI.A. Bynaasin, /.A. Iasprowenxo, B.M. Cucoes

HEJIOKAJIBHE PIBHAHHS CTAHY:
KPUTUWYHI ABUIIIA TA KOJIEKTUBHE 3BY/I2KEHH

ITokazano, 110 B IIMPOKOMY iHTEpBaJIi 3MiHI TEepPMOIMHAMIYHAX
mapaMeTpiB TepMidHe PIBHSHHS CTaHy PiIMHHOI CHCTEMH Ha-
OyBae HeJIOKaJIbHUX BiiactusocTeil. [lo6ymoBaHi Ha OCHOBI He-
JIOKQJILHOTO PiBHAHHS cTaHy Ipodiai rycTHHN PiguHE I03BO-
JISIOTh BU3HAYUTH, IO IIPU HAOJMXKEHHI 10 KPUTUIHOI TOUKHU
pigumHa-TIapa CyTTEBa 3MiHa I'yCTUHUA CUCTEMH Ma€ MiCIie y 3Ha-
4Hiil yacTuHi 06’eMy. 3aCTOCYBaHHS HEJIOKAJIBLHOI'O TEPMIYHOIO
PiBHAHHS CTaHy JJIsSI 3aMHUKAHHS PIBHSIHb KJIACUYHOI Tigpomau-
HaMIiK{ JO3BOJISIE OLEPKATHU CIIEKTD KOJIEKTUBHHUX 30YI2KEHD,
noibHui 10 crieKTpa 30y/2KEeHb Y PIAUHHOMY IeJIil.

Karouo6i crosa: piBHSAHHS CTaHy, HEJIOKAJIbHI BJIACTHUBOCTI, KO-
JIEKTUBHE 30Y/[>KEHHSI.
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