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VELOCITY AND ABSORPTION
COEFFICIENT OF SOUND WAVES
IN CLASSICAL GASES

The velocity and absorption coefficient of plane sound waves in classical gases are obtained
by solving the Boltzmann kinetic equation. This is done within the linear response theory as
a reaction of the single-particle distribution function to a periodic external field. The nonper-
turbative dispersion equation is derived in the relaxation time approximation and solved nu-
merically. The obtained theoretical results demonstrate an universal dependence of the sound
velocity and scaled absorption coefficient on the variable 𝜔𝜏 , where 𝜔 is the sound frequency,
and 𝜏−1 is the particle collision frequency. In the region of 𝜔𝜏 ∼ 1, a transition from the
frequent- to rare-collision regime takes place. The sound velocity increases sharply, and the
scaled absorption coefficient has a maximum – both theoretical findings are in agreement with
the data.
K e yw o r d s: hydrodynamics, kinetic approach, ultrasonic plane sound waves, velocity, ab-
sorption.

1. Introduction: Hydrodynamics
and Kinetics

Sound waves in classical gases were studied inten-
sively within the hydrodynamical approach (see, e.g.,
Ref. [1]). The sound velocity 𝑐0 in this approach is
equal to

𝑐0 =

(︂
𝑐𝑝 𝑘B𝑇

𝑐𝑣 𝑚

)︂1/2
, (1)

where 𝑘B is the Boltzmann constant, 𝑇 is the sys-
tem temperature, 𝑚 the particle mass, 𝑐𝑝 and 𝑐𝑣
are the specific heat capacity at a constant pressure
and a constant volume, respectively. The sound ve-
locity (1) appears to be independent of the sound
wave frequency 𝜔 and approximately equals the ther-
mal particle velocity. For absorbed plane sound waves
(APSW), the wave amplitude decreases as exp(−𝛾𝑧)
after propagating the distance 𝑧. The absorption co-
efficient 𝛾 is usually evaluated from the Stokes rela-
tion [1],

𝛾 =
𝜔2

2𝑚𝑛𝑐30

[︂
4

3
𝜂 + 𝜁 +

(︂
1

𝑐𝑣
− 1

𝑐𝑝

)︂
𝜅

]︂
, (2)
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where 𝑛 is the particle number density, 𝜂 the shear
viscosity, 𝜁 the bulk viscosity, and 𝜅 the thermal con-
ductivity.

Within the hydrodynamic approach, the kinetic co-
efficients are phenomenological constants. For calcu-
lations of the kinetic coefficients in Eq. (2), one needs
the kinetic theory. The global equilibrium of a classi-
cal gas is described then by the Maxwell distribution
function of particle’s momentum p with 𝑝 ≡ |p|:

𝑓GE(p) =
𝑛

(2𝜋𝑚𝑘B𝑇 )3/2
exp

(︂
− 𝑝2

2𝑚𝑘B𝑇

)︂
. (3)

In this relation, the particle number density 𝑛 and
temperature 𝑇 are independent of the spacial coordi-
nates r and time 𝑡. The equilibrium in a classical gas
is achieved by successive two-body collisions with the
elastic cross-section 𝜎 equal to 𝜋𝑑2 for hard-sphere
particles with diameter 𝑑.

The average value of the thermal velocity 𝑣 can be
calculated from Eq. (3) as (p ≡ 𝑚v and 𝑣 ≡ |v|):

𝑣 =

∫︀
𝑝2𝑑𝑝 (𝑝/𝑚) 𝑓GE(𝑝)∫︀

𝑝2𝑑𝑝 𝑓GE(𝑝)
=

(︂
8𝑘B𝑇

𝜋𝑚

)︂1/2
. (4)
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Fig. 1. The speed of sound 𝑐/𝑐0 (a) and the scaled absorption
coefficient 𝛾/𝛽0 (b) as functions of 𝜔𝜏 at low frequencies. The
experimental data are taken from Refs. [9, 12]. Dashed lines
present Eq. (1) in (a) and the Stokes formula (9) in (b)

The particle mean-free path can be found analytically
as a function of 𝜎 and 𝑛 [2, 3]:

𝑙 =
(︀√

2𝜎 𝑛
)︀−1

. (5)

