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ELECTRON-LATTICE ENERGY
EXCHANGE AND HOT ELECTRONS
IN METAL ISLAND FILMS

Some aspects of the theory of hot electrons in metal island films have been considered. In
particular, the influence of the electron-lattice energy exchange, which depends on the system
size and on the electronic temperatures of hot electrons is analyzed in detail in the case where
the system size approaches its critical value. A high sensitivity of the electronic temperature
to the metal-nanoparticle size in a vicinity of this critical value is revealed. The results of
computational experiments are presented which confirm the basic concepts of the theory.
K e yw o r d s: thin films, metal nanoparticles, hot electrons, electron-lattice energy exchange,
computational experiment.

1. Introduction

In 1965, paper [1] was published in which the cited
authors reported about the observation of the elec-
troluminescence and electron emission phenomena in
gold and silver island films under the action of an
electric field applied to them. Those authors obtained
the Diploma for Discovery No. 31 with the follow-
ing formulation: “A previously unknown phenomenon
was found consisting in that an electric current, when
passing through thin metal films with an island struc-
ture several tens of angströms in thickness (from 40 to
60 nm for gold), excites an emission current, because
some of the electrons transferring the charge between
the metal islands in the film have a velocity compo-
nent normal to the film surface”. (Priority from June
26, 1963.)

Sometime around 1965, P.G. Borzyak, the supervi-
sor of the authors of work [1], addressed one of the
authors of this work (P.M. Tomchuk) and asked him
to develop a theory of experimentally observed phe-
nomena in metal island films. The results obtained by
P.M. Tomchuk differed from the interpretation pro-
posed by the authors of the discovery. Namely, it was
found that the tunnel current heats up electrons and
they become “hot”. (It should be noted that, besides
the heating with the help of a tunnel current, hot
electrons in island films can be obtained by means of
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the laser irradiation.) Hot electrons, due to their in-
elastic tunneling and inelastic reflection from poten-
tial barriers, are responsible for the film glowing. Fur-
thermore, hot electrons stimulate the electron emis-
sion (Richardson emission of hot electrons). The con-
cept of hot electrons, in addition to the already men-
tioned phenomena, also predicts nonlinear current-
voltage characteristics. This concept and the nonlin-
earity of current-voltage characteristics in metal is-
land films were substantiated in works [2,3] published
in 1966.

Another consequence of the hot-electron idea con-
sists in that such phenomena as the electron and
photon emission can be observed irrespective of the
method used to produce hot electrons (electron heat-
ing with the help of a current or laser irradiation). In
particular, the hot-electron emission from metal is-
land films under the action of a laser radiation was
observed in works [4, 5]. Thus, the theory of hot elec-
trons in metal island films turned out to explain the
electron and photon emissions (irrespective of the
method of electron heating), as well as the emergence
of nonlinear current-voltage characteristics. The only
question that remained unanswered was: Why can
hot electrons be obtained under stationary (quasis-
tationary) conditions and at relatively low electric
fields (or low irradiation intensities) only in metal
island films, but not in continuous films and mas-
sive metals? In continuous metal films and massive
metals, hot electrons can be obtained only with the
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help of powerful ultrashort laser pulses, i.e., in the
pulsed mode.

To understand a relation between the island struc-
ture of metal films and the appearance of hot elec-
trons in them, let us consider the following equation
that determines the temperature of hot electrons:
𝜕

𝜕𝑡
(𝐶𝑒𝑇𝑒) + 𝛼(𝑇𝑒 − 𝑇 ) = 𝑊. (1)

Here, 𝐶𝑒 is the heat capacity of the electron gas, 𝑇𝑒

is its temperature, 𝑇 is the lattice temperature, 𝛼 the
constant of electron-lattice energy exchange, and 𝑊
the energy introduced into a unit volume of the metal
island per unit time. Note that if the island size is
much larger than the electron free path length, Eq. (1)
must also include a gradient term. Furthermore, if
the thermal contact of the metal island with the sub-
strate is not sufficiently good, the island lattice is
also heated up, and we need to describe this pro-
cess in another equation. Below, we will show that
the peculiarities of the electron heating in small is-
lands are mainly governed by the electron-lattice en-
ergy exchange. Therefore, the aforementioned correc-
tions turn out insignificant.

