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INCUBATION TIME AT DECOMPOSITION
OF SOLID SOLUTION – STOCHASTIC KINETIC
MEAN-FIELD VERSUS MONTE CARLO SIMULATION

The comparison of two simulation techniques applied to the nucleation in a supersaturated solid
solution is made. The first one is the well-known Monte Carlo (MC) method. The second one is
a recently developed modification of the atomistic self-consistent non-linear mean-field method
with the additionally introduced noise of local fluxes: Stochastic Kinetic Mean-Field (SKMF)
method. The amplitude of noise is a tuning parameter of the SKMF method in its comparison
with the Monte Carlo one. The results of two methods for the concentration and temperature
dependences of the incubation period become close, if one extrapolates the SKMF data to a
certain magnitude of the noise amplitude. The results of both methods are compared also with
the Classical Nucleation Theory (CNT).

K e yw o r d s: nucleation, Monte Carlo method, solid solution, binodal, spinodal, supersatu-
ration, noise, stochastic kinetic mean-field.

1. Introduction

The nucleation in materials physics as the first stage
of first-order transformations is still a point of in-
tense discussions concerning the choice of an evolu-
tion path, applicability of common thermodynamic
parameters, competition between different sites of the
heterogeneous nucleation, etc. The nucleation is im-
portant not only if the incubation time is large. Even
if the nucleation is easy, but the system has several
possible evolution paths, it always chooses the path
with minimal incubation time (typically – minimal
nucleation barrier). This picture is behind the well-
known Ostwald rule [1–3]. Therefore, it is necessary
to have a clear algorithm to calculate the incubation
time for all possible evolution paths. One of these al-
gorithms is provided by the Classical Nucleation The-
ory (CNT) [4–8], and another one – by the generalized
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Gibbs approach [9–11]. Due to experimental difficul-
ties with measuring the nucleation parameters, much
attention is paid to simulations. Most widespread are
the numeric solutions of Fokker–Planck (FP) equa-
tions and Monte Carlo simulations (MC) [12]. In our
paper, we will add one more technique to simulate the
nucleation – Stochastic Kinetic Mean-Field method
(SKMF) specially designed to include the nucleation
problems [13–15]. We restrict ourselves to a rather
narrow problem – homogeneous nucleation at the
starting stage of the decomposition of a metastable
solid solution. For this problem, we find the depen-
dence of the mean nucleation time on the supersatu-
ration and temperature by two simulation methods,
MC and SKMF, and compare the results of these two
methods and those of CNT. Namely, we check that
the logarithm of the mean nucleation time approxi-
mately linearly depends on the inverse squared super-
saturation (for two ways of representing the supersat-
uration, see below). The factor of linear dependence is
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a function 𝛼 of the reduced temperature 2𝑘𝑇/𝑍𝐸mix

(here, 𝑘 – Boltzmann constant, 𝐸mix – mixing en-
ergy, 𝑇 – temperature, 𝑍 – number of neighbors). In
Section 2, we recall the basics of CNT for the nucle-
ation in a binary metastable solution and construct
the dependence of the reduced nucleation barrier (im-
portant term in the logarithm of the incubation time)
on the supersaturation (in two alternative representa-
tions) and on the reduced temperature. In Section 3,
we simulate the nucleation by Monte Carlo and find
the logarithm of the incubation time as a function
of the supersaturation and temperature. In Section 4,
we recall shortly the SKMF basic ideas and equations
and then find the same parameters as in Section 3 plus
the dependence on the noise amplitude. In Section 5,
we compare the results of MC (Section 3), SKMF
(Section 4) and CNT (Section 2): We check the hy-
pothesis about the extrapolation of SKMF results to
the maximal noise amplitude.

2. Application of Classical
Nucleation Theory (CNT) to Decomposition
of Metastable Regular Solid Solution

Below, we will treat the incubation time as the in-
verse nucleation frequency per unit volume divided
by the volume of the whole system. In the steady-
state approximation, this frequency (nuclei flux in the
size space) is proportional to the exponent of the re-
duced nucleation barrier and to the Nernst–Planck
diffusivity (𝐷NP = 𝐷𝐴𝐷𝐵

𝐶𝐴𝐷𝐴+𝐶𝐵𝐷𝐵
) in a solid solution

[7, 8]. Here, 𝐶𝐴, 𝐶𝐵- are the atomic fractions of 𝐴
and 𝐵, 𝐶𝐴 + 𝐶𝐵 = 1. The classical approach within
CNT for finding the nucleation barrier in the case of
binary alloy is the following: Let the starting compo-
sition in a homogeneous binary solid solution be be-
tween binodal and spinodal ones. In CNT, the most
favorable composition of the critical nucleus and the
maximal bulk driving force per atom of a nucleus are
determined by the rule of parallel tangents, shown in
Fig. 1 (please, note that the rule of parallel tangents
tends to the rule of common tangent, only if the su-
persaturation tends to zero):

