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GENERATION OF BRIGHT AND ENTANGLED
LIGHT FROM A NONDEGENERATE THREE-LEVEL
LASER WITH PARAMETRIC AMPLIFIER
AND COUPLED TO THERMAL RESERVOIR

The detailed analysis of the two-mode quadrature squeezing and statistical properties of light
generated by a nondegenerate three-level laser which has a parametric amplifier and coupled
with a thermal reservoir is executed. The combination of the master equation and the stochastic
differential equation is presented to study the nonclassical features of the light generated by the
quantum system. Moreover, with the aid the resulting solutions together with the correlation
properties of noise operators, we calculated the quadrature squeezing, entanglement, and mean
number of photon pairs of the cavity light. It is found that the external small-amplitude driving
radiation induces a strong correlation between the top and bottom states of three-level atoms to
produce a high degree of squeezing. Moreover, the presence of a parametric amplifier is found
to enhance the degree of squeezing of the cavity light. We have also established that an increase
in the mean thermal photon number appears to degrade the squeezing, but enhances the mean
number of photon pairs of the cavity light.
K e yw o r d s: parametric amplifier, quadrature squeezing, entanglement, mean number of
photon pairs.

1. Introduction

Three-level cascade lasers have received considerable
interest in connection with its potential as a source
of light with interesting nonclassical features [1–18].
The quantum properties of light, in this device, is
attributed to the atomic coherence that can be in-
duced either by preparing the atoms initially in a
coherent superposition of the top and bottom lev-
els [7–9], or the coupling of these levels by an ex-
ternal radiation [10–12], or using these mechanisms
together [13].

The parametric amplifier is a nonlinear crystal that
involves three different modes of the radiation field:
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the signal, the idler, and the pump which are coupled
by a nonlinear medium. In this device, a pump pho-
ton interacts with a nonlinear crystal inside a cavity
and is down converted into two highly correlated pho-
tons of different frequencies [15–17]. Some authors
have also studied quantum properties of light gen-
erated by a three-level laser whose cavity contains a
parametric amplifier [3, 14, 15, 18–20]. These works
have indicated that the cavity radiation is found to
be in a squeezed and entangled states under certain
conditions. In addition, the mean and variance of the
photon number for degenerate [18, 19] and nondegen-
erate [3, 20–23] three-level cascade lasers whose cav-
ities contain a parametric amplifier have been deter-
mined in various cases.
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In most of the previous analyses, the laser cavity
is coupled to a vacuum environment in which the
effect of an external noise on the quantum proper-
ties and photon statistics is completely neglected. For
instance, a squeezing of 93% has been realized in
a degenerate three-level laser which has a paramet-
ric amplifier and is coupled to the vacuum reservoir
[18]. Moreover, Abebe [21] has studied a nondegener-
ate three-level laser coupled to the vacuum reservoir
in the presence of a parametric amplifier and classical
pumping radiation. However, it is quite challenging
for a real physical situations to be free from the effect
of an external environment which unavoidably decou-
ple the atomic correlations responsible for the quan-
tum and statistical properties [21–23]. In this regard,
Tesfa [23] has considered the effect of thermal noise
on the squeezing, entanglement, and photon statistics
of the cavity radiation generated by a correlated emis-
sion laser in the absence of a parametric amplifier and
external pumping radiation that couple the top and
bottom levels of a three-level atom. He has found that
the thermal noise entering the cavity degrades the
squeezing and entanglement, but enhances the mean
number of photon pairs of the cavity light. On the
other hand, the squeezing, entanglement, and statis-
tical properties of the cavity radiation get enhanced
with the introduction of a parametric amplifier. It is
with this motivation that we will investigate these
nonclassical properties for a radiation generated by a
nondegenerate three-level laser whose cavity contains
a nondegenerate parametric amplifier and is coupled
to a two-mode thermal reservoir.

In this study, we analyze the squeezing, entan-
glement properties, and photon statistics of a two-
mode cavity light produced by a nondegenerate three-
level laser with a nondegenerate parametric ampli-
fier which is coupled to a two-mode thermal reser-
voir via a single port mirror. In order to carry out
our analyses, we first derive the master equation in
the good cavity limit, linear and adiabatic approxi-
mations following the standard method in [15]. Emp-
loying the master equation and the stochastic dif-
ferential equations, the solutions for 𝑐-number cav-
ity mode variables, and correlation property of the
noise forces associated with the normal ordering are
determined. Using the resulting solutions, the mean
number of photon pairs, quadrature fluctuations, and
EPR-type operators of the cavity radiation were ob-
tained in[24]. We investigate the effects of the para-

metric amplifier and thermal noise on the squeezing,
entanglement, and mean photon number of the cav-
ity radiation. Moreover, based on the criterion for a
continuous variable entanglement developed by Duan
et al. [25], the relation between the squeezing and en-
tanglement has been established.

The paper is organized as follows: in the first sec-
tion, the Hamiltonian and the model are presented,
and the master equation describing the dynamics of
the optical device is derived. Making use of the mas-
ter equation and stochastic differential equations, the
solutions of the cavity mode variables are determined
in the second section. Employing the solutions of the
cavity mode variables, the mean photon-number and
quadrature fluctuations of the two-mode cavity ra-
diation are determined in section three. The entan-
glement quantification and mean number of photon
pairs are analyzed for different cases in the last two
sections.

2. Hamiltonian and Master Equation

The three-level cascade atoms initially prepared in
a coherent superposition of the top and bottom lev-
els are injected into the cavity at a constant rate,
and removed from the laser cavity after some time,
which is long enough for the atom to decay to levels
other than the intermediate and bottom levels. Mo-
reover, the top and bottom levels are coupled by the
external driving radiation after being injected into the
cavity. We consider the interaction of the three-level
atoms with a resonant cavity mode and a nondegen-
erate parametric amplifier, as well as the damping of
the cavity light by a thermal reservoir. As is clearly
indicated, the top, intermediate, and bottom levels
of a three-level atom are represented by |𝑙⟩, |𝑚⟩, and
|𝑛⟩. We assume that the transitions between levels |𝑙⟩
and |𝑚⟩, and between levels |𝑚⟩ and |𝑛⟩ to be dipole-
allowed, with direct transitions between levels |𝑙⟩ and
|𝑛⟩ to be dipole-forbidden. We consider the case for
which the two cavity modes are at resonance with the
two transitions |𝑙⟩ → |𝑚⟩ and |𝑚⟩ → |𝑛⟩ having tran-
sition frequencies 𝜔𝑙𝑚 and 𝜔𝑚𝑛, respectively (Fig. 1).

