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NEAR RESONANT OPTICAL ABSORPTION
BY A SYSTEM COUPLED WITH TWO LASER BEAMS 1

The structure of a solution of the generalized Maxwell–Bloch system of equations describing
the strongly pumped interacting two-level atoms is discussed. This structure is represented by
means of the corresponding differential equations for each contributing process. The interaction
between the processes is introduced through the interaction integral and is illustrated by the spe-
cific system of graphs. The method allows one to describe the quantum-field-induced long-range
interaction prevailing over short-range collisions and causing the broadening, narrowing, and
shifts of an absorption line shape. The description is given in terms of the interaction integrals
which couple the collective atomic polarization and population inversion. The contributions
from different effects are analyzed with the use of the additivity of the corresponding absorp-
tion/reemission rates.

K e yw o r d s: two-laser beam spectroscopy, absorption coefficient, quantum optics, many-body
interaction, non-linear optics.

1. Introduction
In this work, we investigate the analytical method of
description of a many-atom system interacting with
a strong pumping and counterpropagating scanning
probe laser beams. The system is described by means
of the corresponding system of non-linear integro-
differential equations.

The problem of a complete consistent analytical
description of the interacting many-body system is
actual for developingthe two-beam spectroscopy (so-
called optical-optical double resonance, see, e.g., [1–
3]). Mainly, the establishment of the adequate in-
terpretation method is emphasized here. Therefore,
some structural features of the generalized Maxwell–
Bloch system of equations are revealed.

The model system under discussion takes the quan-
tization of an electromagnetic field into account. In
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comparison with the semiclassical description (e.g.,
[4–17]), the quantum optics can uncover quantita-
tively and qualitatively new effects (see examples in
[18–26]).

The well-known Maxwell–Bloch equations de-
scribe, strictly speaking, the model of interaction of
the radiation field with a dilute ensemble of atoms
in the semiclassical dipole approximation. The gen-
eralized Maxwell–Bloch system of equations for an
optically dense medium is derived by the authors in
[21]. The construction of the system of equations is
based on the model Hamiltonian in the short time
scale limit (see details in [27]). In comparison with
other works (e.g., [28]), the relatively fast coopera-
tive radiative atom-atom interactions are taken into
account.

1 The paper was presented at the XXIVth Galyna Puchkovska
International School-Seminar “Spectroscopy of Molecules
and Crystals” (August 25–30, 2019, Odesa, Ukraine).
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2. Model

2.1. Generalized Rabi frequency

Suppose that the ensemble of 𝑁 atoms that fill a
volume 𝑉 optically transparent in the defined direc-
tion interacts with the modes of a quantized electro-
magnetic field of two oppositely directed lasers. The
schematic illustration of the model gas of atoms
(molecules) in a transparent chamber at the tem-
perature 𝑇 is illustrated in Fig. 1. The system is
open (without mirrors). The two counterpropagating
laser beams, strong and relatively weak, are pass-
ing through the sample. The frequencies of the beams
are close to the optical resonant transition of the gas
components. The emission spectrum of the model gas
is narrow (within the double Rabi frequency of the
strong beam), so that only two energy levels in the
possible induced optical transitions are involved.

The frequencies of the modes of two electromag-
netic fields are distributed near the resonant fre-
quency 𝜔0 of a single atomic transition between only
two levels 𝑏 (ground state) and 𝑎 (excited state). The
natural decay rate of an isolated atom from its ex-
cited state is defined by the quantity 𝛾. The inter-
atomic and atom-field interactions are defined by the
model Hamiltonian including the operators of the in-
trinsic energy of free atoms, energy of a free exter-
nal field, and energy of the quantum optical dipole-
dipole coupling between all quite close pairs of parti-
cles (see details in [27]). Based on the model Hamil-
tonian, the microscopic evolution equations can be
built for the 𝑁 -particle density matrix elements. As
was shown in [21], the corresponding macroscopic ki-
netic equations in terms of the one-particle proba-
bility density matrix and the effective collective field
can have the form of the generalized Maxwell–Bloch
equations. Let 𝜌𝑎𝑎 (𝑡, r) and 𝜌𝑏𝑏 (𝑡, r) be the macro-
scopic probability densities to find an atom during
the infinitesimal time interval (𝑡− 𝑑𝑡, 𝑡+ 𝑑𝑡) at the
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Fig. 1. Schematic illustration of the model gas of atoms
(molecules) in a transparent chamber at the temperature 𝑇 .
The open (without mirrors) system is coupled near the opti-
cal resonant transition with the two counterpropagating strong
and relatively weak laser beams