𝜕𝑔(𝐶eq +Δ𝐶)

𝜕Δ𝐶
=

𝜕𝑔(𝐶new)

𝜕𝐶new
≡ 𝑔′,

Δ𝑔 = 𝑔(𝐶eq +Δ𝐶)+ (1)
+(𝐶new − (𝐶eq +Δ𝐶)) · 𝑔′ − 𝑔 (𝐶new).

The atomic fraction 𝐶new, defined by this rule of
parallel tangents, is a composition of the emerging nu-

Fig. 1. Estimated driving force for the transformation of reg-
ular parallel tangents

cleus, corresponding to the maximum of a bulk driv-
ing force per one atom of the nucleus.

According to CNT, this concentration corresponds
to the critical nucleus. In Eq. [1], we have also the
equilibrium concentration 𝐶eq (𝑇 ) (binodal point at
a fixed temperature) and the initial metastable con-
centration 𝐶eq (𝑇 ) + Δ𝐶 with Δ𝐶 being called the
supersaturation. Another measure of a supersatura-
tion is

𝑆 = ln (𝐶/𝐶eq) = ln

(︂
1 +

Δ𝐶

𝐶eq

)︂
.

In case of small supersaturations, ln
(︁
1 + Δ𝐶

𝐶eq

)︁
≈

≈ Δ𝐶
𝐶eq(𝑇 ) . In the model of regular solution, the equi-

librium composition is determined by the common
tangent rule in the form:

𝑍 (1− 2𝐶eq)

ln
1−𝐶eq

𝐶eq

=
𝑘𝑇

𝐸mix
. (2)

2.1. Analytic approximation
for small supersaturations

Elementary derivations using the Taylor expansion
for small supersaturations lead to the following for-
mulae:
Δ𝑔 ≃ Δ𝐶 (1− 2𝐶eq)

𝜕2𝑔

𝜕𝐶2

⃒⃒⃒⃒
𝐶eq

= Δ𝐶 (1− 2𝐶eq)×

×
(︂

𝑘𝑇

𝐶eq (1− 𝐶eq)
− 2𝑍𝐸mix

)︂
. (3)

Then, in case of homogeneous nucleation of the
spherical nucleus, the nucleation barrier is

Δ𝐺*

𝑘𝑇
=

1

𝑘𝑇

1

3
𝛾 4𝜋

(︂
2𝛾Ω

Δ𝑔

)︂2
= 𝛼theor 1

(Δ𝐶)
2 . (4)
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Fig. 2. Dependences of the nucleation barrier within CNT
on 1/ (Δ𝐶)2 at various reduced temperatures are well approx-
imated by the linear function Δ𝐺*

𝑘𝑇
≃ 𝛼*CNT(𝑘𝑇/6𝐸mix)×

× 1
(Δ𝐶)2

+ 𝛽*CNT for small supersaturations (a), but not as
well at larger supersaturations (b)

Here, Ω – atomic volume, 𝛾 – surface tension between
the nucleus and the mother phase, Δ𝑔 can be found
from Eq. (1), and the coefficient 𝛼 is a following func-
tion of temperature:

𝛼theor(𝑇 ) =

(︂
16𝜋Ω2(𝛾/𝐸mix)

3 ×

×
[︂
𝐶eq (𝑇 ) (1− 𝐶eq (𝑇 ))

1− 2𝐶eq (𝑇 )

]︂2)︂
/(3(𝑍/2)2 ×

× (2𝑘𝑇/𝑍𝐸mix)(2𝑘𝑇/𝑍𝐸mix−4𝐶eq(𝑇 )(1−𝐶eq(𝑇 )))
2).

(5)

So far, we neglected the composition dependence of
the surface tension. Actually, in case of solid solution,
it is proportional to the squared difference of concen-
trations in the parent phase and in the new one. If we
take the hypothesis about the validity of the paral-
lel tangent rule in the nucleation, then this difference
remains practically constant during the nucleation.

2.2. Numeric results
for arbitrary supersaturations

One can also directly calculate the reduced nucleation
barrier,

Δ𝐺*

𝑘𝑇
=

1

3
𝛾 4𝜋

(︂
2𝛾Ω

Δ𝑔

)︂2
,

as a function of 1/ (Δ𝐶)
2.