From Eqs. (4) and (5), one finds the collision fre-
quency as

𝜏−1 ≡ 𝑣/𝑙 = 4𝜎 𝑛

√︂
𝑘B𝑇

𝜋𝑚
. (6)

In terms of the above quantities, the shear viscosity
𝜂 can be calculated as

𝜂 =
5𝜋

32
𝑛𝑚 𝑙 𝑣 =

5
√
𝜋

16

√
𝑚𝑘B𝑇

𝜎
. (7)

The numerical coefficient in Eq. (7) was found by
Chapman and Enskog (see, e.g., Ref. [4]). The ther-
mal conductivity can be then found as

𝜅 =
15

4
𝜂, (8)

and the bulk viscosity for non-relativistic monoatomic
gases equals zero, 𝜁 = 0 (see, e.g., [5]).

The molecular kinetic scheme based on the above
equations is self-consistent for dilute gases, when the
mean free path 𝑙 is much larger than the size of parti-
cles, 𝑙 ≫ 𝑑. In this case, the excluded volume effects
due to the particle hard-core repulsion appear to be
negligible, i.e., the gas pressure, 𝑃 = 𝑛𝑘B𝑇 , and spe-
cific heat capacity, 𝑐𝑣 = 3/2 and 𝑐𝑝 = 5/2, are equal
to their ideal gas values with high accuracy [6]. In
what follows, the thermodynamical relations (4)–(6)
are assumed to be valid, i.e., our consideration is re-
stricted to the case of dilute classical gases. Equa-
tions (7) and (8) are the leading terms of the pertur-
bation expansion in the small Knudsen parameter,
𝒦 ≡ 𝜔𝜏 ≪ 1. This corresponds to the so-called fre-
quent collision regime (FCR).

Using the above equations, one finds the FCR sca-
led absorption coefficient from the Stokes formula (2):

𝛾

𝛽0
=

7

8
𝜔𝜏, (9)

where 𝛽0 ≡ 𝜔/𝑐0 is the wave number. As shown in
Fig. 1, both 𝑐0 and 𝛾/𝛽0 given by Eqs. (1) and (9),
respectively, are supported by the data at small 𝜔𝜏 .

In most practical cases, the inequality 𝑙 ≪ 𝜆, where
𝜆 ∼= 2𝜋𝑐0/𝜔 is the sound wavelength, is satisfied,
and, thus, the FCR is valid. For example, for gases
under the normal conditions, one gets 𝜔𝜏 ∼ 10−8–
10−5 for the audible frequency region. Calculating 𝛾
from Eq. (9), one finds 𝛾−1 ∼ 𝑙(𝜔𝜏)−2 ∼ 105–108 cm
(𝑐0 ∼ 𝑣), i.e., the audible APSW propagate 1–103
kilometers before its amplitude decreases by the fac-
tor of 𝑒−1. The absorption of these waves is indeed
rather weak. Note also that all kinetic coefficients in
the FCR depend only on the equilibrium gas quan-
tities. For example, the shear viscosity (7) and ther-
mal conductivity (8) are independent of the sound
frequency.

Equations (1) and (9) are, however, in a contra-
diction with the existing data at 𝜔𝜏 ∼> 1; see criti-
cal comments, e.g., in Refs. [3, 7, 8]. This is a transi-
tion region from the FCR to the rare-collision regime
(RCR). The RCR corresponds to large values of the
Knudsen parameter, 𝒦 ≡ 𝜔𝜏 ≫ 1. The conditions
of the RCR emerge at a small particle number den-
sity (or small pressure), where 𝑙 increases as 𝑛−1