In the nondegenerate three-level laser, a pump
mode photon with frequency 𝜔 = 𝜔𝑙𝑚 + 𝜔𝑚𝑛 di-
rectly interacts with the nondegenerate parametric
amplifier (NDPA) to produce the signal-idler photon
pairs having the same frequencies as the two cavity
modes [15–17]. The interaction of three-level atoms
with a nondegenerate parametric amplifier can be
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described in the interaction picture, parametric ap-
proximation, and rotating-wave approximation by the
quantum Hamiltonian

�̂�1 = 𝑖𝜀(�̂�†�̂�† − �̂��̂�), (1)

in which 𝜀 is considered to be real and constant,
is proportional to the amplitude of the pump mode
that drives the nonlinear crystal (NLC), and �̂� and
�̂� are the annihilation operators for the two cav-
ity modes. The master equation associated with this
Hamiltonian has the form
𝑑

𝑑𝑡
𝜌 = 𝜀(�̂�†�̂�†𝜌− 𝜌𝑎†�̂�† − �̂��̂�𝜌+ 𝜌�̂��̂�). (2)

Moreover, the interaction of a three-level atom with
the two cavity modes can be described by the Hamil-
tonian

�̂�2 = 𝑖𝑔
[︀
�̂�†|𝑚⟩⟨𝑙|+ �̂�†|𝑛⟩⟨𝑚|− �̂�|𝑙⟩⟨𝑚|− �̂�|𝑚⟩⟨𝑛|

]︀
, (3)

where 𝑔 is the atom-cavity mode coupling constant
assumed to be the same for both transitions. In this
paper, we take the initial state of a single three-level
atom to be

|𝜓(0)⟩ = 𝐴𝑙|𝑙⟩+𝐴𝑛|𝑛⟩, (4)

where 𝐴𝑙 = ⟨𝑙|𝜓(0)⟩ and 𝐴𝑛 = ⟨𝑛|𝜓(0)⟩ are proba-
bility amplitudes for the atom to be in the top and
bottom levels, respectively. It can be easily verified
from Eq. (4) that the density matrix describing the
initial state of the atom can be rewritten in the form

𝜌𝑎(0) =

(︂
𝜌1(0) 𝜌4(0)

𝜌3(0) 𝜌2(0)

)︂
, (5)

where 𝜌1(0) = |𝐴𝑙|2, 𝜌2(0) = |𝐴𝑛|2, 𝜌3(0) = 𝜌*4(0) =
= 𝐴𝑙𝐴

*
𝑛. The off-diagonal terms in Eq. (5) are zero

in a statistical mixture. On the other hand, in a co-
herent superposition of the top and bottom states of
this three level laser, these terms are nonzero which
leads to interesting physical properties that may be
understood employing quantum mechanics.

The Hamiltonian describing the coupling of the up-
per and bottom levels by coherent radiation at reso-
nance can be expressed as

�̂�3 = 𝑖
Ω

2
[|𝑛⟩⟨𝑙| − |𝑙⟩⟨𝑛|], (6)

in which

Ω = 2𝜇𝛽0. (7)

Fig. 1. Schematic representation of a nondegenerate three-
level laser that has a nondegenerate parametric amplifier and
is coupled to the thermal reservoir

Here, 𝛽0, considered to be real and constant, is pro-
portional to the amplitude of the pump mode, and 𝜇
is the coupling constant between the pump mode and
a three-level atom.

On the basis of Eqs. (3) and (6), the interaction
of a three-level cascade atom, whose top and bottom
levels are initially prepared in an arbitrary coherent
superposition and also coupled by external coherent
radiation, with a two-mode cavity radiation can be
described in the interaction picture by the Hamilto-
nian

�̂�
′
= 𝑖𝑔

[︀
�̂�†|𝑚⟩⟨𝑙| − �̂�|𝑙⟩⟨𝑚|+ �̂�†|𝑛⟩⟨𝑚| − �̂�|𝑚⟩⟨𝑛|

]︀
+

+ 𝑖
Ω

2

[︀
|𝑛⟩⟨𝑙| − |𝑙⟩⟨𝑛|

]︀
. (8)

In addition, we seek to consider when such atoms
are injected into a cavity at constant rate 𝑟𝑎 and re-
moved after some time 𝜏 , which is long enough for the
atoms to decay spontaneously to levels other than
the middle or the lower level. The spontaneous de-
cay rate 𝛾 is taken to be the same for the two upper
levels. In the good cavity limit, 𝛾 ≫ 𝜅, where 𝜅 is
the cavity damping constant, and the cavity mode
variables change slowly compared with the atomic
variables. Hence, the atomic variables will reac the
steady state in a relatively short time. The time
derivative of such variables can then be set to zero,
while keeping the remaining terms at the time 𝑡. This
procedure is referred as the adiabatic approximation
scheme. Since the coupling constant is taken to be
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small, we confine ourselves to a linear analysis that
amounts to dropping the terms of higher orders in 𝑔.

We thus find employing the linear and adiabatic
approximation schemes in the good cavity limit that
the equation of evolution of the density operator for
the cavity modes has, in the absence of a damping
through a coupled mirror, the form

𝑑𝜌

𝑑𝑡
=
𝐴Σ1

2Δ
(2�̂�†𝜌�̂�− �̂��̂�†𝜌− 𝜌�̂��̂�†)+

+
𝐴Σ2

2Δ
(2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�)+

+
𝐴Σ3

2Δ
(�̂�†𝜌𝑏† − 𝜌�̂�†�̂�† + �̂�𝜌�̂�− �̂�𝜌�̂�)+

+
𝐴Σ4

2Δ
(�̂�†𝜌�̂�† − �̂�†�̂�†𝜌+ �̂�𝜌�̂�− 𝜌�̂��̂�), (9)

where

Δ = (1 + 𝜁2)

(︂
1 +

𝜁2

4

)︂
,

Σ1 = 𝜌1(0)

(︂
1 +

𝜁2

4

)︂
+ 𝜌2(0)

3𝜁2

4
− 𝜌3(0)

3𝜁

2
,

Σ2 = 𝜌1(0)
3𝜁2

4
+ 𝜌2(0)

(︂
1 +

𝜁2

4

)︂
+ 𝜌3(0)

3𝜁

2
,

Σ3 = −𝜌1(0)
𝜁

2

(︂
1− 𝜁2

2

)︂
+ 𝜌2(0)𝜁

(︂
1 +

𝜁2

4

)︂
−

− 𝜌3(0)

(︂
1− 𝜁2

2

)︂
,

Σ4 = −𝜌1(0)𝜁
(︂
1 +

𝜁2

4

)︂
+ 𝜌2(0)

𝜁

2

(︂
1− 𝜁2

2

)︂
−

− 𝜌3(0)

(︂
1− 𝜁2

2

)︂
,

(10)

with 𝜁 = Ω/𝛾, 𝐴 = 2𝑔2𝑟𝑎/𝛾
2 is the linear gain coef-

ficient, a parameter directly proportional to the rate
(number of atoms per time) at which the atoms are
injected into the cavity, for the three-level atom, and
we have set 𝜌3(0) = 𝜌4(0) for the mathematical rigor.