location of the physically small volume (r+ 𝑑r) in
the excited and ground states, accordingly; and let
𝜌𝑏𝑎 (𝑡, r) = 𝜌*𝑎𝑏 (𝑡, r) be the polarization of the gas
medium defining the averaged “off-diagonal” density
matrix element for an atom. The appropriate mod-
ification of the common Bloch equations (see, e.g.,
[18], Ch. 5.4, pp. 165–167) is therefore taken into ac-
count in the following formula for a generalized Rabi
frequency:

Ω (𝑡, r) = ΩAF (𝑡, r) + ΩInt (𝑡, r), (1)

where ΩAF (𝑡, r) = ℘℘̂ ℰ(𝑡,r)
~ . Here, the applied ex-

ternal field is approximated by the strong and
weak counterpropagating monochromatic plane elect-
romagnetic waves with Rabi couplings Ω1 ≫ Ω2,
accordingly, and slightly different frequencies 𝜔
(for a pump) and 𝜈 (for a signal): ℰ (𝑡, r) =
= E1𝑒

−𝑖(𝜔 𝑡−k1 r) +E2𝑒
−𝑖(𝜈 𝑡+k2 r), where k2 ‖ k1.

The amplitudes E1 and E2 can depend on the spatial
coordinates r and time 𝑡, according to the Maxwell
equations with the polarization P (𝑡, r) of the system
per unit volume, which is determined by the aver-
aged “off-diagonal” density matrix element: P (𝑡, r) =
= 2𝑁℘℘̂Re (𝜌𝑏𝑎 (𝑡, r)); ℘℘̂ is the off-diagonal matrix
element of the dipole moment of an atom for the tran-
sition 𝑏 → 𝑎, with ℘̂ being the unit vector.

The interaction strength (or the so-called Rabi fre-
quency for the effective collective field) is

ΩInt (𝑡, r) = −2

~
𝜒

∫︁
𝑑r′ {Re (𝜌𝑏𝑎(𝑡, r′))𝑄 (r, r′)}, (2)

where 𝜒 ∼= 1
4𝜋𝜀0

𝑁℘2 with the integral kernel cor-
responding to the long-range dipole-dipole coupling
(originating from the results in [27])

𝑄 (r, r′) =
℘̂ ℘̂′

|r− r′|3
−

− 3

(︁
℘̂ (r− r′)

)︁(︁
℘̂′ (r− r′)

)︁
|r− r′|5

. (3)

Note that, in accordance with the macroscopic defi-
nitions, the atomic concentration can be determined
by the expression: 𝑛(r) = 𝑁 (𝜌𝑎𝑎 (𝑡, r) + 𝜌𝑏𝑏 (𝑡, r)).

3. Structure of the Solution

Suppose that the system evolves near a stationary
state defined by the unperturbed diagonal and off-
diagonal density matrix elements 𝜌

(0)
𝛼𝛽 for 𝛼 ∈ {𝑎, 𝑏}

and 𝛽 ∈ {𝑎, 𝑏}.
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In view of the weakness of the probe field and the
interatomic coupling in comparison with the driving
field, the inequalities

|Ω2|
|ΩAF|

≪ 1 and

⃒⃒
ΩInt

⃒⃒
|ΩAF|

≪ 1 with Ω2 =
℘℘̂E2

~
(4)

allow us to represent the solution of the macroscopic
Maxwell–Bloch equations (see [21]) with the general-
ized Rabi frequency (1) through the following terms:

