
B.V. Batsak, Yu.F. Zabashta, V.I. Kovalchuk et al.

https://doi.org/10.15407/ujpe65.5.438

B.V. BATSAK,1 YU.F. ZABASHTA,2 V.I. KOVALCHUK,2 O.S. SVECHNIKOVA,2

L.A. BULAVIN 2

1 Amosov National Institute of Cardiovascular Surgery,
National Academy of Medical Sciences of Ukraine
(6, Amosova Str., Kyiv 03038, Ukraine)

2 Taras Shevchenko National University of Kyiv, Faculty of Physics
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)

NORMAL WAVES ARISING
WHEN BLOOD MOVES THROUGH AN ARTERY

A model is proposed of the pulse wave propagation through an artery is proposed. The artery is
considered as a cylindrical shell surrounded by an elastic medium. The amplitude and shape of
normal waves arising, when blood flows through the artery are determined. Two types of such
waves are revealed: zero waves, whose amplitude does not change its sign over the arterial
cross-section, and non-zero ones, for which such a change does take place. It is shown that
the pulse wave is a wave packet formed by zero normal waves. The non-zero normal waves
are found to be localized near the entrance section of the artery, by creating a transition zone
whose size is about the arterial radius. The non-zero normal waves are shown to enhance the
process of erythrocyte disaggregation in the transition zone.
K e yw o r d s: artery, normal waves, pulse wave.

1. Introduction

For many years, the propagation of slow pulse waves
arising at the moment, when blood is ejected from
the left ventricle of the heart into the aorta, and ac-
companying the subsequent process of blood motion
through the vessels remains a challenging problem
in the mechanics of blood circulation, hemodynam-
ics [1]. The study of regularities in the formation, de-
velopment, propagation, and transformation of those
waves is important from the viewpoints of both phys-
iology and the ability to diagnose the state of vascular
channel. It is the specific features of the pulse wave
behavior in arteries that are researched in this paper.

A pulse wave owes its existence to the elasticity of
vascular walls, which are deformed as the wave passes
by. Accordingly, a widely used calculation model for
a vessel is a cylindrical shell with elastic walls, which
is surrounded by an elastic medium and filled with
liquid. When this model is applied to describe the
blood motion in a vessel, it is generally assumed [2–5]
that the pressure distribution over the vascular cross-
section is constant. In this approximation, the wave
front is flat, so that the pulse wave is a Young-type
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one [6], which propagates through the vessel without
changing its shape. As a result, the wave problem
about the blood motion in the vessel becomes one-
dimensional. Below, we consider a three-dimensional
variant of this problem.

One of the central issues in hemodynamics and vas-
cular diagnosis is the blood pressure; more specif-
ically, the mechanism of circulation that forms the
pressure field in the artery. This field is a superposi-
tion of normal waves [6]. Accordingly, the properties
of normal waves are responsible for that or another
mechanism of blood circulation. Therefore, normal
waves were chosen as an object to study in this pa-
per. Our aim is to establish the type of normal waves
arising, when blood moves through the artery, as well
as to determine the forms of blood motion associated
with that or another type of such waves.

2. Calculation Model of the Artery

Let blood be considered as an ideal fluid. Accordingly,
the equation of its motion is the Euler equation [7]

𝜌
𝜕2u

𝜕𝑡2
= −grad 𝑝, (1)

where 𝜌 is the density, u the displacement vector, 𝑡
the time, and 𝑝 the pressure. By its meaning, 𝑝 is
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the difference between the systolic and diastolic pres-
sures.

The elastic properties of the walls of a cylindrical
shell and an external elastic medium are assumed to
be identical, which allows the artery to be consid-
ered as a cylindrical cavity in a continuous environ-
ment. Therefore, let us introduce a cylindrical coor-
dinate frame, whose 𝑧-axis is directed along the cylin-
der axis, and 𝑟 stands for the radial coordinate. The
radius of the cylinder equals 𝑏, and the longitudinal
and transverse components of the displacement vec-
tor u equal 𝑢𝑧 and 𝑢𝑟, respectively. In terms of those
components, the vector equation (1) looks like

𝜌
𝜕2𝑢𝑧

𝜕𝑡2
= −𝜕𝑝

𝜕𝑧
, (2)

𝜌
𝜕2𝑢𝑟

𝜕𝑡2
= −𝜕𝑝

𝜕𝑟
. (3)

