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ON THE CLASSIFICATION OF SYMMETRY
REDUCTIONS AND INVARIANT SOLUTIONS
FOR THE EULER-LAGRANGE-BORN-INFELD

EQUATION!

We study a connection between the structural properties of the low-dimension (dimL < 8)
nonconjugate subalgebras of the Lie argebra of the genmeralized Poincaré group P(1,4) and
the results of symmetry reductions for the FEuler—Lagrange—Born—Infeld equation. We have
performed the classification of nonsingular manifolds in the space M(1,3) x R(u) invariant
with respect to three-dimensional nonconjugate subalgebras of the Lie algebra of the group
P(1,4). The results are used for the classification of symmetry reductions and invariant solu-
tions of the Euler—Lagrange—Born—Infeld equation.
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1. Introduction

The symmetry reduction is one of the most powerful
tools for the investigation of PDEs with nontrivial
Symmetry groups.

In what follows, we focus our attention on appli-
cations of the classical Lie method for symmetry re-
ductions and the construction of invariant solutions
of PDEs with non-trivial symmetry groups.

In 1895, S. Lie [1] considered solutions invariant
with respect to groups admitted by higher-order
PDEs.

According to the classical group analysis, the main
classification of symmetry reductions and invariant
solutions for PDEs with nontrivial symmetry groups
should be performed by using ranks of nonconjugate
subalgebras of Lie algebras of symmetry groups of
the equations under investigations [2, 3| (see also the
references therein). In this approach, the invariant so-
lutions of PDEs with nontrivial symmetry groups are
nonsingular manifolds, which are invariant with re-
spect to those nonconjugate subalgebras. Therefore,
the clasification of invariant solutions reduces to the
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classification of the corresponding nonsingular mani-
folds.

However, it turned out that the reduced equa-
tions obtained with the help of nonsingular manifolds,
which are invariant with respect to nonconjugate sub-
algebras of the same ranks of the Lie algebras of the
symmetry groups of some PDEs, were of different
types. Grundland, Harnad, and Winternitz [4] were
the first who pointed out and investigated the similar
phenomenon. The details on this theme can be found
in [5-13] (see also the references therein).

To try to explain some differences in the properti-
es of the reduced equations and invariant solutions,
which are obtained by using nonconjugate subalge-
bras of the same ranks of the Lie algebras of the sym-
metry groups of the PDEs under consideration, we
recently suggested to use the structural properties of
those nonconjugate subalgebras. The details on this
theme can be found in [10,12,13] (see also the refer-
ences therein).

1 This work is based on the results presented at the XI Bolyai—
Gauss—Lobachevskii (BGL-2019) Conference: Non-Euclide-
an, Noncommutative Geometry and Quantum Physics.
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At the present time, the relationship between the
structural properties of the three-dimensional non-
conjugate subalgebras of the Lie algebra of the group
P(1,4) and the properties of the reduced equations
for the Euler-Lagrange-Born-Infeld equation has
been investigated. We obtained the following types
of the reduced equations:

e identities;

e linear ordinary differential equations;

¢ nonlinear ordinary differential equations;

e partial differential equations.

It should be noted that, from the invariants of so-
me nonconjugate subalgebras of the Lie algebra of
the group P(1,4), it is impossible to construct the
ansitze which reduce the Euler-Lagrange-Born—In-
feld equation.

In this paper, we focus our attention on the reduc-
tion of the Euler-Lagrange—Born-Infeld equation to
identities. More precisely, we only present the results
of the symmetry reduction for those types of subal-
gebras, which provide us reductions to identities.

2. Lie Algebra of the Poincaré Group
P(1,4) and Its Nonconjugate Subalgebras

The group P(1,4) is a group of rotations and tran-
slations of the five-dimensional Minkowski space
M(1,4). It is the smallest group which contains, as
subgroups, the extended Galilei group G(1,3) [14]
(the symmetry group of classical physics) and the
Poincaré group P(1,3) (the symmetry group of re-
lativistic physics).

The Lie algebra of the group P(1,4) is generated
by 15 basis elements M,,, = —M,,,(n,v =0,1,2,3,4)
and P,(p = 0,1,2,3,4) which satisfy the commuta-
tion relations

[Pﬂ’ PV] = 07

[M;un Po’] = gVUP;J, - guUPlly

[M/LV7 Mpa} :g/LJMVp +gupM;u7 - gp.pMua - gVaM/pr
where goo = —g11 = —g22 = =933 = —guu = 1, g =
=0,if p #v.

Here, we consider the following representation [15]
of the Lie algebra of the group P(1,4):

0 0 0 0
0 8:50 ’ ! 81’1 ’ 2 8x2 ’ 8%3 ’
0
Py = 90’ M, =z,P, —x,P,, v4=u.
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Below, we will use the following basis elements:

G = Mos, L1 = Maz, Ly =—DMs, L3 = M,

P = May=Mon, Ca = Mot Mo, Xo = 5 (o= P,
Xy =P, Xy= 3 (Po+Py), (a,k=1,2,3).