𝜌𝛼𝛽 (𝑡, r) = 𝜌
(0)
𝛼𝛽 + 𝛿𝜌

(2)
𝛼𝛽 (𝑡, r) + 𝛿𝜌𝛼𝛽 (𝑡, r)+

+ 𝛿𝜌𝛼𝛽 (𝑡, r) + 𝛿𝜌𝛼𝛽 (𝑡, r), (5)

where 𝜌
(0)
𝛼𝛽 with 𝛼 ∈ {𝑎, 𝑏} and 𝛽 ∈ {𝑎, 𝑏} is the

“equilibrium” solution for the system of pumped non-
interacting atoms; 𝛿𝜌𝛼𝛽 (𝑡, r) for 𝛼 ∈ {𝑎, 𝑏} , and
𝛽 ∈ {𝑎, 𝑏} is a perturbation to 𝜌

(0)
𝛼𝛽 in the case

of non-zero interaction term
⃒⃒
ΩInt

⃒⃒
̸= 0 and with-

out external probe field |Ω2| = 0. The correction
𝛿𝜌𝛼𝛽 (𝑡, r) is induced, when both the strong and
weak fields are applied without interatomic interac-
tion

⃒⃒
ΩInt

⃒⃒
= 0, and 𝛿𝜌𝛼𝛽 (𝑡, r) takes into account

the corrections to the absorption/reemission rates in-
duced by the perturbed population inversion and the
polarization 𝛿𝜌𝛼𝛽 (𝑡, r) (see [21] for details). There-
fore, |Ω2| ≠ 0 and

⃒⃒
ΩInt

⃒⃒
̸= 0, and 𝛿𝜌

(2)
𝛼𝛽 (𝑡, r) repre-

sents a strongly non-linear perturbation of the inter-
action item ΩInt (𝛿𝜌𝑏𝑎 + 𝛿𝜌𝑏𝑎 + 𝛿𝜌𝑏𝑎) induced by the
dipole-dipole coupling of the perturbed population
and the polarization of the medium.

When the steady-state approximation is applied to
the pumping field [in other words, when 𝜌

(0)
𝑎𝑎 , 𝜌

(0)
𝑎𝑎 ,

and 𝜌
(0)
𝑏𝑎 are assumed to be essentially larger in their

absolute values in comparison with the other items in
(5)], the integral Rabi frequency ΩInt can be factor-
ized to time and space functions. Namely,

ΩInt (𝑡, r) ∝ 𝐼 (k, r), (6)

where
𝐼 (k, r) =

∫︁
𝑉

𝑑r′ 𝑒𝑖k (r−r′)𝑄 (r, r′). (7)

Here, the integration is defined over the space volume
𝑉 outside the spherical shell with the radius equal to
the average distance between the nearest atoms.

The perturbations 𝛿𝜌𝛼𝛽 (𝑡, r), 𝛿𝜌𝛼𝛽 (𝑡, r) are de-
fined as solutions of the corresponding systems of dif-
ferential equations.

3.1. The case where the dipole
“probe” field is much stronger than
the dipole-dipole interaction

By definition, the matrix elements of 𝛿𝜌 (𝑡, r) have to
satisfy the following system of equations:

𝜕

𝜕𝑡
𝛿𝜌𝑎𝑎 (𝑡, r) = −𝛾𝛿𝜌𝑎𝑎 (𝑡, r)+

+
𝑖

~
℘
[︁
𝜌
(0)
𝑏𝑎 (𝑡, r) ℘̂E2 (𝑡, r)− c. c.