An ideal fluid that simulates blood is considered to
be compressible and is described by the rheological
equation

𝑝 = −𝜌 𝑐20divu, (4)

where 𝑐0 is the sound velocity in the fluid. Sub-
stituting Eq. (4) into Eq. (1), we obtain the following
equation for the blood motion through the artery:

𝜕2𝑝

𝜕𝑡2
= 𝑐20 div grad 𝑝. (5)

The elastic medium surrounding the artery is taken
into account by introducing the boundary condition

𝑝(𝑟 = 𝑏) = 𝛼𝑢𝑟(𝑟 = 𝑏), (6)

where 𝛼 is the elasticity coefficient of the medium.
In the literature [1, 8], the following values for

the blood density, arterial radius, and sound veloc-
ity in blood are quoted: 𝜌 = 1.05 × 103 kg/m3,
𝑏 ≤ 3 × 102 m, and 𝑐0 = 1540 m/s. The coeffi-
cient 𝛼 was experimentally determined in work [4]:
𝛼 ≈ 107 N/m3.

3. Series Expansion
of Functions Describing the Blood
Motion through the Artery

By definition, the function 𝑝(𝑡) is periodic, with the
period 𝑇 equal to the cardiac cycle duration. It allows

the function 𝑝(𝑡) to be written in the form of a Fourier
series,

𝑝(𝑡) =

∞∑︁
𝑛=−∞

𝑝𝑛(𝑧, 𝑟) exp(−𝑖𝜔𝑛𝑡), (7)

where

𝜔𝑛 = 2𝜋𝑛/𝑇, (8)

and 𝑇 ≈ 1 s. Substituting Eq. (7) into Eq. (5), we
obtain

div grad 𝑝𝑛 + 𝑘2𝑛𝑝𝑛 = 0, (9)

where the notation

𝑘𝑛 = 𝜔𝑛/𝑐0 (10)

was introduced.
In the expanded form, Eq. (9) looks like

𝜕2𝑝𝑛
𝜕𝑧2

+
𝜕2𝑝𝑛
𝜕𝑟2

+
1

𝑟

𝜕𝑝𝑛
𝜕𝑟

+ 𝑘2𝑛𝑝𝑛 = 0. (11)

The solution of Eq. (11) reads [6]

𝑝𝑛 =

∞∑︁
𝑗=0

𝑝𝑛𝑗 , (12)

where 𝑝nj are normal waves, which can be represented
as the product of two functions,

𝑝𝑛𝑗 = 𝑝0𝑛𝑗 𝑅𝑛𝑗(𝑟) exp(𝑖𝜉𝑛𝑗𝑧). (13)

Here, the coefficient 𝑝0𝑛𝑗 is the amplitude of oscilla-
tions, which is determined from the boundary con-
ditions at the cylinder ends, the function 𝑅𝑛𝑗(𝑟) is
the radial distribution of pressure, and the multi-
plier exp(𝑖𝜉𝑛𝑗𝑧) describes the wave character of the
excitation. The quantity 𝜉𝑛𝑗 plays the role of a wave
number.

Substituting Eq. (13) into Eq. (11), we obtain

𝜕2𝑅𝑛𝑗

𝜕𝑟2
+

1

𝑟

𝜕𝑅𝑛𝑗

𝜕𝑟
+ 𝜂2𝑛𝑗𝑅𝑛𝑗 = 0, (14)

where the notation

𝜂2𝑛𝑗 = 𝑘2𝑛 − 𝜉2𝑛𝑗 . (15)

was introduced. The subscript 𝑗 is equal to the num-
ber of sign changes that the function 𝑅𝑛𝑗(𝑟) has
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within the interval 𝑟 ≤ 𝑏. The normal wave with the
subscript 𝑗 = 0 does not change its sign and is called
the zero wave. Let the normal waves with 𝑗 = 1, 2, ...
(positive integers starting from 1) be referred to as
non-zero ones. By introducing the notation 𝑝𝑛𝑞 for
them, equality (12) can be rewritten in the form

𝑝𝑛 = 𝑝𝑛0 +

∞∑︁
𝑞=1

𝑝𝑛𝑞. (16)

4. Propagation of Non-Zero
Normal Waves through the Artery

The solution of Eq. (14) is the Bessel function of the
zeroth order [9]