by Eq. (5), and for large sound-wave frequencies
𝜔. The basic experiments for sound waves in classical
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gases at large values of 𝜔𝜏 (the so-called ultrasonic
waves) were done by Greenspan [9–11] and Meyer-
Sessler [12]. Many works were devoted to a compar-
ison of the theoretical and experimental results for
the sound velocity and absorption. One of the direc-
tions on the early study of this problem was related
to the accounting for high p-moments of the Boltz-
mann kinetic equation (BKE) within the method of
moments, called the Bartnett [13] and super-Bartnett
[14] models to obtain solutions for 𝜔𝜏 < 1, see also
Refs. [7, 8, 15–17]. An alternative kinetic approach
is based on the well-known Bhatnagar–Gross–Krook
model [18] and its generalization by Gross and Jack-
son [19], see also Refs. [3, 8]. The main idea was to
use the linearized BKE with the relaxation 𝜏 ap-
proximation for the integral collision term and to ex-
press exactly the solution of this equation in terms
of local dynamical variations of the particle number
density, 𝛿𝑛(r, 𝑡), the velocity field u and tempera-
ture variations 𝛿𝑇 (r, 𝑡). Using the conditions to re-
store the conservation relationships (violated, gen-
erally speaking, by the 𝜏 approximation, see also
Refs. [20–22]), one can then approximately obtain the
dispersion equation for the sound velocity [21]. They
suggested also to apply the boundary conditions on
the walls of a conductor pipe for the particle gas mo-
tion. Such solutions were found [3, 8, 23–29] for the
simplest case of the diffused boundary conditions on a
plane surface of the semiinfinite gas system. Usually,
these boundary conditions for the distribution func-
tion are considered by assuming the mirror or dif-
fuse reflections of particles from the boundary [30–
32]. The linearization of the BKE for calculations of
the sound velocity and absorption in the solutions in
terms of a plane wave can be grounded in the case
of a small influence of boundary conditions of the
sound propagation on the size of a conductor pipe
much larger than the wavelength; see, e.g., Ref. [33]
for such numerical BKE solutions for the sound veloc-
ity and absorption without using the boundary con-
ditions. As shown in Ref. [34] for the kinetic equa-
tion with mirror boundary conditions at the plane
surfaces of a slab and in Ref. [35] for the monopole
vibrations with diffuse boundary conditions at the
spherical surface, the sound solutions are, in fact,
rather different from a plane wave, because they de-
pend very much on the type of the boundary con-
ditions and the choice of the boundary geometry
itself.

Both the FCR and RCR for the sound velocity
and absorption analytically in terms of a simple plane
wave without the use of different boundary conditions
and, therefore, independent of their specific proper-
ties have been studied within the linearized Boltz-
mann kinetic equation in our recent paper [36]. The
approximate expansions for small and large values of
𝒦 were obtained analytically by using the 𝜏 approx-
imation for the collision integral with a constant 𝜏 ,
that is independent of the particle velocity. The dis-
persion equation for the sound velocity and absorp-
tion was derived approximately analytically within
the linear response theory [37] following the ideas of
the BGK model [18]. In the present paper, our theo-
retical approach is worked out and compared carefully
with the available data.

2. Boltzmann Kinetic Approach

We consider the BKE for the single-particle distribu-
tion function 𝑓(r,p, 𝑡) of the coordinate r, momen-
tum p, and time 𝑡 (see, e.g., Ref. [5]) with the exter-
nal potential 𝑉ext(𝑧, 𝑡) (more details can be found in
Ref. [37]),

𝑉ext(𝑧, 𝑡) = exp (− 𝑖 𝜔 𝑡)

∞∫︁
−∞

d𝑘
2𝜋

𝑉𝑘 exp (𝑖𝑘𝑧) , (10)

where 𝑉𝑘 is the Fourier amplitudes 1. The linearized
BKE takes the form

𝜕𝛿𝑓

𝜕𝑡
+

𝑝𝑧
𝑚

𝜕𝛿𝑓

𝜕𝑧
− 𝛿𝑆𝑡[𝑓 ] =

𝜕𝑓GE

𝜕𝑝𝑧

𝜕𝑉ext

𝜕𝑧
, (11)

where 𝛿𝑓(r,p, 𝑡) ≡ 𝑓(r,p, 𝑡) − 𝑓GE(𝑝), and the colli-
sion term 𝛿𝑆𝑡[𝑓 ] is taken in the standard Boltzmann
form (see, e.g., Ref. [3]).