On the other hand, the time evolution of the den-
sity operator for a two-mode cavity radiation cou-
pled to a two-mode thermal reservoir via a single-
port mirror is found, following a procedure described
by [15, 19], to be

𝑑𝜌

𝑑𝑡
= −𝑖[�̂�𝑆 , 𝜌(𝑡)] +

𝜅

2
�̄�th(2�̂�

†𝜌�̂�− �̂��̂�†𝜌− 𝜌�̂��̂�†)+

+
𝜅

2
(�̄�th + 1)(2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�)+

+
𝜅

2
(�̄�th + 1)(2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�)+

+
𝜅

2
�̄�th(2�̂�

†𝜌�̂�− �̂��̂�†𝜌− 𝜌�̂��̂�†), (11)

where we assume 𝜅𝑎 = 𝜅𝑏 = 𝜅 is cavity damping
constant.

Finally, on account of Eqs. (2), (9), and (11), the
equation of evolution of the density operator for the
cavity modes takes the form

𝑑𝜌

𝑑𝑡
= 𝜀
[︀
𝜌�̂��̂�− �̂��̂�𝜌+ �̂�†�̂�†𝜌− 𝜌�̂�†�̂�†

]︀
+

+
𝜅

2
(�̄�th + 1)

[︀
2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�

]︀
+

+
1

2

(︂
𝐴Σ1

Δ
+ 𝜅�̄�th

)︂[︀
2�̂�†𝜌�̂�− �̂��̂�†𝜌− 𝜌�̂��̂�†

]︀
+

+
1

2

(︂
𝐴Σ2

Δ
+ 𝜅(�̄�th + 1)

)︂[︀
2�̂�𝜌�̂�† − �̂�†�̂�𝜌− 𝜌�̂�†�̂�

]︀
+

+
1

2
𝜅�̄�th

[︀
2�̂�†𝜌�̂�− �̂��̂�†𝜌− 𝜌�̂��̂�†

]︀
−

− 𝐴Σ3

2Δ

[︀
�̂��̂�𝜌− �̂�†𝜌�̂�† + 𝜌�̂�†�̂�† − �̂�𝜌�̂�

]︀
−

− 𝐴Σ4

2Δ

[︀
�̂�†�̂�†𝜌− �̂�†𝜌�̂�† + 𝜌�̂��̂�− �̂�𝜌�̂�

]︀
. (12)

This is the master equation for the cavity modes of a
nondegenerate three-level laser whose cavity contains
a nondegenerate parametric amplifier and is coupled
to a two-mode thermal reservoir.

On the basis of Eqs. (A12) and (A13), we can write

𝑑

𝑑𝑡
𝛼(𝑡) = −𝜇𝑎

2
𝛼(𝑡) +

𝜈𝑎
2
𝛽*(𝑡) + 𝑓𝛼(𝑡), (13)

𝑑

𝑑𝑡
𝛽*(𝑡) = −𝜇𝑏

2
𝛽*(𝑡)− 𝜈𝑏

2
𝛼(𝑡) + 𝑓*𝛽(𝑡). (14)

where 𝑓𝛼(𝑡) and 𝑓*𝛽(𝑡) are noise forces whose proper-
ties remain to be determined.

We now proceed to determine the properties of the
noise forces. It is obvious that the expectation values
of Eqs. (13) and (14) are identical to Eqs. (A12) and
(A13) provided that

⟨𝑓𝛼(𝑡)⟩ = ⟨𝑓𝛽(𝑡)⟩ = 0. (15)

Moreover, making use of Eqs. (13) and (14), we can
verify that

⟨𝑓𝛼(𝑡
′
)𝑓𝛼(𝑡)⟩ = ⟨𝑓𝛽(𝑡)𝑓𝛽(𝑡

′
)⟩ = 0, (16)
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⟨𝑓*𝛼(𝑡)𝑓𝛽(𝑡
′
)⟩ = ⟨𝑓*𝛽(𝑡

′
)𝑓𝛼(𝑡)⟩ = 0, (17)

⟨𝑓𝛼(𝑡
′
)𝑓*𝛼(𝑡)⟩ =

(︂
𝐴Σ1

Δ
+ 𝜅�̄�th

)︂
𝛿(𝑡− 𝑡

′
), (18)

⟨𝑓𝛽(𝑡
′
)𝑓*𝛽(𝑡)⟩ = 𝜅�̄�th𝛿(𝑡− 𝑡

′
), (19)

⟨𝑓𝛽(𝑡
′
)𝑓𝛼(𝑡)⟩ = −𝜈𝑏

2
𝛿(𝑡− 𝑡

′
). (20)

We note that Eqs. (15)–(20) represent the correlation
properties of the noise forces 𝑓𝛼(𝑡) and 𝑓𝛽(𝑡) associ-
ated with the normal ordering.

It proves to be more convenient to introduce a new
parameter 𝑥 defined by

𝜌1(0) =
(1− 𝑥)

2
, (21)

with −1 ≤ 𝑥 ≤ 1. For three-level atoms initially in a
coherent superposition of the top and bottom levels,
we find with the use of Eq. (21) that

𝜌2(0) =
1 + 𝑥

2
, (22)

𝜌3(0) =

√
1− 𝑥2

2
. (23)

Hence, substituting Eqs. (15)–(20) along with (21)–
(23) into Eqs. (13) and (14), we obtain

𝑑

𝑑𝑡
𝛼(𝑡) = −𝜉+𝛼(𝑡)− 𝜂+𝛽

*(𝑡) + 𝑓𝛼(𝑡), (24)

𝑑

𝑑𝑡
𝛽*(𝑡) = −𝜉−𝛽*(𝑡)− 𝜂−𝛼(𝑡) + 𝑓*𝛽(𝑡), (25)

where

𝜉± =
1

2

(︂
𝜅+

𝐴

2Δ

[︁3𝜁
2

√︀
1− 𝑥2+𝑥

(︂
1− 𝜁2

2

)︂
∓(1+𝜁2)

]︁)︂
,

(26)

𝜂± = −1

2

(︃
2𝜖+

𝐴

2Δ

[︃
𝜁

2
(1 + 𝜁2)±

[︃
3𝑥𝜁

2
−

−
√︀
1− 𝑥2

(︂
1− 𝜁2

2

)︂]︃]︃)︃
. (27)

We find the solutions of the coupled differential
equations (24) and (25) by using the procedure de-
scribed in [20, 23] to be

𝛼(𝑡) = 𝐴+(𝑡)𝛼(0)+𝐵+(𝑡)𝛽
*(0)+𝐹+(𝑡)+𝑊+(𝑡), (28)

𝛽(𝑡) = 𝐴−(𝑡)𝛽(0)+𝐵−(𝑡)𝛼
*(0)+𝐹−(𝑡)+𝑊−(𝑡), (29)

where
𝐴±(𝑡) =

1

2
[(1± 𝑝)𝑒−𝜆−𝑡 + (1∓ 𝑝)𝑒−𝜆+𝑡], (30)

𝐵±(𝑡) =
𝑞±
2
[𝑒−𝜆+𝑡 − 𝑒−𝜆−𝑡], (31)