𝑅𝑛𝑞 = 𝐽0(𝜂𝑛𝑞𝑟). (17)

Accordingly, for the quantities 𝑝𝑛𝑞, we have the for-
mula
𝑝𝑛𝑞 = 𝑝0𝑛𝑞𝐽0(𝜂𝑛𝑞𝑟) exp

(︁
𝑖𝑧
√︁

𝑘2𝑛 − 𝜂2𝑛𝑞

)︁
. (18)

Since the function 𝑢𝑟, similarly to 𝑝, is also periodic,
we expand it into a Fourier series

𝑢𝑟 =

∞∑︁
𝑛=−∞

𝑢𝑛𝑟 exp(−𝑖𝜔𝑛𝑡). (19)

Substituting equalities (18) and (19) into Eq. (3), we
obtain

𝑢𝑛𝑟 =

∞∑︁
𝑞=1

𝑝0𝑛𝑞
𝜌𝜔2

𝑛

𝑑

𝑑𝑟
𝐽0(𝜂𝑛𝑞𝑟) exp

(︁
𝑖𝑧
√︁
𝑘2𝑛 − 𝜂2𝑛𝑞

)︁
. (20)

Now, using the boundary condition (6) in Eqs. (18)–
(20) and taking into account that

𝑑

𝑑𝑟
𝐽0(𝜂𝑟) = −𝜂𝐽1(𝜂𝑟), (21)

where 𝐽1(𝜂𝑟) is the Bessel function of the first order,
we obtain the dispersion equation

𝐽0(𝜂𝑛𝑞𝑏) = −𝛼𝜂𝑛𝑞
𝜌𝜔2

𝑛

𝐽1(𝜂𝑛𝑞𝑏). (22)

The real roots of this equation determine the values
of the parameters 𝜂𝑛𝑞 for the corresponding non-zero
normal waves.

As was mentioned above, blood is transported
through the vessel in the form of pulse waves. Can

blood be transported through the artery by means
of non-zero normal waves? In other words, can non-
zero waves be components of a pulse wave? As one
can see from formula (18), this possibility is real-
ized provided that 𝑘2𝑛 − 𝜂2𝑛𝑞 > 0. In the opposite
case where 𝑘2𝑛 − 𝜂2𝑛𝑞 < 0, the normal wave trans-
forms into an in-phase oscillation, whose amplitude
decreases according to the exponential law: 𝑝𝑛𝑞 ∼
∼ exp

(︁
−𝑧

√︁
𝜂2𝑛𝑞 − 𝑘2𝑛

)︁
. Such waves are called inho-

mogeneous [6], in contrast to homogeneous (propa-
gating) waves. A wave becomes homogeneous, when
𝜔𝑛 exceeds a certain critical frequency Ω, which is
determined from the condition 𝑘2𝑛 − 𝜂2𝑛𝑞 = 0. In view
of formula (10), this condition reads(︂
Ω

𝑐0

)︂2
− 𝜂2𝑛𝑞 = 0. (23)

As was mentioned above, the function 𝑅𝑛𝑞(𝑟) is
characterized by the change of its sign. Namely, there
are alternating intervals along the radius 𝑟 in which
𝑅𝑛𝑞(𝑟) has different signs. The only parameter of this
function has the dimensionality of length and contains
the quantity 𝜂−1

𝑛𝑞 . Therefore, by the dimensionality
reasons [10], we may assert that the length of those
intervals equals 𝜂−1

𝑛𝑞 by the order of magnitude, which
gives rise, in turn, to the inequality 𝜂−1

𝑛𝑞 < 𝑏. The
latter, making allowance for relation (23), acquires
the form

Ω >
𝑐0
𝑏
. (24)

With the help of equality (8), the expression for Ω
can be written as Ω = 2𝜋𝑛Ω/𝑇 . Its substitution into
condition (24) brings about the result

𝑛Ω >
𝑐0𝑇

2𝜋𝑏
.

By applying the numerical estimates given above for
𝑐0, 𝑇 , and 𝑏, we obtain 𝑛Ω > 8 × 104. Since the am-
plitudes of Fourier components decrease with the in-
crease of their number 𝑛, it is obvious that the am-
plitudes with the numbers satisfying this inequality
turn out negligibly small. This fact means that non-
zero waves in the artery are inhomogeneous, i.e. they
do not participate in the blood transport.