A small periodic external field (10) induces the cor-
responding deviations

𝛿𝑓(𝑧,p, 𝑡) = exp(−𝑖𝜔𝑡)

∞∫︁
−∞

𝑑𝑘

2𝜋
𝑓𝑘 exp (𝑖 𝑘𝑧) (12)

with small Fourier amplitudes 𝑓𝑘 ∝ 𝑉𝑘 (see, e.g.,
[22, 38, 39]). Equation (11) is assumed to be valid at
|𝛿𝑓 |/𝑓GE ≪ 1 in the APSW form with the frequency

1 As usual, the complex number representation is used for con-
venience, but only the real parts of 𝑓 and 𝑉ext will be taken
as physical quantities.
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𝜔 propagated along the 𝑧 axis. For the collision inte-
gral 𝛿𝑆𝑡, we use the 𝜏 relaxation-time approximation
in the form [37]

𝛿𝑆𝑡[𝑓 ] ∼= −1

𝜏
(𝛿𝑓 − 𝛿𝑓LE) ≡ −1

𝜏
𝛿𝜙, (13)

where 𝜏−1 is a constant given by Eq. (6), and the
local equilibrium part of 𝛿𝑓 is related to the well-
known Maxwellian function,

𝛿𝑓LE = 𝑓GE

[︂
𝛿𝑛

𝑛
+ 𝑝𝑧

𝛿𝑢𝑧

𝑘B𝑇
+

(︂
𝑝2

2𝑚𝑘B𝑇
− 3

2

)︂
𝛿𝑇

𝑇

]︂
.

(14)

In Eq. (13), 𝛿𝜙 ≡ 𝛿𝑓−𝛿𝑓LE appears as the additional
component responsible for the sound absorption in a
gas through the collision integral 𝛿𝑆𝑡[𝑓 ] (13). Note
that one has 𝑆𝑡[𝑓LE] = 0 at the local equilibrium
distribution function 𝑓LE for any parameters 𝛿𝑛, 𝛿𝑇 ,
and 𝛿𝑢𝑧 [3, 40]. Thus, just the 𝛿𝜙 term is responsible
for all dissipative effects in a gas. In Eq. (14), the
variations 𝛿𝑛, 𝛿𝑇 , and 𝛿𝑢𝑧 are small deviations of the
particle number density, temperature, and collective
velocity, |𝛿𝑛|/𝑛 ≪ 1, |𝛿𝑇 |/𝑇 ≪ 1, and |𝛿𝑢𝑧|/𝑣 ≪ 1,
from their GE values 𝑛, 𝑇 , and 𝑢𝑧 = 0. The conserva-
tion of the particle number, momentum, and energy
imposes the following requirements [21, 37]:∫︁

𝑑p 𝛿𝜙 = 0,

∫︁
dp 𝑝𝑧 𝛿𝜙 = 0, (15)∫︁

𝑑p 𝑝2 𝛿𝜙 = 0. (16)

In what follows, for simplicity, we put 𝛿𝑇 = 0 in
Eq. (14), i.e., the effects of thermal conductivity will
be neglected. For a constant temperature 𝑇 , only
Eq. (15) should be considered. Equation (16) for the
energy conservation is then identically satisfied.

The solution of the linearized BKE (11) is found
from Eq. (12) by calculating the 𝑘-integral by the
residue method in the following APSW form:

𝛿𝑓(𝑧,p, 𝑡) ∝ exp (−𝑖𝜔𝑡+ 𝑖𝑘0𝑧) , (17)

where the poles in the complex 𝑘 plane are connected
with the speed of sound 𝑐 and absorption coefficient
𝛾, e.g., as

𝑘0 =
𝜔

𝑐
+ 𝑖𝛾. (18)

The positions of poles 𝑘0 can be obtained from the
dispersion relation [37]

D(𝑤,𝒦) ≡
[︂
𝑖 𝑤

𝜉𝒦
(1 +𝑄1)− 1

]︂(︁
3𝑖

𝑤

𝒦
𝜉 𝑄1 − 1

)︁
+

+
8

𝜋

(︂
𝑤𝑄1

𝒦

)︂2
= 0, (19)

where 𝑤 ≡ 𝜔/𝑘0𝑣𝑇 = 𝑤𝑟 + 𝑖𝑤𝑖 with 𝑣𝑇 ≡
≡ (2𝑘B𝑇/𝑚)1/2, and 𝑄1(𝜉) ≡ (𝜉/2)ln[(𝜉 + 1)/(𝜉−
− 1)] − 1 with 𝜉 ≡ 𝑤(1 + 𝑖/𝒦). In the analytical
derivation of this dispersion equation, we used ap-
proximately 𝑝 ≈ 𝑝𝑇 = 𝑚𝑣𝑇 by the properties of
the Maxwellian distribution (3) calculating the an-
gle integrals over the momentum p, which simpli-
fies this equation, in contrast to the derivations in
Ref. [21]. The absolute values of the sound-wave num-
ber 𝛽 = 𝜔/𝑤𝑟 and the scaled absorption coefficient
𝛾/𝛽 are given by