The nonconjugate subalgebras of the Lie algebra
of the group P(1,4) have been described in works
[16-18].

_The Lie algebra of the extended Galilei group
G(1,3) is generated by the basis elements

L17 L2a L3a P17 P27 P37 XOa Xl) X27 X?n X4-

The classification of all nonconjugate subalgebras
of the Lie algebra of the group P(1,4) of dimensions
<3 was performed in [19].

3. On the Classification
of Symmetry Reductions
for the Euler-Lagrange—Born—Infeld Equation

The Born—Infeld equations in the spaces of vari-
ous dimensions and various types have many appli-
cations in the fluid dynamics, theory of continuous
medium, general theory of relativity, field theory, the-
ory of minimal surfaces, nonlinear electrodynamics,
theory of conservation laws, etc. More details on this
theme can be found in [20-24] (see also the references
therein).

Let us consider the Euler-Lagrange-Born—Infeld
equation of the form

Ou (1 — upu”) + u'uuy, =0,
where

u=u(x), == (zo,21,x2,23) € M(1,3),
ou 0?u

_ W v
. u,, = ———— ut = gy
oz’ M T xrdz’ g U

UHE

and
9w = (1,-1,-1,-1)6,,, n,v=0,1,2,3,

O is the d’Alembert operator.

In 1984, Fushchich and Serov [15] studied the sym-
metry properties and constructed some classes of
exact solutions for the multidimensional nonlinear
Euler-Lagrange equation. It follows from [15] that
the Lie algebra of the symmetry group of the Euler—
Lagrange—Born—Infeld equation contains, as subalge-
bra, the Lie algebra of the Poincaré group P(1,4). As
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we wrote earlier, the results of the classification of all
the low-dimensional (dim L < 3) nonconjugate subal-
gebras of the Lie algebra of the group P(1,4) can be
found in [19].

In order to classify symmetry reductions and in-
variant solutions for the Euler-Lagrange-Born-Infeld
equation, we need the classification of nonsingular
manifolds in the space M(1,3) x R(u) invariant with
respect to nonconjugate subalgebras of the Lie alge-
bra of the group P(1,4).

Till now, we have performed the classification of
nonsingular manifolds in the space M(1,3) x R(u)
invariant with respect to three-dimensional noncon-
jugate subalgebras of the Lie algebra of the group
P(1,4) and have used the results for the classifi-
cation of symmetry reductions and invariant solu-
tions for the Euler-Lagrangev-Born-Infeld equati-
on. As we wrote above, we will focus our attention
on the reduction of the Euler-Lagrange—Born—Infeld
equation to identities. Therefore, we only present the
results of the symmetry reduction for those types of
subalgebras which provide us reductions to identities.

Now, we present some of the results obtained.

3.1. Lie algebras of the type 3A,

Taking the invariants of nine subalgebras into ac-

count, we constructed the anséitze which reduce the

Euler-Lagrange—Born—Infeld equation to identities.
Below, we present some of the results obtained.

L (Pr—vX3,7>0)® (P, — X2 —0X3,0 #0) & (Xy):
Ansatz

w3(wo + u)? = (Y21 + 228 — 23) (w0 + u)— Y21 = P(W),
w =T+ Uu.

A solution of the Euler-Lagrange-Born-Infeld equ-
ation has the form

x3(zo +u)? — (vr1 + 220 — 23) (20 +u) — Y21 =
= (o + u),

where ¢ is an arbitrary smooth function.

2. (P —7vX3,7>0)® (P, — Xo) ® (X4):
Ansatz

3(wo +u)? = (vr1 — x3) (20 + 1) — 21 = (W),
w =g+ U.
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A solution of the Euler-Lagrange-Born—Infeld equ-
ation has the form

z3(zo +u)? — (yxy — 23) (20 + ) — Y21 = P(T0 + 1),
where ¢ is an arbitrary smooth function.
3. (P, — X3) @ (P2) @ (Xy):

Ansatz

S = pw)
T3 — = p(w),
° To+u 4

w =g + u.

A solution of the Euler-Lagrange-Born—Infeld equ-
ation has the form
&1

o+ u

T3 — = cp(:co + u)7

where ¢ is an arbitrary smooth function.

As we see in the above-presented cases, ansétze (1)—
(3) (nonsingular manifolds invariant with respect to
the corresponding subalgebras) are the solutions of
the Euler-Lagrange-Born—Infeld equation.

It should be noted that subalgebras (1)—(3) be-
long to the Lie algebra of the extended Galilei group

G(1,3) C P(1,4).
3.2. Lie algebras of the type Asz.1

Taking the invariants of ten nonconjugate subalge-
bras into account, we constructed the ansétze which
reduced the the Euler-Lagrange-Born—Infeld equati-
on to identities.

Below, we present some of the results obtained.