5. Propagation of Zero
Normal Waves through the Artery

Besides real roots, Eq. (22) also has a root that is an
imaginary number 𝜂𝑛0 = 𝑖𝜂𝑛. In this case, we have
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the inequality 𝑘2𝑛 − 𝜂2𝑛0 > 0, which provides the ho-
mogeneity of a zero normal wave. As a result, Eq. (22)
can be rewritten in the form

𝐼0(𝜂𝑛𝑏) =
𝛼𝜂𝑛
𝜌𝜔2

𝑛

𝐼1(𝜂𝑛𝑏), (25)

and expression (17) in the form

𝑅𝑛0 = 𝐼0(𝜂𝑛𝑟), (26)

where 𝐼0(𝜂𝑛𝑟) and 𝐼1(𝜂𝑛𝑟) are the modified Bessel
functions of the zeroth and first orders, respec-
tively. Accordingly, for the quantity 𝑝𝑛0, we have the
expression

𝑝𝑛0 = 𝑝0𝑛0𝐼0(𝜂𝑛𝑟) exp
(︁
𝑖𝑧
√︀
𝑘2𝑛 + 𝜂2𝑛

)︁
. (27)

Let us recall that the zero wave is a wave for which
there is no sign changes in the interval 𝑟 < 𝑏. From
whence, it follows that 𝜂−1

𝑛 > 𝑏. Bearing this inequal-
ity in mind, let us expand the Bessel functions in
expression (25) in a power series in 𝜂𝑛𝑏 to the fourth-
order terms:

1− (𝜂𝑛𝑏)
2

4
+

(𝜂𝑛𝑏)
4

64
=

𝛼𝜂2𝑛𝑏

2𝜌𝜔2
𝑛

[︂
1− (𝜂𝑛𝑏)

2

8

]︂
. (28)

The solution of this equation, taking the numerical
estimates made above into account, looks like

𝜂𝑛 =
𝜔𝑛

𝑐

[︃
1 +

1

8

(︂
𝜔𝑛𝑏

𝑐

)︂2]︃1/2
, (29)

where

𝑐 =

(︂
𝛼𝑏

2𝜌

)︂1/2
. (30)

As follows from formula (13), the propagation veloc-
ity of the zero normal wave equals

𝑐𝑛 = 𝜔𝑛𝜉
−1
𝑛 = 𝜔𝑛

(︀
𝑘2𝑛 + 𝜂2𝑛

)︀−1/2
. (31)

Substituting expressions (10) and (29) into this for-
mula, we obtain

𝑐𝑛 =

{︃
𝑐−2
0 + 𝑐−2

[︃
1 +

1

8

(︂
𝜔𝑛𝑏

𝑐

)︂2]︃}︃−1/2

. (32)

Now, using the numerical estimates given above, we
can see that the term (𝜔𝑛𝑏/𝑐)

2/8 ≫ 1, if 𝑛 > 100,

so that we may approximately write that 𝑐𝑛 ≈ 𝑐 and
take the propagation velocities of zero normal waves
through the artery to be almost identical.

As one can see from a comparison with the one-
dimensional variant of the problem [2–5], the mecha-
nism of blood transport becomes different, if we deal
with the three-dimensional geometry. In particular,
in the one-dimensional geometry, blood is transported
by a single Young wave. In the three-dimensional
case, this role is performed by an infinite number of
harmonic zero normal waves, so that the pulse wave
is the sum of those waves, i.e. a wave packet. When
moving through the vessel, the wave packet is not
smeared, because the propagation velocities of the
normal waves that compose this packet are almost
equivalent to one another.

6. Normal Waves in the Transition Zone

Let us consider the mechanism of formation of a non-
zero normal wave. Substituting expressions (18) and
(27) into formula (16), we obtain

𝑝𝑛 = 𝑝0𝑛0𝐼0(𝜂𝑛𝑟) exp
(︁
𝑖𝑧
√︀
𝑘2𝑛 + 𝜂2𝑛

)︁
+

+

∞∑︁
𝑞=1

𝑝0𝑛𝑞𝐽0(𝜂𝑛𝑞𝑟) exp
(︁
𝑖𝑧
√︁
𝑘2𝑛 − 𝜂2𝑛𝑞

)︁
. (33)

Let the origin of the cylindrical coordinate frame be
located at the center of the entrance arterial cross-
section. Then the pressure over the entrance cross-
section, 𝑝𝑛, is described by the formula