]︁
+

+
𝑖

~
℘ [𝛿𝜌𝑏𝑎 (𝑡, r) ℘̂ (E1 (𝑡, r) +E2 (𝑡, r))− c. c.]; (8)

𝛿𝜌𝑏𝑏 (𝑡, r) = −𝛿𝜌𝑎𝑎 (𝑡, r); (9)

𝜕

𝜕𝑡
𝛿𝜌𝑏𝑎 (𝑡, r) = (−𝛾𝑏𝑎 + 𝑖𝜔0) 𝛿𝜌𝑏𝑎 (𝑡, r)+

+
𝑖

~
(︀
𝜌0𝑎𝑎 − 𝜌0𝑏𝑏

)︀
℘℘̂E2

* (𝑡, r) +
𝑖

~
(𝛿𝜌𝑎𝑎 (𝑡, r)−

− 𝛿𝜌𝑏𝑏 (𝑡, r))℘℘̂ (E*
1 (𝑡, r) +E2

* (𝑡, r)). (10)

In this approximation, we do not account for the
quasiclassical equation of motion for the avera-
ged velocity of atoms. We recall that E2 (𝑡, r) =
= E02𝑒

−𝑖(𝜈 𝑡+k2 r).

3.2. The perturbation induced
by the “interaction” of the “probe”
field with the perturbation 𝛿𝜌
found without a probe field

The process (perturbation) 𝛿𝜌 (𝑡, r) is defined as the
solution of the system of equations as follows:

𝜕

𝜕𝑡
𝛿𝜌𝑎𝑎 (𝑡, r) = −𝛾𝛿𝜌𝑎𝑎 (𝑡, r)+

+
𝑖

~
℘ [𝛿𝜌𝑏𝑎 (𝑡, r) ℘̂E2 (𝑡, r)− c. c.] +

+
𝑖

~
℘ [𝛿𝜌𝑏𝑎 (𝑡, r) ℘̂ (E1 (𝑡, r) +E2 (𝑡, r))− c. c.]; (11)

𝛿𝜌𝑏𝑏 (𝑡, r) = −𝛿𝜌𝑎𝑎 (𝑡, r); (12)

𝜕

𝜕𝑡
𝛿𝜌𝑏𝑎 (𝑡, r) = (−𝛾𝑏𝑎 + 𝑖𝜔0) 𝛿𝜌𝑏𝑎 (𝑡, r)+

+
𝑖

~
(𝛿𝜌𝑎𝑎 − 𝛿𝜌𝑏𝑏)℘℘̂E2

* (𝑡, r) +
𝑖

~
(𝛿𝜌𝑎𝑎 (𝑡, r)−

− 𝛿𝜌𝑏𝑏 (𝑡, r))℘℘̂ (E*
1 (𝑡, r) +E2

* (𝑡, r)). (13)
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3.3. Corrections induced by the perturbation
of the “interaction” integral

The perturbation (process) 𝛿𝜌(2) (𝑡, r) is generated by
the integral terms in the generalized Maxwell–Bloch
system of equations (see details in [21]), when one
considers the above-found perturbations under the in-
tegrals describing the quantum optical dipole-dipole
contribution. Avoiding the resonant terms and keep-
ing the introduced first-order perturbations under the
“interaction” integral, we get that 𝛿𝜌(2) (𝑡, r) is defined
by the following system of equations:
𝜕

𝜕𝑡
𝛿𝜌(2)𝑎𝑎 (𝑡, r) = −𝛾𝛿𝜌(2)𝑎𝑎 (𝑡, r)+

+
𝑖

~
℘
(︁
𝛿𝜌

(2)
𝑏𝑎 (𝑡, r) ℘̂E1 (𝑡, r)− c. c.

)︁
+

+
𝜒

~ 𝑖

{︁
𝜌0𝑏𝑎𝑒

2𝑖 (𝜔 𝑡−k1 r)Int
(︁
𝛿𝜌

(1)
𝑏𝑎

)︁
+

+ 𝜌0𝑏𝑎

[︁
Int

(︁
𝛿𝜌

(1)
𝑏𝑎

)︁]︁*
+ 𝜌0𝑏𝑎𝛿𝜌

(1)
𝑏𝑎 (r, 𝑡) 𝑒2𝑖 (𝜔 𝑡−k1 r)𝐼 +

+
(︀
𝜌0𝑏𝑎

)︀*
𝛿𝜌

(1)
𝑏𝑎 (r, 𝑡) 𝐼* − c. c.