1. (4Xy, P, — X5 — 7 X3, Po+ X1 — uXs — 0X;,
>0, 840, p>0):

Ansatz

x3(xg +u)? — (yo1 + 220 — pas)(zo + u) +

+ (0 =)y — z2y + 3 = p(w),

W =xg + U.

A solution of the Euler-Lagrange-Born—Infeld equ-
ation has the form

x3(zo +u)? — (yr1 + 220 — pws)(zo +u) +

+ (6 —yp)wr — w2y + w3 = (0 + 1),

where ¢ is an arbitrary smooth function.

2. (4X4, Pr— Xo—vX3, Po+ X1 — uXo,v>0,u>0):

Ansatz

z3(wo +u)? — (vr1 — pag)(wo + u) — yua: — T2y +
1105
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+r3=9pW), w=uxy+u.

A solution of the Euler-Lagrange-Born—Infeld equ-
ation has the form

w3(wo +u)® — (yor — p)(wo + ) — yury — zay +
+ 23 = (20 + ),

where ¢ is an arbitrary smooth function.

3. <2[1,X4, P;— Xo, Xy +,uX3,[L > 0>

Ansatz
T3 — pT1
e A

A solution of the Euler-Lagrange-Born—Infeld equ-

ation has the form

X3 — H
Tot+u

where ¢ is an arbitrary smooth function.

As we see, in the above-presented cases, ansétze
(1)—(3) (nonsingular manifolds invariant with respect
to the corresponding subalgebras) are the solutions of
the Euler-Lagrange-Born—Infeld equation.

It should be noted that subalgebras (1)—(3) be-
long to the Lie algebra of the extended Galilei group

G(1,3) C P(1,4).
3.3. Lie algebras of the type Az ¢

2 = ¢(xo +u),

Taking the invariants of two nonconjugate subalge-
bras into account, we constructed ansétze which re-
duced the Euler—Lagrange—Born—-Infeld equation to
identities.

Below, we present some of the result obtained.

<X11 _X27 _(L3 + 2X4)>
Ansatz

o tu=pWw), w=uz;.

A solution of the Euler-Lagrange-Born—Infeld equ-
ation has the form

xo+u = @(x3),

where ¢ is an arbitrary smooth function.

As we see in the above-presented case, the ansatz
(nonsingular manifold, invariant with respect to the
corresponding subalgebra) is a solution of the Euler—
Lagrange-Born-Infeld equation.

It should be noted that the subalgebra belongs to
the Lie algebra of the extended Galilei group G(1.3) C
C P(1.4).
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4. Conclusions

We have performed the classification of nonsingu-
lar manifolds in the space M (1,3) x R(u) invariant
with respect to three-dimensional nonconjugate sub-
algebras of the Lie algebra of the group P(1,4) and
have used the results for the classification of symme-
try reductions and invariant solutions for the Euler—
Lagrange—Born—Infeld equation.

We have focused our attention on the classification
of symmetry reductions of the Euler-Lagrange-Born—
Infeld equation to identities. More precisely, we have
presented only the results of the symmetry reduction
for those types of three-dimensional nonconjugate
subalgebras of the Lie algebra of the group P(1,4)
which give reductions to identities. It is known [19]
that the Lie algebra of the group P(1,4) contains
three-dimensional nonconjugate subalgebras of the
following types: 3A1, A2 @Al, 143.17 A3_2, 143_37 A3_4,
Az, A§7, Azg, and Azg.

From the results obtained, it follows that all
above-presented symmetry reductions of the Euler—
Lagrange-Born—Infeld equation to identities can be
obtained using some subalgebras of the following
types: 3A1, A3.1, A3'6.
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ITPO KJIACUDIKAIIIKO CUMETPIMHUX
PEAVKIIIN TA THBAPIAHTHUX PO3B’A3KIB
PIBHAHHYA OMJIEPA-JIATPAHYKA-BOPHA-THOEJIbIA

Pezmowme

BuBuaeTbca 3B’930K MiXK CTPYKTYPDHUMH —BJIACTUBOCTSIME
nusbkoBuMipHux (dimL < 3) HecnpsikeHHX miJajareGp aJjre-
6pu JIi ysaranbrenol rpynu Ilyankape P(1,4) i pesysnbraramu
cuMeTpifHuX peaykuih g piBHauHs Oitnepa—Jlarpam>ka—
Bopra-Iudenpaa. IIposeneno kmacudikalfiio HECHHIYISIPHIX
MHorosuais B npocropi M (1, 3) X R(u), iuBapianTHUX BiHOCHO
TPUBUMIDHUX HeECHpsi)KeHuX mimanarebp anrebpu JIi rpynm
P(1,4), i orpuMmani pe3yJabTaTH BUKOPUCTAHO IS KJIaCH-
dikanil cuMeTpifiHMX peayKIiii Ta iHBapiaHTHUX PO3B’sI3KiB
pisustaas Oitnepa—/larpamka—Bopua—Indensaa.
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