𝑝𝑛 = 𝑝0𝑛0𝐼0(𝜂𝑛𝑟) +

∞∑︁
𝑞=1

𝑝0𝑛𝑞𝐽0(𝜂𝑛𝑞𝑟). (34)

Furthermore, let the blood flow entering the artery
form the external pressure

𝑝′𝑛 = 𝑓(𝑟) exp(−𝑖𝜔𝑛𝑡) (35)

at the entrance cross-section. Then the condition that
the pressure is a continuous function across the en-
trance cross-section of the artery looks like

𝑓(𝑟) = 𝑝0𝑛0𝐼0(𝜂𝑛𝑟) +

∞∑︁
𝑞=1

𝑝0𝑛𝑞𝐽0(𝜂𝑛𝑞𝑟). (36)

Let us assume, as was done earlier, that 𝜂𝑛𝑏 ≪ 1. In
this case, we can take 𝐼0(𝜂𝑛𝑟) ≈ 1 and rewrite expres-
sion (36) in the form

𝑓(𝑟) = 𝑝0𝑛0 +

∞∑︁
𝑞=1

𝑝0𝑛𝑞𝐽0(𝜂𝑛𝑞𝑟). (37)
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Multiplying the both parts of this equality by 𝑟 𝑑𝑟
and integrating the resulting expressions from 0 to 𝑏,
we obtain
𝑏∫︁

0

𝑓(𝑟)𝑟𝑑𝑟 = 𝑝0𝑛0
𝑏2

2
+

∞∑︁
𝑞=1

𝑝0𝑛𝑞
𝑏

𝜂𝑛𝑞
𝐽1(𝜂𝑛𝑞𝑟). (38)

Now, let us multiply both parts of equality (37) by
𝐽0(𝜂𝑛𝑘𝑟)𝑟𝑑𝑟 and integrate the resulting expressions
from 0 to 𝑏:
𝑏∫︁

0

𝑓(𝑟)𝐽0(𝜂𝑛𝑘𝑟)𝑟𝑑𝑟 = 𝑝0𝑛0

𝑏∫︁
0

𝐽0(𝜂𝑛𝑘𝑟)𝑟𝑑𝑟+

+

∞∑︁
𝑞=1

𝑝0𝑛𝑞

𝑏∫︁
0

𝐽0(𝜂𝑛𝑞𝑟)𝐽0(𝜂𝑛𝑘𝑟)𝑟𝑑𝑟. (39)

Using the relation [9]

𝑏∫︁
0

𝐽0(𝜂𝑛𝑞𝑟)𝐽0(𝜂𝑛𝑘𝑟)𝑟𝑑𝑟 = 0 (𝑞 ̸= 𝑘),

let us rewrite equality (39) in the form

𝑏∫︁
0

𝑓(𝑟)𝐽0(𝜂𝑛𝑘𝑟)𝑟𝑑𝑟 = 𝑝0𝑛0
𝑏

𝜂𝑛𝑘
𝐽1(𝜂𝑛𝑘𝑏)+

+ 𝑝0𝑛𝑘

𝑏∫︁
0

𝐽2
0 (𝜂𝑛𝑘𝑟)𝑟𝑑𝑟. (40)

We introduce the notation

𝐹 (𝑏) =
2

𝑏2

𝑏∫︁
0

𝑓(𝑟)𝑟𝑑𝑟,

𝐺𝑛𝑘(𝑏) =

𝑏∫︁
0

𝑓(𝑟)𝐽0(𝜂𝑛𝑘𝑟)𝑟𝑑𝑟, (41)

𝐻𝑛𝑘(𝑏) =

𝑏∫︁
0

𝐽2
0 (𝜂𝑛𝑘𝑟)𝑟𝑑𝑟.