The direct calculation demonstrates that this de-
pendence is indeed not too far from a linear one for
small supersaturations (Fig. 2, a), but substantially
deviates from a linear one for larger supersaturations
(Fig. 2, b):
Δ𝐺*

𝑘𝑇
≃ 𝛼*CNT 1

(Δ𝐶)
2 + 𝛽*CNT. (6)

The temperature dependence of the line slopes in
Fig. 2 is shown in Fig. 3

The ln(𝜏) can be also expressed in terms of super-
saturation parameter 𝑆 (Fig. 4):
Δ𝐺*

𝑘𝑇
≃ 𝛼**CNT 1

𝑆2
+ 𝛽**CNT. (7)

The slopes of these dependences depend on the re-
duced temperature in quite another manner – com-
pare Figs. 5 and 3. Of course, it is due to the rather
sharp temperature dependence of the (𝐶eq)

2.
One can see that, in all cases, the linear approxi-

mation of the dependence on 1/𝑆2 is better. Accor-
ding to CNT, in the case where the nucleation is con-
trolled by the bulk diffusion in the parent phase, the
frequency of the successful nucleation per unit vol-
ume (flux of viable nuclei in the size space) is propor-
tional to the exponent containing the sum of thermo-
dynamic and kinetic terms:

𝑗 ∼ exp

(︂
−Δ𝐺* +𝑄dif

𝑘𝑇

)︂
. (8)

Here, Δ𝐺* is a nucleation barrier, and 𝑄dif is the
activation energy of interdiffusion in the parent phase:

𝐷̃ =
𝐷𝐴𝐷𝐵

𝐶𝐴𝐷𝐴 + 𝐶𝐵𝐷𝐵
≈ 𝐷̃0 exp

(︂
−𝑄dif

𝑘𝑇

)︂
.
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Fig. 3. Temperature dependence of the slope
𝛼*CNT(𝑘𝑇/6𝐸mix) according to CNT, for small supersa-
turations (a) and larger supersaturations (b)

The interesting discussion about how it is possible
to combine the Arrhenius laws for the diffusivities
𝐷𝐴, 𝐷𝐵 and for the interdiffusivity can be found in
the classical textbook [18] and will not be discussed
here. We also omit a discussion about the applica-
bility of the Nernst–Planck (Nazarov–Gurov) expres-
sion 𝐷̃NP =

𝐷𝐴𝐷𝐵

𝐶𝐴𝐷𝐴+𝐶𝐵𝐷𝐵
and the Darken expression

𝐷̃Darken = 𝐶𝐵𝐷𝐴 + 𝐶𝐴𝐷𝐵 for different scales [3,
Chapter 2] (Nernst–Planck expression is applicable
on the nucleation scale). Here, it is important that
Δ𝐺* depends strongly on the supersaturation, and

Fig. 4. Dependences of the reduced nucleation barriers on the
squared inverse alternative supersaturation, for small supersat-
urations (a) and larger supersaturations (b), are also close to
the linear functions Δ𝐺*

𝑘𝑇
≃ 𝛼**CNT (𝑘𝑇/6𝐸mix)

1
𝑆2 +𝛽**CNT

𝑄dif is almost constant within an interval of a few per-
cent. The incubation time is inversely proportional to
the nucleation frequency, so that

𝜏 ∼ exp

(︂
+
Δ𝐺* (Δ𝐶) +𝑄dif

𝑘𝑇

)︂
,

ln 𝜏 ∼ Δ𝐺* (Δ𝐶)

𝑘𝑇
+ const.

(9)

The combination of Eqs. (6), (7), and (9) provides:

ln 𝜏CNT ≃ 𝛼*CNT 1

(Δ𝐶)
2 + const, (10)
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ln 𝜏CNT ≃ 𝛼**CNT 1

(ln (𝐶/𝐶eq))
2 + const. (11)

3. Monte Carlo Simulation of Nucleation

3.1. Phase diagram
calculation within Monte Carlo model

The Monte Carlo model for studying the nucleation
is based on the exchange mechanism of diffusion in an
FCC lattice (15× 15× 15× 4 sites) with the interac-
tion of the nearest neighbors and periodic boundary

Fig. 5. Temperature dependence of the slopes 𝛼**CNT in the
equation Δ𝐺*

𝑘𝑇
≃ 𝛼**CNT (𝑘𝑇/6𝐸mix)