𝐹+(𝑡) =
1

2

𝑡∫︁
0

[(1 + 𝑝)𝑒−𝜆−(𝑡−𝑡
′
) +

+(1− 𝑝)𝑒−𝜆+(𝑡−𝑡
′
)]𝑓𝛼(𝑡

′
)𝑑𝑡

′
, (32)

𝐹−(𝑡) =
1

2

𝑡∫︁
0

[(1− 𝑝)𝑒−𝜆−(𝑡−𝑡
′
) +

+(1 + 𝑝)𝑒−𝜆+(𝑡−𝑡
′
)]𝑓𝛽(𝑡

′
)𝑑𝑡

′
, (33)

𝑊+(𝑡) =
𝑞+
2

𝑡∫︁
0

[𝑒−𝜆+(𝑡−𝑡
′
)−𝑒−𝜆−(𝑡−𝑡

′
)]𝑓*𝛽(𝑡

′
)𝑑𝑡

′
, (34)

𝑊−(𝑡) =
𝑞−
2

𝑡∫︁
0

[𝑒−𝜆+(𝑡−𝑡
′
)−𝑒−𝜆−(𝑡−𝑡

′
)]𝑓*𝛼(𝑡

′
)𝑑𝑡

′
, (35)

and

𝑝 =
1 + 𝜁2

𝑉
, (36)

𝑞± =
−
[︁
𝜁
2 (1 + 𝜁2) + 4𝜀

(︀
Δ
𝐴

)︀]︁
𝑉

∓

∓

[︁
3𝑥𝜁
2 −

√
1− 𝑥2

(︁
1− 𝜁2

2

)︁]︁
𝑉

, (37)

𝜆± =
𝜅

2
+

𝐴

4Δ

[︂
3𝜁

2

√︀
1− 𝑥2 + 𝑥

(︂
1− 𝜁2

2

)︂
± 𝑉

]︂
, (38)

with

𝑉 =

[︂
(1 + 𝜁2)2 +

(︂
𝜁

2
(1 + 𝜁2) +

4𝜀Δ

𝐴

)︂2
−

−
(︂
3𝑥𝜁

2
−
√︀
1− 𝑥2

(︂
1− 𝜁2

2

)︂)︂2]︂1/2
. (39)

3. Quadrature Squeezing

In this section, we will study the quadrature squeez-
ing of the light produced by a nondegenerate three-
level laser with a nondegenerate parametric ampli-
fier coupled to the thermal reservoir via a single-
port mirror. In general, the squeezing properties of
a two-mode cavity radiation can be described by two
quadrature operators [20, 21]

𝑐+ = (𝑐† + 𝑐), (40)

ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 3 189



T. Abebe, Ch. Gashu, E. Mosisa

𝑐− = 𝑖(𝑐† − 𝑐), (41)

where

𝑐 =
1√
2
(�̂�+ �̂�), (42)

where �̂� and �̂� represent the separate modes. In view
of the commutation relation [𝑐, 𝑐†] = 1, the quadra-
ture operators 𝑐+ and 𝑐− are Hermitian and satisfy
the commutation relation

[𝑐+, 𝑐−] = 2𝑖. (43)

On the basis of these definitions, a two-mode light
is said to be in a squeezed state„ if either Δ𝑐2+ < 1
and Δ𝑐2− > 1 or Δ𝑐2+ > 1 and Δ𝑐2− < 1 such that
Δ𝑐+Δ𝑐− ≥ 1. The variances of the quadrature oper-
ators can be expressed as

Δ𝑐2± = ⟨𝑐2±⟩ − ⟨𝑐±⟩2. (44)

It is possible to express the variance of the quadrature
operators (40) and (41) in terms of the 𝑐-number vari-
ables associated with the normal ordering taking the
cavity modes to be initially in a two-mode thermal
state as

Δ𝑐2± = 1 + ⟨𝛼*(𝑡)𝛼(𝑡)⟩+ ⟨𝛽*(𝑡)𝛽(𝑡)⟩+ ⟨𝛼*(𝑡)𝛽(𝑡)⟩+

+ ⟨𝛼(𝑡)𝛽*(𝑡)⟩ ±
[︀
⟨𝛼*(𝑡)𝛽*(𝑡)⟩+ ⟨𝛼(𝑡)𝛽(𝑡)⟩+

+
1

2
(⟨𝛼2(𝑡)⟩+ ⟨𝛼*2(𝑡)⟩+ ⟨𝛽*2(𝑡)⟩+ ⟨𝛽2(𝑡)⟩)

]︀
. (45)

In view of the fact that the noise force at the time
𝑡 does not affect the cavity mode variables at earlier
times and taking the cavity modes to be initially in a
vacuum state, it is also possible to verify at a steady
state that

⟨𝛼2(𝑡)⟩ = ⟨𝛽2(𝑡)⟩ = ⟨𝛼*(𝑡)𝛽(𝑡)⟩ = 0, (46)

⟨𝛼*(𝑡)𝛼(𝑡)⟩ =
(𝐴Σ1

Δ + 𝜅�̄�th)(1− 𝑝)2 + 𝜅�̄�th𝑞
2
+

8𝜆+
+

+
(𝐴Σ1

Δ + 𝜅�̄�th)(1 + 𝑝)2 + 𝜅�̄�th𝑞
2
+

8𝜆−
−

−
(𝐴Σ4

Δ − 2𝜀)𝑞+(1− 𝑝)

8𝜆+
+

(𝐴Σ4

Δ − 2𝜀)𝑞+(1 + 𝑝)

8𝜆−
+

+
(𝐴Σ1

Δ + 𝜅�̄�th)(1− 𝑝2)− 𝜅�̄�th𝑞
2
+

2(𝜆+ + 𝜆−)
−

−
(𝐴Σ4

Δ − 2𝜀)𝑞+𝑝

2(𝜆+ + 𝜆−)
, (47)

⟨𝛽*(𝑡)𝛽(𝑡)⟩ =
(𝐴Σ1

Δ + 𝜅�̄�th)𝑞
2
− + 𝜅�̄�th(1 + 𝑝)2

8𝜆+
+

+
(𝐴Σ1

Δ + 𝜅�̄�th)𝑞
2
− + 𝜅�̄�th(1− 𝑝)2

8𝜆−
−

−
(𝐴Σ4

Δ − 2𝜀)𝑞−(1 + 𝑝)

8𝜆+
+

(𝐴Σ4

Δ − 2𝜀)𝑞−(1− 𝑝)

8𝜆−
−

−
(𝐴Σ1

Δ + 𝜅�̄�th)𝑞
2
− − 𝜅�̄�th(1− 𝑝2)

2(𝜆+ + 𝜆−)
+

+
(𝐴Σ4

Δ − 2𝜀)𝑞−𝑝

2(𝜆+ + 𝜆−)
, (48)

⟨𝛼(𝑡)𝛽(𝑡)⟩ =

=
(𝐴Σ1

Δ + 𝜅�̄�th)𝑞−(1− 𝑝) + 𝜅�̄�th𝑞+(1 + 𝑝)

8𝜆+
−

−
(𝐴Σ1

Δ + 𝜅�̄�th)𝑞−(1 + 𝑝) + 𝜅�̄�th𝑞+(1− 𝑝)

8𝜆−
−

−
((𝐴Σ4

2Δ − 𝜀)(1− 𝑝2 + 𝑞−𝑞+)

8𝜆+
+

+
((𝐴Σ4

2Δ − 𝜀)(1− 𝑝2 + 𝑞−𝑞+)

8𝜆−
+

+
(𝐴Σ1

Δ + 𝜅�̄�th)𝑞−𝑝− 𝜅�̄�th𝑞+𝑝

2(𝜆+ + 𝜆−)
−

−
(𝐴Σ4

2Δ − 𝜀)(1 + 𝑝2 − 𝑞−𝑞+)

2(𝜆+ + 𝜆−)
. (49)

We observe that Eqs. (47) and (48), respectively,
represent the steady state mean photon number of
the cavity modes 𝑎 and 𝑏.