In the zeroth approximation in the small parameter
𝑏𝜂−1

𝑛𝑘 , formulas (38) and (40) read, respectively,

𝑝0𝑛0 = 𝐹 (𝑏), (42)

𝑝0𝑛𝑘 = 𝐺𝑛𝑘(𝑏)𝐻
−1
𝑛𝑘 (𝑏), (43)

Substituting relations (42) and (43) into formula (33)
and taking the approximate equality 𝐼0(𝜂𝑛𝑟) ≈ 1 into
account, we obtain the following expression for the
pressure 𝑝𝑛:
𝑝𝑛 = 𝐹 (𝑏) exp

(︁
𝑖𝑧
√︀
𝑘2𝑛 + 𝜂2𝑛

)︁
+

+

∞∑︁
𝑞=1

𝐺𝑛𝑞(𝑏)𝐻
−1
𝑛𝑞 (𝑏)𝐽0(𝜂𝑛𝑞𝑟) exp

(︁
𝑖𝑧
√︁

𝑘2𝑛 − 𝜂2𝑛𝑞

)︁
. (44)

This formula demonstrates that, far from the en-
trance arterial cross-section (at 𝑧 → ∞), the pres-
sure is determined by the first term and harmoni-
cally oscillates. Those oscillations correspond to the
zero wave propagating along the artery. In addition,
near the entrance cross-section, there arise non-zero
normal waves, which exponentially decay with the in-
creasing distance. As a result, there arises a pressure
near the entrance cross-section, which is additional
to the pressure generated by the zero wave. This ad-
ditional pressure is determined by the second term
on the right-hand side of expression (44). Let us call
the region in the artery, where the zero and non-zero
waves are superimposed, a transition zone.

Let us determine the form of the function 𝑓(𝑟) de-
scribing the pressure distribution over the entrance
arterial cross-section. Let the entrance arterial cross-
section 𝐵𝑄 lie in the plane 𝐴𝐵𝑄𝐷, in which the
vessel diameter changes (Fig. 1). As was mentioned
above, only zero normal waves can propagate through
the vessels. Recall also that those waves compose a
pulse wave and – in the approximation 𝐼0(𝜂𝑟) ≈ 1
valid for vessels – the pressure is constant in this
cross-section of a pulse wave.

So, let a pulse wave fall onto the plane 𝐴𝐵𝑄𝐷. The
pressure in the incident wave will be denoted as
𝑝′. The plot of the dependence 𝑝′(𝑟) is shown in Fig. 1
and marked by number 1. For this plot, as well as for
other plots in Fig. 1, the pressure axis is directed in
parallel to the 𝑧-axis. As was mentioned above, the
pressure 𝑝′ remains constant in this case for all points
in the cross-section, and its value is determined by the
equality 𝑝′ = 𝑀𝑁 (Fig. 1).

When the pulse wave reaches the cross-section
𝐴𝐵𝑄𝐷, there arises the reflected and transmitted
waves. The pressure in the reflected wave will be de-
noted as 𝑝′′. The pressure in the transmitted wave
was earlier denoted as 𝑓 . The total pressure 𝑝* =
= 𝑝′ + 𝑝′′ acts on cross-section 𝐴𝐵𝑄𝐷 from the
left. The dependence 𝑝*(𝑟) is shown in Fig. 1 by
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plot 2. For sections 𝐴𝐵 and 𝑄𝐷, i.e. for 𝑟 > 𝑏,
there is no transmitted wave. Accordingly, 𝑝′ = 𝑝′′

for them, so that 𝑝* = 2𝑝′ and 𝐸𝐴 = 𝐸1𝐷 = 2𝑀𝑁 .
In section 𝐵𝑄, i.e. at 𝑟 < 𝑏, owing to the presence

of a transmitted wave, the pressure 𝑝′′ has to grad-
ually decrease with the decreasing 𝑟 and to reach a
minimum value at 𝑟 = 0. But the pressure continu-
ity has to be held in this section, i.e. the equality
𝑝′+𝑝′′ = 𝑓 has to be satisfied. Accordingly, the depen-
dence 𝑓(𝑟) possesses the following character (Fig. 1,
plot 3 ): 𝑓(𝑟) = 0 at 𝑟 = 𝑏; as the radius 𝑟 decreases,
the magnitude of 𝑓 has to increase and to reach a
maximum at 𝑟 = 0. The simplest smooth function
that meets those requirements is the parabola

𝑓(𝑟) = 𝑓0

[︂
1−

(︁𝑟
𝑏

)︁2]︂
. (45)

Let the diastolic pressure be the reference point. Ac-
cordingly, the average value of function (45) over the
arterial cross-section,

1

𝜋𝑏2

𝑏∫︁
0

2𝜋𝑓(𝑟)𝑟𝑑𝑟 =
𝑓0
2
,

is identified with the pulse pressure. The latter is
known [1] to be the difference between the systolic
and diastolic pressures. Assuming that their values
equal 120 and 80 mm Hg, respectively (the norm for
an adult), we obtain 𝑓0 ≈ 104 Pa.