1

(ln(𝐶/𝐶eq))
2 + 𝛽**CNT

for small (a) and large (b) supersaturations

conditions. We used the Metropolis algorithm, and
the “time” was counted in MC-steps. MC implicitly
takes the correlation effects into account, so that the
mean-field (regular solution) phase diagram is not ap-
plicable, and one should build the MC-diagram inde-
pendently. To build the binodal curve, we applied the
described algorithm to the diffusion couples A-B (un-
der periodic boundary conditions) at various values
of the reduced temperature 𝑘𝑇/6𝐸mix. The applica-
tion of the diffusion couple technique to the phase
diagram determination was a well-known method for
decades [19, 20]. In the just cited references, this
method was realized in real experiments. In virtual
experiments, it was also used – by Stochastic Ki-
netic Mean-Field (SKMF) simulation in [21, 22] and
by Monte Carlo simulation in [23]. An alternative
method of phase diagram calculations is Semi-Grand
Canonical Monte Carlo (SGCMC) [24]. Naturally, in
the case of positive mixing energy, such simulation in-
evitably ends with the stepwise composition distribu-
tion – two plateau with different concentrations pro-
viding us with a binodal (solubilities as functions of
the reduced mixing energy) – see Fig. 6, a. The result-
ing binodal curve is shown in Fig. 6, b. We compare
the MC solubilities with mean-field values.

3.2. Criterion of nucleation
in MC simulations

The atomistic simulation of a nucleation always has
a problem with determining the criterion for reach-
ing a critical nucleus size. From the point of view of
thermodynamics, the critical size corresponds to the

Table 1. Quality of the linear
approximation (coefficient of determination
𝑅2(𝐶𝑁𝑇 )) for the dependences on 1/Δ𝐶2

and 1/𝑆2 at various temperatures

𝑘𝑇
6𝐸mix

Small supersaturation High supersaturation

1/Δ𝐶2 1/𝑆2 1/Δ𝐶2 1/𝑆2

0.33 0.9931 1 0.9556 0.9999
0.42 0.9991 1 0.9815 0.9999
0.50 0.9998 1 0.9912 0.9999
0.58 0.9999 1 0.9956 0.9998
0.67 1 1 0.9977 0.9998
0.75 1 1 0.9985 0.9998
0.83 1 1 0.9989 0.9997
0.92 1 1 0.9992 0.9996
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saddle point on the surface of the Gibbs potential as a
function of the nucleus composition and size, but the
random factors (“almost random walk” in a vicinity
of the saddle-point state) make this picture ambigu-
ous. CNT involves the possibility of dissolving the
overcritical nucleus and the possibility of the further
growth of a subcritical nucleus as a result of the ran-
dom walk in the size space (Zel’dovich factor). Thus,
when we were formulating the criterion, we tried to
define it with “overcritical guarantee”. Let us calcu-
late, for each site of the system, the total number of
atoms 𝐴 in the first coordination shell and mark it as
𝑆𝐴. If we are interested in the formation of a nucleus
around some site (𝑖, 𝑗, 𝑘), we calculate the average
value of the parameter 𝑆𝐴 in the first coordination
shell of this site. The magnitude 𝑆𝐴(𝑖, 𝑗, 𝑘)

𝑧 (𝑧 – the
number of nearest sites, in our case, 𝑧 = 12) means
the probability for a randomly chosen neighbor site
(to this site, (𝑖, 𝑗, 𝑘)) to be occupied by atom 𝐴. Let
us take the sum over these probabilities on all sites of
the first coordination sphere and divide it by 𝑧. The
obtained parameter, as we hope, gives a value of the
approximate amount of the average cluster concen-
tration. Thus, we introduce the value 𝑠 (𝑖, 𝑗, 𝑘):

𝑠 (𝑖, 𝑗, 𝑘) =

∑︀12
𝑞=1 𝑆𝐴(𝑖𝑠 (𝑞) , 𝑗𝑠 (𝑞) , 𝑘𝑠 (𝑞))

144
, (12)

where 𝑖, 𝑗, 𝑘 – coordinates of the site, for which the
criterion of nucleation is being checked; 𝑖𝑠, 𝑗𝑠, 𝑘𝑠 –
coordinates of a neighboring site in the first coor-
dination sphere; 𝑞 – neighbor number; 𝑆(𝑖𝑠, 𝑗𝑠𝑘𝑠) –
the number of atoms 𝐴 surrounding site (𝑖𝑠, 𝑗𝑠, 𝑘𝑠)
in the first coordination sphere. We take the “incu-
bation time” as the number of Monte Carlo steps,
after which the condition 𝑠 (𝑖, 𝑗, 𝑘) > 𝑤 is satisfied
for this site. In this computer experiment, we choose
𝑤 = 0.95 (1− 𝐶eq), 𝐶eq – equilibrium concentration
from the Monte Carlo model. We checked that, for
𝑤 larger than 0.95 (1− 𝐶bin), the slope of the de-
pendence ln 𝜏 ≃ 𝛼 1

(Δ𝐶)2
+ 𝛽 is almost insensitive to

the further variation of this parameter; the slopes are
shown in Fig. 7.