In the stationary case, Eq. (1) brings about the
formula

𝑇𝑒 − 𝑇 =
𝑊

𝛼
. (2)

Hence, one can see that if the power 𝑊 is given, the
electronic temperature 𝑇𝑒 will be higher for a less in-
tensive electron-lattice energy exchange (the constant
𝛼 is lower).

The main mechanism of hot-electron relaxation in a
massive metal is known: it is the generation of acous-
tic modes by electrons according to the Cherenkov
mechanism [6]. In small metal islands (due to a dis-
crete character of acoustic modes), the Cherenkov
mechanism of electron-lattice energy exchange be-
comes significantly modified, and it can disappear
completely for certain island sizes. As a result, ac-
cording to Eq. (1), the heating of electrons in an is-
land film can occur at much lower input powers than
in massive metals and without a thermally induced
film destruction.

2. Generation of Acoustic
Modes by Hot Electrons

The classical description of the electron-lattice en-
ergy exchange can be executed proceeding from the

equation of motion for the vector u(R, 𝑡) of lattice
displacements that arise owing to longitudinal acous-
tic lattice vibrations generated by an electron moving
along the trajectory r0(𝑡):

𝜕2u

𝜕𝑡2
− 𝑠2Δu = −Λ

𝜌
∇𝛿(r0(𝑡)−R). (3)

Here, 𝑠 is the longitudinal sound velocity, 𝜌 the den-
sity, and Λ the energy constant of deformation po-
tential. The derivation procedure of Eq. (3) from the
first principles can be found, e.g., in work [7]. The
energy spent by the electron to generate sound can
be calculated as the work fulfilled by the force with
which the electron acts on the environment,
𝜕𝜉

𝜕𝑡
=

Λ

𝜌

∫︁
𝜕u(R, 𝑡)

𝜕𝑡
∇𝛿(r0(𝑡)−R) 𝑑R. (4)

The difference between the cases of a metal na-
noparticle and a massive metal consists in that the
electron trajectory in the former case, instead of the
rectilinear uniform motion r0(𝑡) = v𝑡, where v is the
electron velocity, acquires the oscillatory character,
i.e., the electron moves from one potential wall to
the other one and backward. If the direction of the
electron motion is taken as the axis 𝑂𝑍, the electron
trajectory can be described as follows:

r0(𝑡) = {0, 0, 𝑧0( 𝑡)},

𝑧0(𝑡) =

{︂
𝑣 𝑡 at 𝑡 < 𝜏/2,
𝐿− 𝑣 𝑡 at 𝑡 > 𝜏/2,

(5)

where 𝜏 = 2𝐿/𝑣 is the period of electron oscillations,
and 𝐿 the distance between the potential walls. In the
case of infinite metal, we obtain the following expres-
sion for the Fourier component of the displacement
vector from Eq. (3):

uq =
𝑖Λ

𝜌
q
𝑒−𝑖(𝜔 𝑡−qR)

𝜔2 − 𝑞2𝑠2
, (6)

where 𝜔 = qv. The pole at 𝜔 = 𝑞𝑠 in Eq. (6) gives the
main contribution to the displacement vector magni-
tude (the Cherenkov mechanism) and, thus, to the
electron-lattice energy exchange. From the resonance
condition 𝜔 = 𝑞𝑠 for the wave vector component 𝑞||
directed along the electron velocity, we obtain

𝑞|| =
𝑠

𝑣
𝑞. (7)

Since 𝑠 ≪ 𝑣 (for typical metals, 𝑠 ∼ 105 cm/s and
𝑣 ∼ 108 cm/s), one can see from Eq. (7) that sound
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is mainly generated by the electron in the direction
perpendicular to its motion, 𝑞|| ≪ 𝑞⊥. In addition,
Eq. (7) gives us an opportunity to understand how
the situation changes in the case of spatially confined
systems. For such systems, the minimum magnitude
of 𝑞|| cannot be less than 𝑞min

|| = 2𝜋/𝐿. On the other
hand, the right-hand side of Eq. (7) cannot exceed
𝑠𝑞D/𝑣 ≡ 𝜔D/𝑣, where 𝑞D is the Debye wave vec-
tor, and 𝜔D the Debye frequency. Therefore, provided
that
2𝜋

𝐿
> 𝜔D/𝑣, (8)

no resonance (at not allowed 𝑞-values) becomes possi-
ble, and the Cherenkov mechanism is no more active
at such dimensions.