𝛽 =
𝜔

𝑣𝑇

|𝑤𝑟|
𝑤2

𝑟 + 𝑤2
𝑖

,
𝛾

𝛽
=

⃒⃒⃒𝑤𝑖

𝑤𝑟

⃒⃒⃒
. (20)

Thus, one obtains the wave number 𝛽 > 0 and the ab-
sorption coefficient 𝛾 > 0 for sound waves spreading
in the positive 𝑧-axis direction for 𝑧 > 0. Similarly,
one finds the contributions of other poles [37].

Taking the asymptotic expansion of D(𝑤,𝒦)
[Eq. (19)] in a power series of 𝒦 within the FCR,
where 𝒦 ≪ 1, for the isothermal sound velocity 𝑐 in
units of the adiabatic sound velocity 𝑐0 [Eq. (1)], one
finds

𝑐

𝑐0
∼=

4√
15𝜋

+ 𝑎2(𝜔𝜏)
2 +𝑂

[︀
(𝜔𝜏)4

]︀
, (21)

𝛾

𝛽0

∼=
(21𝜋 − 40)

√
15𝜋

160
𝜔𝜏 +𝑂

[︀
(𝜔𝜏)3

]︀
, (22)

where 𝑎2 ∼= 0.67 (𝛽0 = 𝜔/𝑐0). In the RCR, 𝒦 ≫ 1,
the asymptotic expansion of Eq. (19) in 1/𝜔𝜏 yields

𝑐

𝑐0
∼=

[︂
1− 1

(𝜔𝜏)2

]︂ √︂
6

5
+𝑂

[︀
(𝜔𝜏)−4

]︀
, (23)

𝛾

𝛽0

∼=
√︂

5

6

1

𝜔𝜏
+𝑂

[︀
(𝜔𝜏)−4

]︀
. (24)

3. Comparison with Data

In this section, we present a comparison of the ob-
tained theoretical results with the available data
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[9, 12] on the speed and absorption coefficient of AP-
SWs. These data were originally presented in terms
of the dimensionless variable [9, 10, 12]

𝑟 =
2𝑓𝑐
5𝜋 𝑓

≡ 4𝑓𝑐
5𝜔

, (25)

where 𝑓𝑐 = 𝑣/𝑙, which coincides with 𝜏−1 given by
Eq. (6). We prefer to use the quantity 𝜔𝜏 ≡ 0.8𝑟−1.
Thus, in contrast with the original presentation, the
frequency 𝜔 in our figures is increasing from left to
right along the abscissa axis.

The fundamental experimental observation consists
in the following. All monoatomic gases with differ-
ent values of a mass 𝑚, diameter 𝑑 (cross-section
𝜎 = 𝜋𝑑2), density 𝑛, and temperature 𝑇 , i.e., differ-
ent equilibrium states of the gas, have the same uni-
versal behavior of the speed of sound and the scaled
absorption coefficient presented in terms of the di-
mensionless quantity 𝜔𝜏 . The data at different 𝑚, 𝜎,
𝑇 , and 𝑛 values can be shown at the same figure,
but with 𝜏 = 𝜏(𝑚,𝜎, 𝑛, 𝑇 ) calculated by Eq. (6). We
should only remember that the same value of 𝜔𝜏 may
correspond to different 𝜔 and 𝜏 = 𝜏(𝑚,𝜎, 𝑛, 𝑇 ) val-
ues. Our description is in complete agreement with
this experimentally observed scaling. Note that, in
Ref. [9], the pressure 𝑃 was changed from 1 atm to
10−2 − 10−3 atm. In addition to Ar and Ne atoms
presented in Figs. 1 and 2, the measurements were
also done for He, Kr, and Xe.

Figure 2 shows the sound velocity 𝑐/𝑐0 (a) and
the scaled absorption coefficient 𝛾/𝛽0 (b) as func-
tions of the Knudsen parameter 𝜔𝜏 . The results pre-
sented by solid lines are obtained numerically by solv-
ing the dispersion equation (19). In the both limits
𝜔𝜏 ≪ 1 and 𝜔𝜏 ≫ 1, our numerical results converge
[37] to the asymptotic results of the FCR and RCR,
respectively. These limiting behaviors correspond to
Eqs. (22) and (24) at leading (quadratic) orders.