3.3. Results of the computer experiment

A model system in the computer experiment was
characterized by two parameters – temperature and
concentration of the parent phase. The incubation
time was obtained as the average over the ensemble of

Fig. 6. Construction of the phase diagram within the MC sim-
ulation method. Typical distribution of atomic fractions (av-
eraged upon atomic planes normal to the interdiffusion direc-
tion) along the diffusion couple with periodic boundary condi-
tions(a), the binodal and spinodal calculated within the regular
solid solution model are shown with solid and dashed lines (b),
accordingly. The binodal points obtained by the Monte Carlo
simulation of diffusion couples are represented with dots. As
expected, the MC-cupola is lower – decomposition is harder to
accomplish due to short-range order effects

1000 tests with the system at same parameters. The
results of the computer experiment are represented at
Figs. 8–10. The obtained dependences correlate with
the results of the classical nucleation theory. Accor-
ding to CNT, the incubation time should be inversely
proportional to the flux of nuclei in the size space

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 6 493



V.M. Pasichna, N.V. Storozhuk, A.M. Gusak

Fig. 7. Dependences of the logarithm of the incubation time
on the inverse squared supersaturation at the reduced temper-
ature 𝑘𝑇

6𝐸mix
= 0.56 at various values of the parameter 𝑤

Fig. 8. Dependences of ln 𝜏MC on 1/ (Δ𝐶)2at various reduced
temperatures are approximated by linear functions ln 𝜏MC =

= 𝛼*MC 1
(𝐶−𝐶bin(𝑇 ))2

+ 𝛽*MC. Time is measured in MC steps

and, accordingly, proportional to the exponent of the
height of the nucleation barrier divided by 𝑘𝑇 . As we
mentioned in Section 2, CNT predicts that the log-
arithm of the incubation time is a linear function of
the inverse squared supersaturation. Similar to Sec-
tion 2, we try to approximate the logarithm of the
incubation time versus the inverse squared supersat-
uration with two possible choices of the supersatu-

Fig. 9. Dependences of ln 𝜏MC on 1/𝑆2 at various reduced
temperatures are approximated by linear functions Δ𝐺*

𝑘𝑇
≃

≃ 𝛼**MC (𝑘𝑇/6𝐸mix)
1

(ln(𝐶/𝐶eq))
2 + 𝛽**MC. Time is mea-

sured in MC steps

ration parameter. The dependences in Fig. 8 can be
approximated as

ln 𝜏MC = 𝛼*MC 1

(𝐶 − 𝐶bin (𝑇 ))
2 + 𝛽*MC, (13)

where 𝛼*MC – proportionality coefficient between
ln (𝜏) and 1

(𝐶−𝐶bin)
2 ; 𝛽 – constant. The value of 𝛽,

in theory, should be common for all dependences for
the systems with fixed size. But, in this case, we have
some deviation from the constant. However, these de-
viations are small.

Alternatively, we can approximate the logarithm of
the incubation time as a linear function of the alter-
native supersaturation parameter 𝑆 = ln (𝐶/𝐶eq)

Δ𝐺*

𝑘𝑇
≃ 𝛼**MC (𝑘𝑇/6𝐸mix)

1

(ln (𝐶/𝐶eq))
2 + 𝛽**MC.

(14)

The results of approximations are shown in Fig. 9.
The results demonstrated in Fig. 9 are similar to

those obtained in [12], but represent more values of
supersaturation and temperature. Moreover, the ac-
curacy of the linear approximation (8) is much better
than that of the linear approximation (7) – see Ta-
ble 2. At lower temperatures, the linear approxima-
tion is better (Table 2).

The dependences of the slopes 𝛼*MC, 𝛼**MC in re-
lations (13), (14) on the reduced temperature are
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shown in Fig. 10. Note that Fig. 10, b for 𝛼**MC(𝑇 )
correlates with Fig. 5 for 𝛼**CNT but Fig. 10, a for
𝛼*MC(𝑇 ) contradicts the dependence 𝛼*CNT(𝑇 ) in
Fig. 3. Thus, the parameter 𝑆 seems to be a more
convenient measure of supersaturation.