Let us dwell on confined systems. In order to deal
with a scalar rather than a vector quantity, let us
introduce the function 𝜒, so that

u = ∇𝜒. (9)

Taking the oscillatory character of the electron mo-
tion along the axis 𝑂𝑍 [see Eq. (5)] into account, let
us expand 𝜒(R, 𝑡) in the Fourier series in 𝑅|| and the
Fourier integral over R⊥ (the details can be found in
works [8, 9]):

𝜒(R⊥, 𝑅||; 𝑡) =

=

∞∑︁
𝑙=−∞

∫︁
𝑑q⊥�̃�(q⊥, 𝑞

𝑙
||; 𝑡) 𝑒

𝑖(q⊥R⊥+𝑞𝑙||𝑅||), (10)

where

𝑞𝑙|| =
2𝜋𝑙

𝐿
, 𝑙 = 1, 2, 3, ... . (11)

Here, we used the cyclic condition

𝜒(R⊥, 𝑅||; 𝑡) = 𝜒(R⊥, 𝑅|| + 𝐿; 𝑡). (12)

Substituting expansion (10) into Eq. (3), we obtain
the following equation to determine �̃�(q⊥, 𝑞

𝑙
||; 𝑡):

𝜕2

𝜕 𝑡2
�̃�(q⊥, 𝑞

𝑙
||; 𝑡)+𝑞2𝑠2�̃�(q⊥, 𝑞

𝑙
||; 𝑡) =

Λ

𝜌

𝑒𝑖 𝑞
𝑙
||𝑧0(𝑡)

(2𝜋)2
, (13)

where 𝑞2 = 𝑞2⊥ + (𝑞𝑙||)
2.

Therefore, while finding the function �̃�(q⊥, 𝑞
𝑙
||; 𝑡),

we obtain an equation for an oscillator with the fre-
quency 𝜔 = 𝑞𝑠 that is subjected to the action of

a periodic force from the electron side. Substituting
the solution of Eq. (13) into formula (10), we deter-
mine the function 𝜒(R⊥, 𝑅||; 𝑡). Then, according to
Eq. (9), we can also determine the displacement vec-
tor u(R, 𝑡). In accordance with Eq. (4), the energy
spent by the electron on the sound generation (the
details of calculation can be found in works [8,9]). For
the real part of 𝜕𝜉/𝜕𝑡, we obtain [8, 9]

Re

(︂
𝜕𝜉

𝜕𝑡

)︂
=

Λ2𝑞2max

16𝜋𝜌 𝑣
𝐺(𝐿, 𝑣). (14)

Here, 𝑞max is the magnitude maximum of the
acoustic-mode wave vector,

𝑞max =

{︂
𝑞D at 𝑞D < 2 𝑘F,
2 𝑘F at 𝑞D > 2 𝑘F,

(15)

where 𝑘F is the Fermi wave vector (below, we will
assume that 𝑞max = 𝑞D). In addition, the notation

𝐺(𝐿, 𝑣) =

{︂
(𝑙max/𝜂)

4(1 + 𝑙−1
max)

2 at 𝜂 > 1,
0 at 𝜂 < 1

(16)

was introduced, where

𝑙max = floor(𝜂), (17)

the function floor(𝜂) is the greatest integer less than
or equal to the number 𝜂, and

𝜂 ≡ 𝐿/𝐿c =
𝐿

2𝜋

𝑞D
[(𝑣/𝑠)2 − 1]1/2

≈ 𝐿
𝑞D
2𝜋

𝑠

𝑣
. (18)

Hence,

𝑙max = floor (𝐿/𝐿c); 𝐿c =
2𝜋 𝑣

𝑞D 𝑠
. (19)

The expression for 𝐺(𝐿, 𝑣) depends quasiperiodi-
cally on 𝜂 = 𝐿/𝐿c (see Fig. 1). The appearance of
every new peak in the curve 𝐺(𝐿, 𝑣) is associated
with the inclusion of a new acoustic mode into the
electron-lattice energy exchange. [Concerning the res-
onance of an external force with its own acoustic
mode, see Eq. (13).] As one can see from Eq. (16),
the electron-lattice energy exchange in the bulk dis-
appears at 𝐿 < 𝐿c, i.e., 𝐺(𝐿 < 𝐿c, 𝑣) = 0, and only
the weaker surface energy exchange remains [10].