With the aid of Eqs. (46)–(49), Eq. (45) turns out
to be

Δ𝑐2± = 1 +

[︂
𝐴

Δ
(Γ∓ 𝜒) + 2(𝜅�̄�th ± 𝜀)

]︂
×

×
[︂
(𝜆+ + 𝜆−)

2 + 4𝜆+𝜆−
8𝜆+𝜆−(𝜆+ + 𝜆−)

]︂
+

+

[︂(︂
𝐴Γ

Δ
+ 𝜅�̄�th

)︂
(𝑝2 + 𝑞2− ∓ 2𝑞−𝑝)+

+𝜅�̄�th(𝑝
2 + 𝑞2+ ± 2𝑞+𝑝) +

(︂
𝐴𝜒

Δ
− 2𝜀

)︂
×

× [𝑝(𝑞+ − 𝑞−)± (𝑝2 − 𝑞−𝑞+)]

]︂
×

×
[︂
(𝜆+ + 𝜆−)

2 − 4𝜆+𝜆−
8𝜆+𝜆−(𝜆+ + 𝜆−)

]︂
+
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+

[︂(︂
𝐴Γ

Δ
+ 𝜅�̄�th

)︂
(𝑝∓ 𝑞−)− 𝜅�̄�th(𝑝± 𝑞+)+

+

(︂
𝐴𝜒

2Δ
− 𝜀

)︂
(𝑞+ + 𝑞−)

]︂[︂
(𝜆+ − 𝜆−)

4𝜆+𝜆−

]︂
, (50)

where

Γ =
1

2
+
𝜁2

2
+
𝜁2𝑥

4
− 3𝜁

4

√︀
1− 𝑥2 − 𝑥

2
, (51)

𝜒 = −𝜁
4
(1 + 𝜁2) +

3𝜁𝑥

4
−

√
1− 𝑥2

2

(︂
1− 𝜁2

2

)︂
. (52)

Equation (50) represents the variances of the
steady state of cavity modes for a nondegenerate
three-level laser whose cavity contains a nondegen-
erate parametric amplifier and is coupled to a two-
mode thermal reservoir. At the steady state, the sys-
tem and the environment assume thermal equilibrium
with each other. We observe that the equations of
evolution of 𝛼(𝑡) and 𝛽(𝑡) do not have well-behaved
solutions for 𝜆− < 0. Hence, we note that the thresh-
old condition for the system under consideration is
attained, when

𝜆− = 0. (53)

This condition yields

𝜀max =
𝐴

4Δ

[︂
− 𝜁(1 + 𝜁2)

2
+ Δ̃

]︂
, (54)

in which

Δ̃ =

√︃
𝑈2−(1 + 𝜁2)2+

(︂
3𝑥𝜁

2
−
√︀
1− 𝑥2

(︂
1− 𝜁2

2

)︂)︂2
,

(55)

𝑈 =
2𝑘Δ

𝐴
+

3𝜁

2

√︀
1− 𝑥2 + 𝑥

(︂
1− 𝜁2

2

)︂
. (56)

Equation (54) provides the maximum possible value
of the amplitude of a parametric amplifier for the
fixed values of the other parameters. The analysis is
therefore carried out for 𝜀 ≤ 𝜀max.

In order to investigate the dependence of the
squeezing on the amplitude of external driving radia-
tion, the initial preparation of three-level atoms, am-
plitude of a parametric amplifier, and linear gain coef-
ficient, we plot the minus quadrature variance versus
these parameters keeping some parameters fixed.

We clearly see from Fig. 2 that the two-mode cavity
radiation exhibits the squeezing for all values of 𝑛th

Fig. 2. A plot of the minus quadrature variance [Eq. (50)] of
the two-mode cavity radiation at the steady state for 𝜁 = 0.001,
𝑥 = 0.1, 𝜅 = 0.75, and 𝐴 = 100

Fig. 3. A plot of the minus quadrature variance [Eq. (50)] of
the two-mode cavity radiation at the steady state for 𝐴 = 100,
𝑥 = 0.1, 𝜅 = 0.75, and 𝜀 = 0.5

and 𝜀 ≤ 1.2. Squeezing occurs for �̄�th ≤ 0.5 and 0 ≤
≤ 𝜀 ≤ 1.2 in this particular figure as the value of the
minus quadrature variance is less than one. It is found
that a maximum squeezing of 71% occurs for 𝑛th =
0 and 𝜀 = 0.7. It is also verified that the degree of
squeezing decreases with the mean photon number of
the thermal reservoir for every values of the amplitude
of a parametric amplifier.

It is clearly evident from Fig. 3 that the two-mode
cavity radiation exhibits the squeezing for certain val-
ues of 𝑛th and 𝜁. It is not difficult to see that the
degree of squeezing decreases with the mean pho-
ton number of the thermal reservoir. Furthermore,
a maximum squeezing of 70% is found to occur for
𝑛th = 𝜁 = 0. It is also possible to see that the squeez-
ing does not occur for certain values 𝑛th and 𝜁. For
instance, the squeezing does not occur for 𝑛th ≥ 0.7
and 𝜁 ≥ 0.04 in this case. This is an indication of the
smallness of the system to be easily disturbed, when
the large thermal reservoir’s influence escalates (in-
crement in the temperature and then mean photon
number).

As we clearly see from Fig. 4, the squeezing de-
creases with the cavity damping constant for a spe-
cific value of the amplitude of a parametric ampli-
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Fig. 4. A plot of the minus quadrature variance [Eq. (50)] of
the two-mode cavity radiation at the steady state for 𝐴 = 100,
�̄�th = 0, 𝑥 = 0.1, and 𝜁 = 0.001

Fig. 5. Plots of the minus quadrature variance [Eq. (50)] of
the two-mode cavity radiation at the steady state for 𝑥 = 0.03,
𝐴 = 1000, 𝜅 = 0.75, 𝜀 = 0.5, and for different values of �̄�th
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Fig. 6. Plots of the minus quadrature variance [Eq. (50)] of
the two-mode cavity radiation at the steady state for 𝑘 = 0.75,
𝜀 = 0.5, �̄�th = 0.15, 𝜁 = 0.001, and for different values of 𝐴

fier chosen. The maximum squeezing of 60% occurs
for 𝜀 = 𝜅 = 0.3. The squeezing in general increases
with the amplitude of a parametric amplifier for cer-
tain values of the cavity damping constant. Despite
the fact that it decreases with the cavity damping
constant, the cavity light still exhibits the squeezing
even for larger values of the cavity damping.