4. Simulation of Nucleation
by SKMF Method

4.1. Main equations of SKMF

The Stochastic Kinetic Mean-Field (SKMF) method
or, alternatively, Stochastic Kinetic Modeling Frame-
work, was suggested in [17, 5] and further devel-
oped in [14–16, 3, 5]. It is a non-linear self-consistent
atomistic-scale version of the mean-field method with
noise. It was invented as a natural development of
Martin’s deterministic mean-field approach. The ba-
sic kinetic equations in SKMF are the master equa-
tions formulated self-consistently for the probabilities
of occupation of each site “I” by species A, with fre-
quencies depending on the configuration energy in the
mean-field approximation, and with a noise of mi-
crofluxes (or a noise of frequencies) between neigh-
boring sites:

𝑑𝐶𝑖

𝑑𝑡
= −

𝑍∑︁
𝑗=1

[︁
𝐶𝑖 (1− 𝐶𝑗)

(︁
Γmean−field
𝑖,𝑗 + 𝛿ΓLang

𝑖,𝑗

)︁
−

−𝐶𝑗 (1− 𝐶𝑖)
(︁
Γmean−field
𝑗,𝑖 + 𝛿ΓLang

𝑗,𝑖

)︁ ]︁
, (15)

where

Γmean−field
𝑖,𝑗 = Γ0 exp

(︂
−𝐸𝑖,𝑗

𝑘𝑇

)︂
, (16)

𝐸𝑖,𝑗 = (𝑀 − 𝐸mix)

𝑍=12∑︁
𝑙=1

𝐶𝑙 + (𝑀 + 𝐸mix)

𝑍=12∑︁
𝑛=1

𝐶𝑛,

(17)

𝑉𝛼,𝛽 (𝛼, 𝛽 = 𝐴, 𝐵) pair interaction energies with 𝑍 =
= 12 nearest neighbors, 𝑀 = (𝑉𝐴𝐴 − 𝑉𝐵𝐵) /2 –
asymmetry parameters, 𝐸mix = 𝑉𝐴𝐵 − (𝑉𝐴𝐴 +
+𝑉𝐵𝐵)/2 – mixing energies,

Γ0 = 𝜈0 exp

(︂
−𝐸𝑠 + 𝑍 (𝑉𝐴𝐵 + 𝑉𝐵𝐵)

𝑘𝑇

)︂
(𝜈0 – frequency of attempts, 𝐸𝑆 – saddle-point
energy taken in KMF to be the same for all
jumps), 𝛿ΓLang

𝑖,𝑗 – noise of the jump frequency,
𝛿ΓLang

𝑖,𝑗 = Γ0
𝐴𝑛√
Γ0𝑑𝑡

√
3 (2random− 1), where 𝐴𝑛 is a

Fig. 10. Dependences of the slopes 𝛼*MC (a), 𝛼**MC (b) in
relations (13), (14) on the reduced temperature 𝑘𝑇/6𝐸mix

Table 2. Coefficient of determination
𝑅2(MC) for the linear approximations (13)
and (14) at various temperatures

𝑘𝑇/6𝐸mix 1/ (Δ𝐶)2 1/𝑆2

0.72 0.9245 0.9318
0.69 0.9607 0.9674
0.67 0.979 0.9847
0.64 0.9914 0.9953
0.62 0.9982 0.9997
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Fig. 11. Time dependence for the dispersion of the system at
𝑘𝑇

6𝐸mix
= 0.42, 𝐶0 = 0.10, 𝐴𝑛 = 0.5

Fig. 12. Distribution of waiting times for the successful nu-
cleation at 𝑘𝑇

6𝐸mix
= 0.42, 𝐶0 = 0.10, 𝐴𝑛 = 0.5. Parameters of

the log-normal approximation: 𝜇 = 1.699424, 𝜎 = 0.533427

Fig. 13. Linear approximation of the ln⟨𝑡waiting⟩ ≡ ln 𝜏 on 1
𝐴2

dimensionless noise amplitude, Γ0𝑑𝑡 – dimensionless
time-step.

It is useful to trace the time evolution of the
dispersion

⟨
(Δ𝐶)

2
⟩
≡ 1

𝑁

∑︀𝑁
𝑘=1 (𝐶 (𝑘)− ⟨𝐶⟩)2and to

check the conservation law – the temporal constancy
of the mean concentration ⟨Δ𝐶⟩ ≡ 1

𝑁

∑︀𝑁
𝑘=1 𝐶 (𝑘),

where 𝑁 is the total number of sites in the sys-
tem, and 𝐶 (𝑘) is the concentration at the k -th
site. The typical time behavior of the dispersion is
shown in Fig. 11.