Using this result and formula (44), as well as
the numerical values given abovefor other parame-
ters, we calculated the pressure acting in the transi-
tion zone. The corresponding results are depicted in
Fig. 2. As one can see from this figure, the size of the
transition zone is equal to the arterial radius by the
order of magnitude. The calculations were performed
for 𝑛 = 1. It is evident that the size of the transition
zone will decrease with the growing 𝑛 (the increasing
frequency).

7. Influence of Non-Zero Normal
Waves on Erythrocyte Disaggregation

The blood motion through a vessel is known to be
accompanied by the aggregation and disaggregation
of red blood cells [1]. When describing the motion of
an erythrocyte, let us use one of the hydrodynamic
models and approximately consider the blood plasma

Fig. 1. Formation of a pressure distribution over the input
arterial cross-section

Fig. 2. Pressure distribution in the arterial transition zone

as an ideal fluid [7]. The erythrocyte will be consid-
ered as a non-deformable particle, and we will neglect
changes in the plasma flow velocity at distances of the
particle size order.

At the propagation of normal waves in the artery,
the erythrocyte oscillates together with the blood
plasma oscillations. The corresponding velocity of
erythrocyte displacement is lower than the velocity of
plasma motion. In the framework of this model, the
equation of motion for the erythrocyte looks like [7]

𝜌e
𝑑w

𝑑𝑡
= 𝜌

𝑑v

𝑑𝑡
− 1

𝛽
M

(︂
𝑑w

𝑑𝑡
− 𝑑v

𝑑𝑡

)︂
, (46)

where 𝜌e, w, 𝛽, and M are the density, velocity, vol-
ume, and the adjoined mass tensor of the erythrocyte,
respectively.
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Fig. 3. Schematic diagram of the erythrocyte aggregation: (𝑎)
approximate form of erythrocyte ((1 ) side view, (2 ) top view),
(𝑏) erythrocyte chain ((3 ) fibrinogen bridge), (𝑐) erythrocyte
attachment to the chain

Substituting expression (1) into formula (46), we
obtain(︂
𝜌e +

1

𝛽
M

)︂
𝑑w

𝑑𝑡
= −

(︂
1 +

1

𝛽𝜌
M

)︂
∇𝑝. (47)

From this equation, one can see that the amplitude of
oscillation-like motion of the erythrocyte grows with
the oscillation amplitude of the quantity (−∇𝑝). How
does the oscillation amplitude affect the ability of ery-
throcytes to aggregate?

The shape of a normal human erythrocyte is a
biconcave discoid (“discocyte”) [11]. Let us approx-
imately take the erythrocyte shape to be a round
plate (Fig. 3, 𝑎). In aggregates, erythrocytes form
chains (“coin columns”) (Fig. 3, 𝑏), which are struc-
tural units of larger aggregates. Erythrocytes are held
in the chains be means of “bridges” consisting of fib-
rinogen molecules.

Let us consider an elementary event of the ery-
throcyte attachment to a chain. Erythrocyte 4 (see
Fig. 3, 𝑐), being located at such a distance from
chain 5 that is sufficient to form a bridge, oscillates
in a plane oriented perpendicularly to the chain axis.
The displacement 𝑋 of erythrocyte 4 with respect to
the chain axis is determined by the formula

𝑋 = 𝐴 sin𝜔𝑡, (48)

where 𝐴 is the amplitude of erythrocyte oscillations.
On the outer membrane of the erythrocyte, there

are areas with a specific structure that can attach fib-
rinogen molecules. A junction between two erythro-
cytes emerges, when such sections of both erythro-
cytes become located opposite to each other. Let the
time required to form a bridge equal 𝜏 . We denote
the size of the described area by ℎ. The formation of
a bridge becomes impossible, when one of those areas
shifts with respect to the other by ℎ.