It is not difficult to see from Figs. 2, 3, and 4 that
the quadrature variance of the two-mode cavity radi-
ation strongly depends on the linear gain coefficient
𝐴, amplitude external driving radiation 𝜁, amplitude
of the parametric amplifier 𝜀, mean photon number
of the thermal reservoir �̄�𝑡ℎ, and initial preparation
of the atoms 𝑥.

We now investigate the explicit dependence of the
squeezing of the two-mode cavity radiation on these
parameters. It is worth noting that the possibility for
generating highly squeezed light by altering various
parameters will make this system a reliable and at-
tractive source of squeezed light.

We see from Fig. 5 that the degree of squeezing de-
creases with the mean photon number of the ther-
mal reservoir. We find that there is no restriction
on the value of �̄�𝑡ℎ for which Eq. (50) has a well-
behaved solution for 𝑥 = 0.03, 𝐴 = 100, 𝜅 = 0.75,
and 𝜀 = 0.5. We observe that the squeezing is sig-
nificantly degraded by the thermal noise. This is due
to the influence of the thermal reservoir that deco-
herences the correlations induced in the two cavity
modes by the initial preparation atoms and exter-
nal driving radiation. A small effect of the reservoir
can outweigh to break the correlations between the
cavity modes thereby causing the two-mode light to
follow the classical properties in which the squeezing
cannot be observed. This result is in complete agree-
ment with the result that has been reported for a
Correlated Emission Laser (CEL) in [11].

We clearly see from Fig. 6 that the degree of squeez-
ing increases with the linear gain coefficient for 𝑥 ≤
0.4 and decreases for 𝑥 ≥ 04. This indicates that the
more atoms are injected into the cavity at a time, the
more the degree of the squeezing of the cavity radia-
tion would be. In particular, a maximum squeezing of
66% occurs for 𝑥 = 0.02 and 𝐴 = 100. This encour-
aging result compared with the degree of the squeez-
ing generated by a parametric oscillator in which the
maximum possible squeezing is 50% [26]. Though the
squeezing increases with the linear gain coefficient
in this case, we cannot use arbitrary values of 𝐴,
since the steady state consideration fails (𝜆− < 0) to
be applied for larger values of the linear gain coeffi-
cient. Moreover, it is found that a further increment
in the linear gain coefficient for which 𝜆− ≥ 0 does
not lead to a substantial squeezing.

We clearly see from Fig. 7 that the two-mode cavity
radiation exhibits the squeezing for the external driv-
ing radiation of a relatively smaller amplitude. The
degree of squeezing decreases with the amplitude of
the coherent radiation. This indicates the fact that
pumping the atoms with stronger radiation than re-
quired destroys the squeezing.

Moreover, the effects of the cavity damping con-
stant and linear gain coefficient is indicated in Fig. 8.
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It is again observed that the squeezing increases with
the linear gain coefficient specially for the smaller cav-
ity damping constant. It is found that, for larger cav-
ity damping constant, a substantial degree of squeez-
ing cannot be achieved no matter how we increase the
linear gain coefficient. This is related to a well-known
fact that the lesser the cavity damping constant, the
more the radiation stays in the cavity which, in turn,
enhances the correlation that leads to the squeezing.

It can also easily seen in Fig. 9 that the squeez-
ing increases with the amplitude of a parametric am-
plifier. It is encouraging that the parametric ampli-
fier can amplify the squeezing in some degree against
the loss due the thermal noise. Such property of the
parametric amplifier is also observed for a degenerate
three-level laser [18] and a nondegenerate three-level
laser [20] coupled to the vacuum environment. The
squeezing rapidly decays near and at the threshold.
The effect of the pumping radiation is seen to improve
the degree of squeezing for the smaller values of 𝜀.

4. Entanglement Amplification

Here, we proceed to study the entanglement condi-
tion of the two modes in the cavity. A pair of par-
ticles is taken to be entangled in quantum theory, if
its states cannot be expressed as a product of the
states of its individual constituents. The preparation
and manipulation of these entangled states that have
nonclassical and nonlocal properties lead to a better
understanding of the basic quantum principles. That
is, if the density operator for the combined state can-
not be described as a combination of the product of
density operators of the constituents,

𝜌 ̸=
∑︁
𝑗

𝑃𝑗𝜌
(1)
𝑗 ⊗ 𝜌

(2)
𝑗 , (57)

where 𝑃𝑗 ≥ 0, and
∑︀

𝑗 𝑃𝑗 = 1 is set to ensure the
normalization of the combined density of state. On
the other hand, a maximally entangled continuous
variable state can be expressed as a co-eigenstate of a
pair of EPR-type operators [24] such as �̂�𝑎 − �̂�𝑏 and
𝑃𝑎 + 𝑃𝑏. The total variance of these two operators
reduces to zero for maximally entangled continuous
variable states. But, according to the criteria set by
Duan et al. [25], the quantum states of the system
are entangled, if the sum of the variances of a pair of
EPR-like operators

�̂� = �̂�𝑎 − �̂�𝑏, (58)
𝑣 = 𝑃𝑎 + 𝑃𝑏, (59)
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Fig. 7. Plots of the minus quadrature variance [Eq. (50)] of
the two-mode cavity radiation at the steady state for 𝑥 = 0.03,
𝐴 = 100, 𝜀 = 0.5, �̄�th = 0.15, and for different values of 𝜁
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Fig. 8. Plots of the minus quadrature variance [Eq. (50)] of
the two-mode cavity radiation at the steady state for 𝑥 = 0.03,
𝜁 = 0.01, 𝜀 = 0.5, �̄�th = 0.15, and for different values of 𝐴
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Fig. 9. Plots of the minus quadrature variance [Eq. (50)] of
the two-mode cavity radiation at the steady state for 𝑥 = 0.03,
𝜅 = 0.75, �̄�th = 0., 𝐴 = 100, and for different values of 𝜁

where �̂�𝑎 = (�̂�† + �̂�)/
√
2, �̂�𝑏 = (�̂�† + �̂�)/

√
2, 𝑃𝑎 =

= 𝑖(�̂�† − �̂�)/
√
2, 𝑃𝑏 = 𝑖(�̂�† − �̂�)/

√
2, are quadrature

operators for mode 𝑎 and 𝑏, satisfy

Δ𝑢2 +Δ𝑣2 < 2. (60)

Thus, the sum of the variances of �̂� and 𝑣 is easily
found to be

Δ𝑢2 +Δ𝑣2 = 2
[︀
1 + ⟨𝛼*(𝑡)𝛼(𝑡)⟩+ ⟨𝛽*(𝑡)𝛽(𝑡)⟩−

− 2⟨𝛼(𝑡)𝛽(𝑡)⟩
]︀
. (61)
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The term in the parentheses in Eq. (61) exactly repre-
sents the minus quadrature variance of the two-mode
cavity radiation. We can rewrite Eq. (61) as

Δ𝑢2 +Δ𝑣2 = 2Δ𝑐2−, (62)

where Δ𝑐2− is given in Eq. (50). It can be noted that
the degree of entanglement is directly proportional to
the degree of squeezing of the two-mode cavity light.