}︁
; (14)

𝜕

𝜕𝑡
𝛿𝜌

(2)
𝑏𝑎 (𝑡, r) = (−𝛾𝑏𝑎 + 𝑖𝜔0) 𝛿𝜌

(2)
𝑏𝑎 (𝑡, r)+

+
𝑖

~

(︁
𝛿𝜌(2)𝑎𝑎 (𝑡, r)− 𝛿𝜌

(2)
𝑏𝑏 (𝑡, r)

)︁
℘℘̂E*

1 (𝑡, r)−

− 𝑖𝜒

~
(︀
𝜌0𝑎𝑎 (r)− 𝜌0𝑏𝑏 (r)

)︀{︁
𝑒𝑖 (𝜔 𝑡−k1 r)Int

(︁
𝛿𝜌

(1)
𝑏𝑎

)︁
+c.c.

}︁
−

− 𝑖𝜒

~

(︁
𝛿𝜌(1)𝑎𝑎 (r, 𝑡)−𝛿𝜌

(1)
𝑏𝑏 (r, 𝑡)

)︁{︁
𝜌0𝑏𝑎𝑒

𝑖 (𝜔 𝑡−k1 r)𝐼+c.c.
}︁
.

(15)
𝛿𝜌

(2)
𝑏𝑏 (𝑡, r) = −𝛿𝜌(2)𝑎𝑎 (𝑡, r). (16)

Here, by definition, Int(𝛿𝜌
(1)
𝑏𝑎 ) is defined by the

integral Rabi frequency −~ΩInt(𝛿𝜌
(1)
𝑏𝑎 )/(2𝜒), when

the above-introduced perturbations are included (see
more details in [21]).

3.3.1. Total absorption coefficient, probe
transmittance and gain dependent on atomic density

Accordingly, if the time dependence of the probe am-
plitude is neglected in the case of the near-stationary
system state (in the sense of dynamic equilibrium),
then the appropriate Maxwell equation for the slowly
varying probe field amplitude is as follows:
𝛿

𝛿𝑧
E02 (r) = −1

2
E02 (r)𝛼

′
tot, (17)

where the total probe absorption coefficient 𝛼′
tot is

defined through the total absorption/re-emission rate
denoted further as 𝑊 ′

tot at the given location.

3.4. Superposition of the induced
absorption/reemission rates

Therefore, the total local absorption/reemission rate
of probe photons, denoted as 𝑊 ′

tot, is the sum of the
rates induced by perturbations:

𝑊 ′
tot = 𝑊 ′ + 𝛿�̆� ′ + 𝛿𝑊 ′(2), (18)

where 𝛿𝑊 ′ = −2Ω2 Im (𝐶 ′), 𝛿�̆� ′ = −2Ω2 Im (𝐶 ′),
𝛿𝑊 ′(2) = −2Ω2 Im (𝐶

′(2)
1 ). The polarization ampli-

tudes 𝐶 ′, 𝐶 ′, and 𝐶
′(2)
1 are defined by the off-diagonal

(𝛼 ̸= 𝛽) elements of the perturbations 𝛿𝜌𝛼𝛽 (𝑡, r),
𝛿𝜌𝛼𝛽 (𝑡, r), and 𝛿𝜌

(2)
𝛼𝛽 (𝑡, r), correspondingly, and are

related to oscillations with the frequency of a probe
laser 𝜈.

All values of the coherence (polarization) ampli-
tudes 𝐶 ′, 𝐶 ′, and 𝐶

′(2)
1 are found by solving the corre-

sponding system of algebraic equations, being a result
of the substitution of the perturbations in the form of
series of the induced modes (see details in [21]) into
the corresponding systems of differential equations.

Then the total local coefficient 𝛼′
tot for the probe

field is defined as a superposition of the coefficients
“induced” by perturbations:

𝛼′
tot = 𝒦𝑊 ′

tot = 𝛿𝛼′ + 𝛿�̆�′ + 𝛿𝛼′(2), (19)

where the correspondence between the constituent co-
efficients and the absorption/reemission rates is es-
tablished by the same superscripts. 𝒦 = Doppl 𝑓𝑁~𝜈

𝜖0𝑐(E2(r))
2

with 𝑐 and Doppl 𝑓 denoting the speed of light in
vacuum and the Doppler correction (partition), ac-
cordingly.