The incubation time can be evaluated from the in-
flection point in Fig. 11. The incubation time crite-
rion using the inflection point of the time dependence
is traditional, starting from the incubation time of
suppressed phases in the reactive diffusion [25]. In
the Kolmogorov–Avrami kinetics for nucleation and
growth [26], the time moment of the inflection point
is inversely proportional to the nucleation frequence
and, hence, directly proportional to the incubation
time. Practically, we fixed the incubation time of de-
composition, when the mean concentration in any
cluster of 13 sites (central site and 12 nearest neigh-
bors) exceeded value of 0.6.

4.2. Dependence of the incubation
time on the noise amplitude

At first, we found the distribution of the waiting
times. It is well approximated by the log-normal dis-
tribution – see Fig. 12.

We checked that the logarithm of the mean wait-
ing time can be approximated (far from perfect, but
still...) by a linear function of the inverse squared
noise amplitude 1/𝐴2:

ln 𝜏 = 𝑎
1

𝐴2
+ 𝑏 (18)

(see Fig. 13).

4.3. Dependence of nucleation
time on supersaturation of a solid
solution at various temperatures

The dependences of ln(𝜏) on 1/ (Δ𝐶)
2 at various

reduced temperatures are approximated by linear
functions

ln(𝜏) = 𝛼*SKMF

(︂
1

Δ𝐶2

)︂
+ 𝛽*SKMF, (19)
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Fig. 14. Typical dependences of the logarithm of the mean

incubation time on: a – 1/ (Δ𝐶)2; b – 1/
(︁
ln

(︁
𝐶

𝐶eq

)︁)︁2
at the

fixed noise amplitude 𝐴 = 0.6 and (1) 𝑘𝑇
6𝐸mix

= 0.725, (2)
𝑘𝑇

6𝐸mix
= 0.694, (3) 𝑘𝑇

6𝐸mix
= 0.667

Table 3. Coefficient of determination
𝑅2 (SKMF) for linear approximations
in Fig. 14 at various temperatures

𝑘𝑇/6𝐸mix 1/ (Δ𝐶)2 1/ (ln (𝐶/𝐶eq))
2

0.72 0.999292 0.999356
0.69 0.9856 0.98184
0.67 0.996397 0.99412
0.64 0.993599 0.99138
0.62 0.994849 0.99311

Fig. 15. Dependences of the slopes 𝛼*SKMF (a), 𝛼**SKMF (b)
from Fig. 14 on the reduced temperature 𝑘𝑇/6𝐸mix

and the dependences of ln(𝜏) on 1
(ln(𝐶/𝐶eq))

2 are ap-
proximated by linear functions

ln(𝜏) ≃ 𝛼**SKMF

(︂
𝑘𝑇

6𝐸mix

)︂
1

(ln (𝐶/𝐶eq))
2 + 𝛽**SKMF.

5. Comparison of MC
with Extrapolated SKMF

The simple linear dependence of the logarithm of the
incubation time on the inverse squared noise ampli-
tude allows us to check the possibility to extrapolate
the results for the nucleation time to the noise am-
plitude, which corresponds to a single Monte Carlo
sample, but cannot be simulated directly by SKMF
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Table 4. Comparison of the slopes which were obtained
by CNT, MC, and SKMF extrapolated from 𝐴 = 0.6 to 𝐴extrapolated = 1/

√︁
𝐶

(︀
1 − 𝐶

)︀
𝑘𝑇

6𝐸mix

𝛼*SKMF×
×𝐴2𝐶

(︀
1− 𝐶

)︀ 𝛼*MC
𝛼*CNT for
large Δ𝐶

𝛼**SKMF×
×𝐴2𝐶

(︀
1− 𝐶

)︀ 𝛼**MC
𝛼**CNT

for big 𝑆

0.725 0.00158 0.0014 0.0016 0.11 0.05 0.14
0.694 0.00209 0.0023 0.0013 0.17 0.15 0.16
0.667 0.00233 0.0033 0.0011 0.27 0.31 0.18
0.641 0.00208 0.0047 0.0009 0.29 0.59 0.20
0.617 0.00193 0.0055 0.0007 0.34 1.01 0.22

due to the divergence problems. As shown in [13] for
the ideal solution and in [15] for a regular solution,
the finite noise amplitude corresponds to the averag-
ing over a finite number of MC runs (or, equivalently,
over the finite number 𝑀 of copies of the canonical
ensemble). Namely,