It is clearly indicated by Fig. 10 that the cavity ra-
diation is entangled for all parameters under consider-
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Fig. 13. A plot of the mean number of photon pairs of the
cavity radiation (Eq. (65)) at the steady state for 𝑥 = 0.03,
𝜅 = 0.75, 𝜁 = 0.03, and 𝐴 = 100
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Fig. 14. Plots of the mean number of photon pairs of the
cavity radiation (Eq. (65)) at the steady state for 𝜀 = 0.25,
𝜅 = 0.75, 𝜁 = 0.001, 𝐴 = 100, and for different values of �̄�𝑡ℎ

ation except for the initial atomic coherence 𝑥 = 1. It
can also be observed that the degree of entanglement
increases for smaller values of the initial preparation
of atoms and the amplitude of the driving radiation,
but decreases for the larger values. Moreover, it can
be noticed from Fig. 11 that the entanglement of the
cavity radiation decays with the thermal noise and
even disappears for larger values of the mean photon
number of the thermal environment. The paramet-
ric amplifier and the thermal noise have competing
effects on the entanglement properties of the cavity
radiation.

On the other hand, as is clearly seen in Fig. 12,
the degree of entanglement for the quantum system
under consideration can be enhanced by increasing
the amplitude of a parametric amplifier. It is found
that the effect of the parametric amplifier in this case
can provide a significant degree of entanglement for
smaller values of the linear gain coefficient and the
initial preparation of atoms. The effect of a paramet-
ric amplifier is insignificant for larger values of the
linear gain coefficient, and when a larger number of
atoms are initially prepared in the bottom level.
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5. Mean Number of Photon Pairs

In order to learn about the brightness of the gener-
ated light, it is necessary to study the mean number
of photon pairs describing the two-mode cavity radi-
ation that can be defined as

�̄� = ⟨𝑐†(𝑡)𝑐(𝑡)⟩, (63)

where 𝑐(𝑡) is the annihilation operator given by
Eq. (62). On the basis that the operators in Eq. (63)
are already put in the normal order, it is possible to
rewrite it in terms of 𝑐-number variables associated
with the normal ordering as

�̄� =
1

2

[︀
⟨𝛼*(𝑡)𝛼(𝑡)⟩+ ⟨𝛽*(𝑡)𝛽(𝑡)⟩

]︀
. (64)

Since ⟨𝛼*(𝑡)𝛼(𝑡)⟩ and ⟨𝛽*(𝑡)𝛽(𝑡)⟩ represent the mean
photon numbers in mode 𝑎 and mode 𝑏, respectively,
�̄� can be interpreted as the mean number of photon
pairs. It is easy to verify that Eq. (64) represents the
mean number of photon pairs �̄� of the system. Mo-
reover, with the aid of Eqs. (47) and (48), one can
readily verify that

�̄� =

[︂
𝐴Γ

2Δ
+ 𝜅�̄�th)

]︂[︂
(𝜆+ + 𝜆−)

2 + 4𝜆+𝜆−
8𝜆+𝜆−(𝜆+ + 𝜆−)

]︂
+

+

[︂
𝐴Γ

2Δ
(𝑝2 + 𝑞2−) +

𝜅�̄�th
2

(2𝑝2 + 𝑞2− + 𝑞2+)+

+

(︂
𝐴𝜒

2Δ
− 𝜀

)︂
[𝑝(𝑞+ − 𝑞−)]

]︂[︂
(𝜆+ + 𝜆−)

2 − 4𝜆+𝜆−
8𝜆+𝜆−(𝜆+ + 𝜆−)

]︂
+

+

[︂
𝐴Γ

Δ
𝑝+

(︃
𝐴𝜒

2Δ
− 𝜀

)︃
(𝑞+ + 𝑞−)

]︂[︂
(𝜆+ − 𝜆−)

8𝜆+𝜆−

]︂
. (65)

The result presented in Fig. 13 indicates that the
mean number of photon pairs increases with the mean
photon number of the thermal reservoir and the am-
plitude of a parametric amplifier. The effects of the
former and latter parameters are also reported, re-
spectively, in Refs. [11] and [19].

Figure 14 explicitly illustrates the dependence of
the mean number of photon pairs on the mean num-
ber of the thermal reservoir and the initial prepara-
tion of atoms. The effect of the thermal reservoir is to
increase the mean number of photon pairs which we
believe here is the encouraging result. This effect is
more prominent nearly at the maximum atomic co-
herence. Moreover, it is easy to see that the mean
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Fig. 15. Plots of the mean number of photon pairs of the
cavity radiation (Eq. (65)) at the steady state for 𝑥 = 0.03,
𝜅 = 0.75, �̄�th = 0.15, 𝐴 = 100, and for different values of 𝜀

number of photon pairs appears to be smaller, when
more atoms are prepared initially at the bottom level.

Moreover, it is reflected in Fig. 15 that the effect of
the parametric amplifier enhances the mean number
of photon pairs. Therefore, it worth noting that the
careful manipulation of the amplitude of the paramet-
ric amplifier and mean photon number of the thermal
reservoir can produce an intense light with the con-
siderable entanglement and squeezing.

6. Conclusion

We have studied the entanglement and squeezing
properties of the two-mode light generated by a non-
degenerate three-level laser with a nondegenerate
parametric amplifier and coupled with the thermal
reservoir. We have obtained the master equation in
the good-cavity limit and in the linear and adiabatic
approximation schemes. Applying the master equa-
tion, we have derived equations of evolution of the
moments of the cavity mode variables. Making use of
these equations, we have calculated the quadrature
variance for the two-mode light inside the cavity at
the steady state. We have also analyzed the entan-
glement of the two mode cavity light at the steady
state. Finally, we have calculated the mean photon
number for the two-mode cavity light.

It is found that the effect of the parametric ampli-
fier in the laser cavity to produce a robust squeezed
and entangled light that remains stronger even for the
larger values of the cavity damping constant. More-
over, the parametric amplifier enhances the degree
of squeezing and entanglement when more atoms are
initially prepared at the top level, and its effect in
increasing the squeezing is limited for very small am-
plitude of the external driving radiation. Moreover,
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we find the mean number of photon pairs increase
with the mean photon number of the thermal reser-
voir and the parametric amplifier. The mean number
of photon pairs decreases with the initial preparation
of atoms in which more atoms are found in the ground
state and decreases with the amplitude of an external
driving radiation as always the case.