The above-provided systems of differential equa-
tions for the additive components of the absorption
coefficient allow us to deduce the definite structure
of the total solution. This is briefly discussed in the
next section.

4. Schematic Representation
of the System of Differential Equations

In accordance with the systems of differential equa-
tions introduced in the previous section, the struc-
ture of the solution is illustrated in the scheme in
Fig. 2. Here, the dependence of a term (such as 𝛿𝜌, ...,
𝛿𝜌(2)) on the other induced processes is shown by the
dashed arrows joining the processes that generate the
term. The type of interaction that involves the gener-
ating processes is shown to the left of the figure (left

280 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 4



Near Resonant Optical Absorption

ordinate), while the types of the processes are cited at
the right side of the figure (right ordinate). Each in-
duced term is depicted by the horizontal vector. The
circle with enclosed directed arrow depicts the inter-
action caused by the virtual photon exchange between
the collective polarization/population induced by the
laser beams with the wave-vectors k1 and k2. It is
introduced by the interaction integral 𝐼. The semi-
circle depicts the interaction of the type of dipole-field
coupling. It is introduced by the scalar products be-
tween the vectors of the fields with the wave vectors
k1 and k2 and the induced dipole moments of the col-
lective polarizations. In principle, the directions and
lengths of the vectors can be defined by their contri-
butions (addition or subtraction). For this purpose,
a scaling map for the corresponding absorption/re-
emission rates has to be developed depending on the
ordinates (processes and the type of interaction). The
possibility to describe the laser beam scattering by a
rearrangement of the terms as in Fig. 2 requires an
additional investigation. For example, the introduced
terms (processes) 𝛿𝜌, ..., 𝛿𝜌(2) are defined by the se-
ries of amplitudes that can compose a state vector
in the certain basis (see details in [21]). However, the
analytical definition of the processes in the form of
the corresponding differential equations is more flex-
ible and can cover a variety of effects. An example
of a scattering process in terms of diagrams is given
below.

The interesting fact is that the light beam with
the wave vector k1 or k2 cannot pass through a sam-
ple under the given conditions, because of the quite
high absorption rate by an isolated atom. The process
of transmission can be due to a specific transparent
(dressed) state of the medium. The latter, in a sim-
plified case, is depicted in diagram 3. The ellipse with
the enclosed directed spring depicts the non-linear
interaction between two beams with the wave vec-
tors k1 and k2 by the means of the induction of the
population (polarization) collective waves (shown by
the enclosed spring. The curved arrow depicts a laser
beam with a wave-vector k.

In the applied theoretical approximations, the scal-
ing network in the solution structure has to be in
the accordance with the corresponding analytical so-
lution. The example of the analytical solution of the
system of equations (8)–(10) (see details of the ap-
proximation in [21]) along with the corresponding ex-
perimental observations for a sample of sodium vapor

virtual photon exchange between the

collective polarization - population

the dipole-field coupling

0

d /dt

d (2)/dt

d /dt

d /dt

k2

k1

W0W
(2) WWW

The structure of the solution

Fig. 2. Structure of the solution. The circle with the enclosed
directed arrow and the semicircle depict the interactions caused
by the virtual photon exchange between the collective polariza-
tion/population and by the dipole-field coupling, accordingly

k2

k1

k

k1 k

k2+ kk = k1 k2

Scattering diagram

a laser beam wit-h a wave vector k.

the non-linear interaction

between the two beams

Fig. 3. Scattering diagram. The ellipse with the enclosed
directed spring depicts the non-linear interaction between two
beams with the wave vectors k1 and k2 (shown by curved ar-
rows)