Expression (14) determines the energy transferred
by an electron moving with the velocity 𝑣 to the lat-
tice per unit time. To find the contribution of all elec-
trons in the volume 𝑉 (within the energy interval al-
lowed by the Pauli principle) to the electron-lattice
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Fig. 1. Quasiperiodic dependence of the function 𝐺(𝐿, 𝑣) on
𝜂 = 𝐿/𝐿c [see Eq. (14)]

energy exchange, we have to calculate the quantity

𝑄(𝐿, 𝜃𝑒) = 𝑉

𝜇+𝜃𝑒∫︁
𝜇−𝜃𝑒

𝑑 𝜀

{︂
2𝑔(𝜀) 𝑓0(𝜀)Re

(︂
𝜕𝜉

𝜕𝑡

)︂}︂
, (20)

where

𝑔(𝜀) =

√
2𝑚3/2

𝜋2~3
√
𝜀 (21)

is the density of states, 𝜀 the electron energy, 𝜇 the
chemical potential, 𝜃𝑒 the electronic temperature (in
energy units), and 𝑓0(𝜀) the Fermi function

𝑓0(𝜀) =

[︂
exp

(︂
𝜀− 𝜇

𝜃𝑒

)︂
+ 1

]︂−1

. (22)

Expression (20) determines the energy spent by
hot electrons in the volume 𝑉 per unit time to ex-
cite sound vibrations in the lattice. But, along with
the generation of sound vibrations, electrons also ab-
sorb sound. At the thermodynamic equilibrium, the
energy spent by the electrons on the sound generation
is equal to the energy obtained by them at the sound
absorption. Therefore, taking the both effects (sound
generation and absorption) into account, we see that
the energy balance equation from which the electronic
temperature is determined – an analog of Eq. (2) –
should include the difference 𝑄(𝐿, 𝜃𝑒)−𝑄(𝐿, 𝜃), where
𝜃 is the lattice temperature, rather than 𝑄(𝐿, 𝜃𝑒)
alone.

Let us change the variable: 𝑢 = (𝜀 − 𝜇)/𝜃𝑒. Then,
from Eqs. (20) and (14), we obtain

𝑄(𝐿, 𝜃𝑒) = 𝜃𝑒
𝑚2Λ2

2(2𝜋~)3
𝑉

𝜌
𝑞4D

1∫︁
−1

𝑑𝑢 𝑓0(𝑢)𝐺(𝐿, 𝜃𝑒;𝑢). (23)

The function 𝐺(𝐿, 𝜃𝑒;𝑢) in this equation coincides
with the function 𝐺(𝐿, 𝑣), if we put 𝑣 = 𝑣F(1+
+ 𝜃𝑒𝑢/𝜇)

1/2 in the latter (𝑣F is the Fermi velocity).
Then, the quantity 𝜂 in 𝐺(𝐿, 𝜃𝑒;𝑢) is now equal to

𝜂 = (1 + 𝜃𝑒𝑢/𝜇)
−1/2𝐿/𝐿F, (24)

where

𝐿F ≡ 2𝜋𝑣F
𝑞D𝑠

. (25)

Since 𝜃𝑒 ≪ 1, the quantity 𝜂, as well as 𝐺(𝐿, 𝑢), seems
to depend weakly on 𝑢, so that this dependence can
be neglected. This is true as long as the value of 𝐿/𝐿F

is not an integer number (or a number that is rather
close to an integer). The integer values of 𝐿/𝐿F corre-
spond to the resonance condition for the force exerted
on the “acoustic vibrator” from the electron that os-
cillates between the potential walls [see Eq. (13)]. Un-
der the resonance conditions (or close to them), both
the entrance into the resonance and the exit from it
owing to the action of 𝜃𝑒 are possible. Therefore, the
dependence on 𝜃𝑒 under those conditions becomes es-
sential.