𝑀 =
1

𝐶
(︀
1− 𝐶

)︀
𝐴2

. (20)

Monte Carlo simulations of the nucleation correspond
to the case 𝑀 = 1, which means that the SKMF
should be close to MC, if we extrapolate the results
obtained at some noise amplitude 𝐴 to the extrapo-
lated value
𝐴2

extrapolated =
1

𝐶
(︀
1− 𝐶

)︀ . (21)

Based on the linear dependence (14) of ln 𝜏 on the
inverse squared noise amplitude, one may suggest the
following approximate correspondence:

𝐴2

𝐴2
extrapolated

Δ ln 𝜏

Δ
(︀

1
Δ𝐶2

)︀ ⃒⃒⃒⃒⃒
𝐴

= 𝐴2𝐶
(︀
1− 𝐶

)︀ Δ ln 𝜏

Δ
(︀

1
Δ𝐶2

)︀ ⃒⃒⃒⃒⃒
𝐴

≈

≈ Δ ln 𝜏

Δ
(︀

1
Δ𝐶2

)︀ ⃒⃒⃒⃒⃒
MC

and/or
Δ ln 𝜏

Δ
(︀

1
Δ𝐶2

)︀ ⃒⃒⃒⃒⃒
CNT

, (22)

𝐴2𝐶
(︀
1− 𝐶

)︀ Δ ln 𝜏

Δ(ln (𝐶/𝐶eq))
2

⃒⃒⃒⃒
⃒
𝐴

≈

≈ Δ ln 𝜏

Δ(ln (𝐶/𝐶eq))
2

⃒⃒⃒⃒
⃒
MC

and/or
Δ ln 𝜏

Δ(ln (𝐶/𝐶eq))
2

⃒⃒⃒⃒
⃒
CNT

.

(23)

One can see from Table 4 that the slopes obtained
from extrapolated SKMF are situated almost always

between the values obtained from Classical Nucle-
ation Theory and Monte Carlo. In the only case (for
𝛼** at 𝑘𝑇

6𝐸mix
= 0.694), when the extrapolated SKMF

value is a little bit beyond the interval (MC-CNT),
they are practically the same: 0.17 ≈ 0.16 ≈ 0.15.

6. Conclusions

1. Computer simulations using the Monte Carlo and
Stochastic Kinetic Mean-Field methods predict the
approximate linear dependence of the logarithm of
the incubation time on the inverse squared supersat-
uration at the decomposition of a solid solution –
Eqs. (13), (19). It corresponds to the semianalytic
prediction of CNT [Eq. (10)].

2. The linear approximation reached for the depen-
dence on the inverse squared 𝑆 ≡ ln (𝐶/𝐶eq) is better
than for the inverse squared (𝐶 − 𝐶eq) – Eqs. (14),
(20), (11).

3. Results of SKMF modeling depend, naturally, on
the noise amplitude 𝐴: the logarithm of the incuba-
tion time linearly increases with the inverse squared
noise amplitude [Eq. (18)].

4. To predict the realistic incubation time, one
should extrapolate the results of SKMF simulations
according to Eqs. (23), (24).

5. After the extrapolation, the results of SKMF ap-
pear to be intermediate between Monte Carlo and
CNT (Table 3). The interpretation of the tempera-
ture dependence of the slope 𝛼 will be proposed else-
where.
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IНКУБАЦIЙНИЙ ЧАС РОЗПАДУ
ТВЕРДОГО РОЗЧИНУ – СТОХАСТИЧНИЙ
КIНЕТИЧНИЙ МЕТОД СЕРЕДНЬОГО ПОЛЯ
У ПОРIВНЯННI З МЕТОДОМ МОНТЕ-КАРЛО

Р е з ю м е

Зроблено порiвняння двох методiв, якi застосовуються для
моделювання зародкоутворення в пересиченому твердому
розчинi. Перший – це добре вiдомий метод Монте-Карло
(МK). Другий – нещодавно розроблена модифiкацiя атомi-
стичного самоузгодженого нелiнiйного методу середнього
поля з додатково введеним шумом локальних потокiв – сто-
хастичний кiнетичний метод середнього поля (SKMF). Ам-
плiтуда шуму є параметром налаштування методу SKMF
у порiвняннi його з методом МK. Результати двох методiв
для концентрацiйної та температурної залежностi iнкуба-
цiйного перiоду стають близькими, якщо екстраполювати
данi SKMF до певної величини амплiтуди шуму. Результа-
ти обох методiв порiвнюються також з класичною теорiєю
зародкоутворення (CNT).
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