As seen from Fig. 2, a, 𝑐/𝑐0 increases in a transi-
tion region from the FCR to the RCR, where 𝜔𝜏 ∼
∼ 1. This theoretical result is in a qualitative agree-
ment with the data. Figure 2, a shows, however, the
numerical discrepancies for the absolute values of
𝑐/𝑐0. Their main reason is a well-known difference be-
tween isothermal and adiabatic limits of the sound ve-
locity [1]. The comparison with the experimental re-
sults is improved for a relative sound dispersion [17],
(𝑐/𝑐0)(15𝜋)

1/2/4, i.e., for the 𝜔𝜏 -dependent deflec-

Fig. 2. Sound velocity 𝑐 (a) in units of 𝑐0 (1) and the
scaled absorption coefficients 𝛾/𝛽0 (b) as functions of 𝜔𝜏 . Solid
black lines show the nonperturbative solutions to the dispersion
equation (19). Dash-dotted line in (a) is the relative sound ve-
locity (𝑐/𝑐0)(15𝜋)

1/2/4. Dashed line in (b) presents the Stokes
equation (9) calculated in the FCR

tion of the sound velocity 𝑐 from its FCR limit, see
the dash-dotted line in Fig. 2, a.

Figure 2, b shows the scaled absorption coefficient
𝛾/𝛽0 [Eq. (20)]. The absorption coefficient 𝛾/𝛽0 as
a function of the Knudsen parameter demonstrates
a maximum at 𝜔𝜏 ∼ 1 in the transition from the
FCR to the RCR. This behavior is also in qualita-
tive agreement [see Fig. 2, b] with the experimen-
tal data [9, 12]. For even larger 𝜔𝜏 , one finds a sig-
nificant difference from the results of Ref. [12]. The
“kink” point in the dependence of the scaled ab-
sorption coefficient 𝛾/𝛽 and of the sound velocity
𝑤𝑟 on the Knudsen parameter 𝒦 is found numeri-
cally to the right of the maximum at 𝜔𝜏 ≈ 4.47,
where their derivatives with respect to 𝜔𝜏 are sharply
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changed. This is obtained in the numerical calcula-
tions which are carefully checked within two differ-
ent numerical schemes. It is worth to note that the
branch point (b.p.) of the Legendre function 𝑄1(𝜉)
of the second kind (zero of its logaritmic presenta-
tion) in the dispersion equation (19) is determined
by 𝜉 = 1, that means 𝑤b.p. = 𝒦/(𝒦 + 𝑖) for the
sound velocity. This corresponds to the scaled absorp-
tion 𝛾/𝛽 at the branch point (𝛾/𝛽)b.p. = 1/𝒦. Ho-
wever, we did not find analytically the Knudsen pa-
rameter 𝒦 at the branch point. There are two length
scales in the problem: the mean free path of parti-
cles in a gas, 𝑙 = 𝑣𝑇 𝜏 , and the sound wavelength,
𝜆 = 𝑤𝑟𝑣𝑇 2𝜋/𝜔. The “kink” corresponds to the 𝜔𝜏
point, where these two different scales become ap-
proximately equal, 𝑙 ≈ 𝜆. This takes place in the non-
perturbative region of 𝜔𝜏 values. Nevertheless, the
branch point 𝑤b.p.(𝒦) as a function of 𝒦 coincides
with the asymptotic RCR solution 𝑤RCR = 𝒦/(𝒦+𝑖)
found in Ref. [37] for large 𝒦 and, thus, one obtains
approximately 𝛾/𝛽 = 1/𝒦 starting from this “kink”
point. Such a presence of the “kink” point resembles
a situation similar to phase transitions in statistical
mechanics. An origin of the “kink” remains the open
problem that deserves further studies.