(see work [29]) is presented in graph 4. Figure 4 shows
the “probe” gain of a vapor cell (the ratio of the trans-
mitted and initial intensities) at the non-resonant
pump frequency as a function of the probe detu-
ning. The dashed line follows the analytically derived
dependence with a resolution of 0.45 GHz. PThe
pump is shifted by −700 MHz relative to the averaged
resonant frequency of the 𝐷2 sodium line. The effec-
tive beam path-length is 1/300 m. The corresponding
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Fig. 4. Example of the analytical solution (dashed line recal-
culated from [21]) and the experimentally observed data (solid
line) from [29] for the probe intensity gain in sodium vapor
at 617 K. The Rabi frequency of the pumping beam is about
2 GHz

number of atoms per cubic wavelength is 241 (at a
temperature of about 617 K). The experimental data
observed under the same conditions in work [29] are
shown by the solid line. The maximum gain for the
probe field occurs at a detuning by the approximately
double Rabi frequency from the averaged resonant
frequency.

We mention several different features of the the-
oretical and experimental line-shapes in Fig. 4. Des-
pite the qualitatively good coincidence at the left and
right wings and the main red shifted peak, the di-
vergence of the curves at some locations is caused by
the limitations of the applied approximations and the
theoretically undefined factors related to the speci-
ficity of the experimental setup. Mainly, the depen-
dence on the optical path length expressed by (17)
is disregarded. Furthermore, the system of equations
has been solved analytically using the linearization of
the integral term for the term 𝛿𝜌. Moreover, a more
accurate theory should explicitly include the thermal
motion of atoms that, in our opinion, can generate a
much more complicated dependence on the resonant
frequency because of the Doppler shift.

5. Conclusion

It is shown that, due to the quantization of the elec-
tromagnetic field, the structure of the solution for the
corresponding generalized system of Maxwell–Bloch
equations can be represented through the additive
processes induced by the quantum optical dipole-
field and dipole-dipole couplings. The structure of
the solution is represented by means of the corre-
sponding differential equations for each contribut-

ing process. The interaction between the processes
is represented through the interaction integral and
was illustrated by the system of directed graphs. In
terms of the interaction integral coupling the collec-
tive atomic polarization and population inversion, the
contribution from different effects can be analyzed
using the additivity of the corresponding absorp-
tion/reemission rates. The method allows us to de-
scribe the quantum-field-induced long-range interac-
tion prevailing over short-range collisions, causing the
broadening, narrowing, and shifts of a near-resonant
absorption line shape.

If the experimental two-beam absorption line shape
is given, the proposed representation can be used for
the determination of the macroscopic collective inter-
action parameter 𝐼, i.e., the interaction integral. The
example of an analytical solution corresponding to
the schematic representation of the structure of the
solution is provided. Within the discussed approxi-
mation, the theory can provide a quite good agree-
ment with the experiment. Therefore, when the non-
linear quantum optical collective coupling between
atoms and the field defines the most prominent ef-
fect in the experiment, the proposed method can
be used. At this point, the application of the struc-
tural representation requires further development and
testing.
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ПОГЛИНАННЯ В ОПТИЧНОМУ
ДIАПАЗОНI СИСТЕМОЮ, ВЗАЄМОДIЮЧОЮ
З ДВОМА ЛАЗЕРНИМИ ПРОМЕНЯМИ
ПОБЛИЗУ РЕЗОНАНСУ

Р е з ю м е

У роботi розглядається структура розв’язку узагальненої
системи рiвнянь Максвелла–Блоха, що описує взаємодiючi
атоми у вiдносно сильному збуджуючому полi. Структу-
ра розв’язку представлена за допомогою зв’язаних систем
диференцiйних рiвнянь для вiдповiдних адитивних взаємо-
залежних процесiв. Таким чином, можливi оптичнi нелiнiй-
нi ефекти у системi мають своєю природою взаємодiю мiж
визначеними складовими процесами. Спричинена кванто-
ваним полем далекодiюча взаємодiя мiж цими процесами
задається iнтегралом взаємодiї, що проiлюстровано за допо-
могою спецiальної системи графiв. Запропонований метод
дозволяє описувати у двопроменевiй лазернiй спектроско-
пiї звуження чи розширення та зсув спектроскопiчної лiнiї
поглинання скануючого променя.
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