APPENDIX A
Stochastic differential equations

We now obtain the stochastic differential equations associated
with the normal ordering for the cavity mode variables. To this
end, we apply Eq. (12) and the fact that

𝑑

𝑑𝑡
⟨𝐴⟩ = 𝑇𝑟

(︃
𝑑𝜌(𝑡)

𝑑𝑡
𝐴

)︃
. (A1)

The time evolution of the expectation value of the cavity mode
variables applying the cyclic property of the trace operation
and taking the bosonic commutation relation into account
turns out to be

𝑑

𝑑𝑡
⟨�̂�⟩ = −

𝜇𝑎

2
⟨�̂�⟩+

𝜈𝑎

2
⟨�̂�†⟩, (A2)

𝑑

𝑑𝑡
⟨�̂�⟩ = −

𝜇𝑏

2
⟨�̂�⟩ −

𝜈𝑏

2
⟨�̂�†⟩, (A3)

𝑑

𝑑𝑡
⟨�̂�2⟩ = −𝜇𝑎⟨�̂�2⟩+ 𝜈𝑎⟨�̂�†�̂�⟩, (A4)

𝑑

𝑑𝑡
⟨�̂�2⟩ = −𝜇𝑏⟨�̂�2⟩ − 𝜈𝑏⟨�̂�†�̂�⟩, (A5)

𝑑

𝑑𝑡
⟨�̂�†�̂�⟩ = −𝜇𝑎⟨�̂�†�̂�⟩+

𝜈𝑎

2
[⟨�̂�†�̂�†⟩+ ⟨�̂��̂�⟩] +

+
𝐴Σ1

2Δ
+ 𝜅�̄�th, (A6)

𝑑

𝑑𝑡
⟨�̂�†�̂�⟩ = −𝜇𝑏⟨�̂�†�̂�⟩ −

𝜈𝑏

2
[⟨�̂�†�̂�†⟩+ ⟨�̂��̂�⟩] + 𝜅�̄�th, (A7)

𝑑

𝑑𝑡
⟨�̂�†�̂�⟩ = −

1

2
(𝜇𝑎 + 𝜇𝑏)⟨�̂�†�̂�⟩ −

𝜈𝑏

2
⟨�̂�†2⟩+

𝜈𝑎

2
⟨�̂�†2⟩, (A8)

𝑑

𝑑𝑡
⟨�̂��̂�⟩ = −

1

2
(𝜇𝑎 + 𝜇𝑏)⟨�̂��̂�⟩ −

𝜈𝑏

2
⟨�̂�†�̂�⟩+

+
𝜈𝑎

2
⟨�̂�†�̂�⟩ −

𝜈𝑏

2
, (A9)

in which

𝜇𝑎 = 𝜅−
𝐴Σ1

Δ
, 𝜇𝑏 = 𝜅+

𝐴Σ2

Δ
, (A10)

𝜈𝑎 = 2𝜀+
𝐴Σ3

Δ
, 𝜈𝑏 =

𝐴Σ4

Δ
− 2𝜀. (A11)

We note that the operators in the above equations are in
the normal order. The 𝑐-number equations corresponding to
Eqs. (A2)–(A9) are

𝑑

𝑑𝑡
⟨𝛼⟩ = −

𝜇𝑎

2
⟨𝛼⟩+

𝜈𝑎

2
⟨𝛽*⟩, (A12)

𝑑

𝑑𝑡
⟨𝛽⟩ = −

𝜇𝑏

2
⟨𝛽⟩ −

𝜈𝑏

2
⟨𝛼*⟩, (A13)

𝑑

𝑑𝑡
⟨𝛼2⟩ = −𝜇𝑎⟨𝛼2⟩+ 𝜈𝑎⟨𝛽*𝛼⟩, (A14)

𝑑

𝑑𝑡
⟨𝛽2⟩ = −𝜇𝑏⟨𝛽2⟩ − 𝜈𝑏⟨𝛼*𝛽⟩, (A15)

𝑑

𝑑𝑡
⟨𝛼*𝛼⟩ = −𝜇𝑎⟨𝛼*𝛼⟩+

𝜈𝑎

2
[⟨𝛼*𝛽*⟩+ ⟨𝛼𝛽⟩] +

+
𝐴Σ1

2Δ
+ 𝜅�̄�th, (A16)

𝑑

𝑑𝑡
⟨𝛽*𝛽⟩ = −𝜇𝑏⟨𝛽*𝛽⟩ −

𝜈𝑏

2
[⟨𝛽*𝛼*⟩+ ⟨𝛼𝛽⟩] + 𝜅�̄�th, (A17)

𝑑

𝑑𝑡
⟨𝛼*𝛽⟩ = −

1

2
(𝜇𝑎 + 𝜇𝑏)⟨𝛼*𝛽⟩ −

𝜈𝑏

2
⟨𝛼*2⟩+

𝜈𝑎

2
⟨𝛽*2⟩, (A18)

𝑑

𝑑𝑡
⟨𝛼𝛽⟩ = −

1

2
(𝜇𝑎 + 𝜇𝑏)⟨𝛼𝛽⟩ −

𝜈𝑏

2
⟨𝛼*𝛼⟩+

+
𝜈𝑎

2
⟨𝛽*𝛽⟩ −

𝜈𝑏

2
. (A19)
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ГЕНЕРУВАННЯ IНТЕНСИВНОГО
ЗАПЛУТАНОГО ПРОМЕНЯ СВIТЛА
НЕВИРОДЖЕНИМ ТРИРIВНЕВИМ ЛАЗЕРОМ
З ПАРАМЕТРИЧНИМ ПIДСИЛЮВАЧЕМ
I ТЕПЛОВИМ РЕЗЕРВУАРОМ

Дано детальний аналiз двомодового квадратурного стисне-
ння i статистичних властивостей свiтла, що генерується не-
виродженим трирiвневим лазером з параметричним пiдси-
лювачем i тепловим резервуаром. На основi керуючого i
стохастичного диференцiйного рiвнянь дослiджуються не-
класичнi характеристики свiтла, генерованого квантовою
системою. За допомогою їх розв’язкiв i кореляцiйних вла-
стивостей операторiв шуму знайдено квадратурне стисне-
ння, заплутування i середнє число пар фотонiв свiтла ре-
зонатора. Показано, що зовнiшнє збуджувальне випромiню-
вання малої амплiтуди iндукує сильну кореляцiю верхнього
i нижнього рiвнiв трирiвневих атомiв i сильне стиснення.
Наявнiсть параметричного пiдсилювача пiдвищує ступiнь
стиснення свiтла резонатора. Встановлено, що зростання
середнього числа теплових фотонiв зменшує стиснення, але
збiльшує середнє число пар фотонiв свiтла резонатора.

Ключ о в i с л о в а: параметричний пiдсилювач, квадра-
турне стиснення, заплутування, середнє число пар фотонiв.
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