Now, instead of the heat balance equation (2),
which determines the electronic temperature under
stationary conditions, we have the equation

𝑄(𝐿, 𝜃𝑒)−𝑄(𝐿, 𝜃) = 𝑉𝑊, (26)

where

𝑄(𝐿, 𝜃𝑒) = 𝑉 𝛼𝜃𝑒

1∫︁
−1

𝑑𝑢 𝑓0(𝑢)𝐺(𝐿, 𝜃𝑒;𝑢) (27)

and

𝛼 ≡ 𝑚2Λ2

2(2𝜋~)3
𝑞4D
𝜌
. (28)

One can easily see from Eq. (16) that, at 𝐿 → ∞,
the function 𝐺(𝐿 → ∞, 𝜃𝑒;𝑢) → 1, and, instead of
Eq. (27), we obtain the well-known expression [6]

𝑚2Λ2

2(2𝜋~)3
𝑞4D
𝜌
(𝜃𝑒 − 𝜃) = 𝑊. (29)

3. Electron-Lattice Energy Exchange

According to Eq. (16), 𝐺(𝐿, 𝑣) = 0 at 𝐿/𝐿c < 1. This
means that the channel of electron-lattice energy ex-
change that is main in massive metal disappears in
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small metal clusters, if the size 𝐿 of the latter does
not exceed 𝐿c:

𝐿 < 𝐿c ≈ 𝐿F =
2𝜋𝑣F
𝑞D𝑠

. (30)

This condition can be rewritten in the form

𝜔D <
2𝜋𝑣F
𝐿

. (31)

The obtained inequality can be interpreted in the
following way. If the electron oscillates between the
potential walls with a frequency higher than the
maximum of the lattice vibration frequency 𝜔D, it
ceases to generate sound vibrations of the lattice, and
this channel of the hot electron relaxation becomes
closed. Less intensive relaxation mechanisms associ-
ated with the electron scattering at the cluster surface
come into play [11].

The sharp weakening of the electron-lattice energy
exchange under condition (30) [or, equivalently, (31)]
can explain the appearance of hot electrons in the
stationary state at relatively low energy powers in-
troduced into the nanoparticle. This weakening can
also explain why there are no similar effects in con-
tinuous films and massive metals. Namely, owing to
the intensive electron-lattice energy exchange in those
objects, the thermal destruction of the lattice occurs
before the electronic temperature substantially ex-
ceeds the lattice one. Hot electrons can be obtained
in those materials without thermally destructing their
lattices only with the help of ultrashort powerful laser
pulses.

Let us return to the balance equation that deter-
mines the electronic temperature. From Eqs. (26) and
(27), we have

1∫︁
−1

𝑑𝑢 𝑓0(𝑢)[𝜃𝑒𝐺(𝐿, 𝜃𝑒;𝑢)− 𝜃𝐺(𝐿, 𝜃;𝑢)] =
𝑊

𝛼
. (32)

Our task in this work consists in a detailed research
of the specific features in the size dependence of the
electron-lattice energy exchange near the critical size
value and in elucidating how those features manifest
themselves in the electronic temperature 𝜃𝑒.

It is worth making the following remark. According
to Eqs. (28) and (29), the energy transferred from
electrons to the lattice depends linearly on 𝜃𝑒. If the
power 𝑊 introduced into the nanoparticle increases,
this dependence can become nonlinear. (In particular,

Fig. 2. Dependence of the power 𝑊 required to obtain the
electronic temperature 𝜃𝑒/𝜃 = 5 on the nanoparticle size of the
nanoparticle size 𝜂 = 𝐿/𝐿c

such a nonlinearity can appear owing to the heating
of the lattice as well.) This nonlinearity will automat-
ically reveal itself as a nonlinear dependence of 𝜃𝑒 on
𝑊 . We will confine the consideration to the nonlin-
earity associated with the size-related features in the
electron-lattice energy exchange, when the size of na-
noparticles 𝐿 is close to the critical value 𝐿c. It should
also be emphasized that, under certain conditions –
e.g., if the electrons and the lattice are heated up si-
multaneously – it is the power introduced into the
nanoparticle that may explicitly depend on the elec-
tronic temperature.