Note that, in the RCR, 𝜔𝜏 ≫ 1, one finds 𝛾−1 ∼ 𝑙
from Eq. (24), i.e., the propagating length of the
plane sound waves is of the order of a mean-free
path in a gas. The quantity 𝑙 [Eq. (5)] remains rather
small even for dilute gases. In a gas under the nor-
mal conditions, the mean-free path is estimated as
𝑙 ∼ 10−5 cm. Even at much small pressures, e.g.,
𝑃 ∼ 10−3 atm, the propagation length 𝛾−1 ∼ 𝑙 ∼
∼ 10−2 cm remains, in fact, rather small at 𝜔𝜏 ≫ 1.
On the other hand, the Stokes formula (2) was ob-
tained from the transport equation for the entropy
density [1] under the assumption of a weak absorp-
tion, 𝛾𝜆/(2𝜋) ≪ 1. In the RCR, this estimate is still
valid, as 𝜆 ≪ 2𝜋𝑙. Therefore, one may expect the va-
lidity of Eq. (2) in the RCR as well. This requires,
however, a strong modification of the kinetic coef-
ficients which become also dependent on the sound
frequency 𝜔 (see Ref. [36]).

4. Summary

The kinetic approach based on the linear response
theory for the BKE is developed to calculate the ve-
locity and absorption coefficient for the plane sound

waves. Our solution is based on the relaxation time
approximation of the Boltzmann collision integral for
the classical dilute gases.

Nonperturbative numerical solutions are found for
the sound velocity and absorption coefficient as func-
tions of the Knudsen parameter 𝜔𝜏 . They agree with
the asymptotic expansions in both FCR and RCR ap-
proximations. Our results are in agreement with ex-
perimentally observed scaling, which means a depen-
dence of both sound wave quantities – velocity 𝑐/𝑐0
and absorption coefficient 𝛾/𝛽0 – on the single di-
mensional parameter 𝜔𝜏 . Qualitative changes of the
sound velocity and scaled absorption coefficient in the
transition region 𝜔𝜏 ∼ 1 are observed: The sound ve-
locity 𝑐/𝑐0 strongly increases, while the absorption co-
efficient 𝛾/𝛽0 has a maximum at 𝜔𝜏 ≈ 1. Both these
theoretical results are in agreement with the data.

Our theoretical description is not complete. The
presented BKE calculations should be extended to
account for the thermal conductivity effects. In the
RCR, the experimental values of 𝛾/𝛽0 seem to be
essentially larger than our estimate ∼ (𝜔𝜏)−1 (24)
at 𝜔𝜏 ≫ 1. This can be a signal of a presence of
additional physical mechanisms for the sound-wave
suppression which were not included in the present
consideration.

As for the perspective, one possible application of
the kinetic theory in the RCR is high-energy nucleus-
nucleus collisions. The intermediate stage of these
collisions is often described by the hydrodynamic
approach. The hydrodynamic description should be
stopped at some stage (the so-called freeze-out pro-
cedure). After such a stage, the system is usually con-
sidered as one of freestreaming particles. At this post-
freeze-out stage, however, the particle collisions still
occur, and the final momentum spectra are influenced
by these collisions. This stage is the RCR of the ki-
netic models. The mean free path of particles flying
away becomes larger than system’s size.
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А.Г.Магнер, М.I. Горенштейн, У.В. Григор’єв

ШВИДКIСТЬ I КОЕФIЦIЄНТ
ПОГЛИНАННЯ ЗВУКОВИХ ХВИЛЬ
В КЛАСИЧНИХ ГАЗАХ

Р е з ю м е

Знайдено швидкiсть i коефiцiєнт поглинання плоских зву-
кових хвиль в класичних газах шляхом розв’язку кiнети-
чного рiвняння Больцмана. Це зроблено в рамках теорiї лi-
нiйного вiдгуку одночастинкової функцiї розподiлу на пе-

рiодичне зовнiшнє поле. Непертурбативне рiвняння диспер-
сiї отримано в наближеннi часу релаксацiї i розв’язано чи-
сельно. Отриманi теоретичнi результати показують унiвер-
сальну залежнiсть швидкостi звуку i коефiцiєнта поглина-
ння вiд параметра 𝜔𝜏 , де 𝜔 – частота звуку, а 𝜏−1 – ча-
стота зiткнень частинок. В областi 𝜔𝜏 ∼ 1 вiдбувається
змiна режиму вiд частих зiткнень до поодиноких, швид-
кiсть звуку рiзко збiльшується, i коефiцiєнт поглинання
має максимум – обидва теоретичнi ефекти вiдповiдають
експерименту.
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