The value of 𝑋 will be reckoned from the cen-
ter of the area, so that the left boundary of the
area corresponds to the point with the coordinate
𝑋1 = −ℎ/2. When the area shifts as a whole, this
point moves to the position 𝑋2 = ℎ/2. Let one of the
erythrocytes oscillates with respect to the other, and
the described boundary is at the point 𝑋1 at the time
moment 𝑡1 = −Δ𝑡 and at the point 𝑋2 at the time
moment 𝑡2 = Δ𝑡. According to formula (48), we have

ℎ = 𝑋2 −𝑋1 = 2𝐴 sin𝜔Δ𝑡. (49)

Assuming ℎ ≪ 2𝐴, we obtain

2Δ𝑡 =
ℎ

𝐴𝜔
. (50)

A bridge between those two sections can emerge for
a time period, when the condition

𝑡2 − 𝑡1 ≥ 𝜏 (51)

is satisfied, i.e. until the both areas can be considered
as located opposite to each other.

Substituting equality (50) into expression (51), we
obtain

𝐴 ≤ ℎ

𝜔𝜏
. (52)

Hence, there is a certain critical value for the ery-
throcyte oscillation amplitude, 𝐴𝑐 = ℎ/(𝜔𝜏). If this
value is exceeded, erythrocytes lose their ability to
aggregate.

The speculations presented above for the case 𝑛 = 1
lead to the following estimates: |−∇𝑝𝑛| ∼ 𝑝𝑛/𝑏, if
𝑧 < 𝑏, and |−∇𝑝𝑛| ∼ 𝑝𝑛/(𝑐𝑇 ), if 𝑧 > 𝑏. Using the
numerical values of the parameters, which were given
above, one can see that the former estimate is sub-
stantially larger than the latter one. This means that
the oscillatory motion of an erythrocyte in the tran-
sition zone is much more intense than outside this
zone. Accordingly, the process of erythrocyte disag-
gregation in the transition zone is more intense due
to the presence of non-zero normal oscillations there.

8. Conclusions

The calculations performed in this work allowed the
following conclusions to be drawn about the mecha-
nism of blood circulation in the artery.

∙ The blood motion through the artery invokes
the appearance of normal waves. These are harmonic

444 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 5



Normal Waves Arising When Blood Moves Through an Artery

waves that are characterized by the frequencies 𝜔𝑛 =
2𝜋𝑛/𝑇 , where 𝑇 is the duration of a cardiac cycle,
and 𝑛 = 0, 1, 2, .... Two types of such waves are real-
ized: zero waves, for which the amplitude of oscilla-
tions does not change its sign over the arterial cross-
section, and non-zero ones, for which this change does
take place.

∙ Zero normal waves are waves that propagate
along the vessel, thereby providing the blood trans-
port. The hemodynamic idea about the pulse wave
as a Young-type wave is approximate. Actually, the
pulse wave is a wave packet consisting of zero nor-
mal waves. The propagation velocities of those waves
are almost identical, which prevents the wave packet
from the smearing.

∙ Non-zero normal waves do not propagate through
the vessel and, accordingly, do not participate in
the blood transport. These waves are localized near
the arterial entrance and form a transition zone,
where the blood motion looks like in-phase oscilla-
tions. The amplitudes of the latter decrease exponen-
tially with the increasing distance from the arterial
entrance. The characteristic length of the amplitude
decay does not exceed the arterial radius. The size of
the transition zone has the same order as the arterial
radius.

∙ Non-zero normal waves in the transition zone en-
hance the disaggregation of erythrocytes.

In our opinion, those conclusions could be used in
hemodynamics and vascular diagnostics.
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НОРМАЛЬНI ХВИЛI,
ЩО ВИНИКАЮТЬ ПРИ РУСI КРОВI В АРТЕРIЇ

Р е з ю м е

Запропоновано модель поширення пульсових хвиль в ар-
терiї, що розглядається як цилiндрична оболонка, оточе-
на пружним середовищем. Визначена амплiтуда i форма
нормальних хвиль, що виникають при русi кровi в арте-
рiї. Встановлено два типа таких хвиль: нульовi, для яких
амплiтуда не змiнює знак по перерiзу артерiї, i ненульовi,
для яких така змiна спостерiгається. Показано, що пульсо-
ва хвиля являє собою хвильовий пакет, утворений нульови-
ми нормальними хвилями. Встановлено, що ненульовi нор-
мальнi хвилi локалiзованi поблизу вхiдного перерiзу арте-
рiї, утворюючи перехiдну зону з розмiром порядку радiуса
артерiї. Показано, що ненульовi нормальнi хвилi пiдсилю-
ють процес дезагрегацiї еритроцитiв у перехiднiй зонi.
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