After having made these remarks, let us proceed
to the discussion of the results obtained. Figure 2
illustrates the relation between the power 𝑊 intro-
duced into the nanoparticle and the nanoparticle size
𝜂 = 𝐿/𝐿c for the fixed value of the electronic temper-
ature 𝜃𝑒/𝜃 = 5. This figure clearly demonstrates that
the power 𝑊 required for a given electronic temper-
ature 𝜃𝑒 to be reached strongly depends on the nano-
particle size.

As was noted above, the Cherenkov mechanism of
electron-lattice energy exchange is absolutely inac-
tive, if 𝐿 < 𝐿c. As the size 𝐿 grows above 𝐿c, this
mechanism becomes switched-on in a quasiperiodic
manner. Every time when a new group of acoustic
waves with a longitudinal (relatively to the electron
velocity) component 𝑞|| of the wave vector become
engaged in the energy exchange process, there ap-
pears a peak in the intensity of the electron-lattice
energy exchange. Even this cause alone can provide
a wide range of electronic temperatures in the is-
land films, which are characterized by the island size
and shape dispersion. An additional contribution to
the electronic temperature distribution over nano-
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Fig. 3. Dependences of the power 𝑊 (𝜃𝑒/𝜃; 𝜂) required to
obtain the identical (fixed) temperature of hot electrons 𝜃𝑒/𝜃

in nanoparticles with different sizes

Fig. 4. Dependence between the power introduced into the na-
noparticle and the obtained electronic temperature at various
nanoparticle sizes

particles can be made by the explicit dependence of
𝑊 on 𝜃𝑒.

In Fig. 3, the dependences of the electronic tem-
perature on the power introduced into nanoparticles
with various sizes close to the critical value 𝐿c are
shown (2 6 𝜃𝑒/𝜃 6 21 and Δ𝜃𝑒/𝜃 = 1). The re-
sults testify to a high sensitivity of the electronic
temperature to the nanoparticle size near the criti-
cal value. The same power 𝑊 introduced into metal
nanoparticles with slightly different sizes (near the
critical one) may result in substantially different elec-
tronic temperatures. An enhanced sensitivity to the
nanoparticle size is also observed at nanoparticle sizes

that are multiples of the critical value, but this pa-
rameter becomes much weaker.

Figure 3 also shows the power 𝑊 that is required to
obtain the same (fixed) temperature of hot electrons
𝜃𝑒 in nanoparticles with different sizes. The curves
in Fig. 3 are characterized by different values of the
ratio𝜃/𝜃0. One can see that if the sizes of nanopar-
ticles are close to the critical one, substantially differ-
ent powers have to be introduced into them in order
to obtain the same electronic temperature.

Figure 4 shows a three-dimensional graphical rep-
resentation of the relation between the power intro-
duced into the nanoparticle and the electronic tem-
perature at various nanoparticle sizes.

A possibility of obtaining hot electrons in nanopar-
ticle with definite sizes at relatively low introduced
powers explains why hot electrons can be obtained
under stationary conditions only in island films, but
not in continuous films and massive metals. Owing
to the intensive electron-lattice energy exchange in
continuous films and massive metals, the thermal de-
struction of the material occurs earlier than the elec-
tronic temperature becomes different from the lat-
tice temperature. Therefore, hot electrons can be pro-
duced in those materials without the thermal destruc-
tion of the latter only with the help of short and
powerful laser pulses. However, in the metal island
films with a wide size dispersion, which were used
in experiments [1], there always existed metal islands
whose sizes were equal (or close) to the critical one. In
such islands, the intensity of electron-lattice energy
exchange was minimum, so that the electronic tem-
perature was reached at a minimum power. At such
relatively low powers, the temperature of the lattice
in the island could be easily stabilized at values far
from the film destruction temperature.

In works [8, 9], it was shown that the Cherenkov
mechanism of sound generation by electrons, which
is the main channel for the hot-electron relaxation in
massive metals, is no more active in metal nanopar-
ticles whose sizes are smaller than a certain critical
value. Furthermore, the decrease in the intensity of
electron-lattice energy exchange with the reduction
of the particle size and its approach to the critical
value was found to be not smooth, but quasiperiodic.

In this work, we analyzed how the size dependence
of the electron-lattice energy exchange affects the
temperatures of hot electrons when approaching the
critical sizes. A high sensitivity of the electronic tem-
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perature to the nanoparticle size in vicinities of criti-
cal values was demonstrated. The size dependence of
the electronic temperature was also observed at na-
noparticle sizes that are multiples of the critical size,
but it was much weaker.

A wide dispersion of metal islands in the dispersed
films [1] is responsible for a wide dispersion of elec-
tronic temperatures in different islands and, in such a
way, provides a multicolored glowing of the film when
a current passes through it.

We considered in detail the size dependence of the
electron-lattice energy exchange near the critical size
of metal nanoparticle. If the nanoparticle size does
not coincide with the critical value 𝐿c and the elec-
tron velocity changes within the limits

(1− 𝜃𝑒/𝜇)
1/2 6 𝑣/𝑣F 6 (1 + 𝜃𝑒/𝜇)

1/2,

the multiplier 𝐺(𝐿, 𝜃𝑒;𝑢) in formula (27) can be put
out of the integral (at 𝑢 = 0), which means, in effect,
that we put 𝐿c ≈ 𝐿F. Then, from Eq. (26), we obtain
the following analytic size dependence:

𝜃𝑒 ≈ 𝜃+
𝑊

𝛼

(︂
𝐿

𝐿F

)︂4⧸︂(︂
floor

(︂
𝐿

𝐿F

)︂)︂2{︂
1 + floor

(︂
𝐿

𝐿F

)︂}︂2
.

(33)

From this formula at 𝐿 ≫ 𝐿F, we obtain the well-
known result

𝜃𝑒 ≈ 𝜃 +
𝑊

𝛼
. (34)

4. Conclusions

The results of computational experiments confirmed
the fundamental concepts of the theory of hot elec-
trons in metal island films developed by P.M. Tom-
chuk with co-authors [2, 3, 7–16].

The appearance of hot electrons in metal island
films at relatively low input powers is possible owing
to the peculiarities of the energy exchange in those
objects. In a massive metal, the main channel of the
relaxation for nonequilibrium electrons is the Che-
renkov mechanism of sound generation. In metal is-
land films, this mechanism is modified owing to the
change of the electron trajectory shape (from recti-
linear in massive metals to oscillatory in nanopar-
ticles). In this case, the intensity of electron-lattice
energy exchange drastically decreases at certain sizes
of metal nanoparticles. This circumstance favors the

appearance of hot electrons. The size dependences of
the energy exchange manifest themselves in the elec-
tronic temperature, and the latter manifests itself in
various physical phenomena (e.g., electron and pho-
ton emissions).

In this work, we considered the sound generation
by electrons and the related phenomena that occur
in the bulk of metal nanoparticles. Hot electrons in
those particles can generate sound in the dielectric
matrix, where they are located. The corresponding
phenomena were considered, e.g., in works [15–17].
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ЕЛЕКТРОН-ҐРАТКОВИЙ
ЕНЕРГООБМIН I ГАРЯЧI ЕЛЕКТРОНИ
В ОСТРIВКОВИХ МЕТАЛЕВИХ ПЛIВКАХ

Р е з ю м е

В роботi розглядаються завершальнi тези теорiї автора, яка
описує гарячi електрони в острiвкових металевих плiвках.
Детально дослiджено, як розмiрнi залежностi електрон-
ґраткового енергообмiну впливають на електроннi темпе-
ратури гарячих електронiв при наближеннi системи до
критичних розмiрiв. Виявлено високу чутливiсть електрон-
ної температури до розмiрiв металевої наночастинки в око-
лi критичних значень. Отримано результати обчислюваль-
них експериментiв, якi пiдтверджують основнi положен-
ня теорiї.
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