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KRAMERS–KRONIG RELATIONS – SUPPLEMENTARY
TECHNIQUE TO THE TIME-DOMAIN SPECTROSCOPY

We have proposed a new method for obtaining the Kramers–Kronig relations based on the anal-
ysis of the earlier proposed solution of the wave equation for a dispersion medium [2]. The use
of this solution for ultra-wideband (femtosecond) optical signals allowed us to propose a simul-
taneous measurement method for both 𝑛 (𝜔) and 𝑘 (𝜔). The latter is a further development of
the time-domain spectroscopy method.
K e yw o r d s: Kramers–Kronig relations, femtosecond pulse, time-domain spectroscopy tech-
nique.

1. Introduction and Short History

In [3], Kronig obtained a relation for the refrac-
tive index and absorption coefficient. One year later,
Kramers made his famous report [4]. It states that
the real and imaginary parts of the complex refrac-
tive index 𝜈(𝜔) = 𝑛(𝜔) + 𝑖𝜅(𝜔) connected to one
another. The basic requirement to get the Kramers–
Kronig (KK) relations is the analyticity of a dielec-
tric susceptibility (DS) in the upper half-plane for the
adsorbing medium. There are some problems of the
calculation of integrals within the Cauchy Principal
Value [1].

We propose another method for obtaining analo-
gous relations on the basis of the analysis of the so-
lution of the wave equation in a dispersive medium
using the principle of causality.

In addition, as it was stated by C.D. McDonald and
K.E. Oughstun in [5], the “Hilbert transform pair re-
lationship is only approximately satisfied”. More ex-
actly, this is the case by experimentally measured
data. So, we propose a direct (spectral) method of
finding both refractive index 𝑛(𝜔) and absorption co-
efficient 𝜅(𝜔). The basis for this is the analysis of the
spectra of ultra-wideband pulse signals for samples of
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different sizes (lengths). This proposal is a further de-
velopment of the terahertz time-domain spectroscopy
method [6] over the optical wavelength range, which
is supported by recent advances in femtosecond pulse
registration technique [7].

2. Theory

We use the formula that describes the propagation
of an optical pulse in a medium with a dispersion
obtained [2]
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– Fourier’s sin-transform, 𝐸(0, 𝑡)[𝑈𝑡(𝑡)−𝑈𝑡(𝑡− 𝑇 )] –
temporal pulse shape at the entrance to the sample,
𝑈𝑡(𝑡) – single step function, 𝑇 – pulse duration, 𝜅(𝜔),
𝑛(𝜔) – absorption coefficient and refractive index, ac-
cordingly.

Limiting the pulse duration (𝑇 ) in time is natural
for physical objects.

In the early work of A. Sommerfeld, L. Brillouin
[8], and in our work [2], the existence of the so-
called “forerunner” for an optical ultrashort pulse was
shown by direct calculations. Its characteristic fea-
ture is the propagation at the speed of light in vacuum
practically irrespective to the nature of the medium
dispersion.

We write down the wave equation at the exit of the
medium and substitute solution (1) in it
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= 0. (2)

After substitution (1) to (2), one can get
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We simplify Eq. (3) at the time

𝑡 =
𝑧

𝑐
, 𝜔max𝑧/𝑐 → 0.

Then one can get the integral equation

𝜔max∫︁
0

𝜔2[(𝜅2(𝜔)− 𝑛2(𝜔) + 1)𝐸𝑂𝐶 +

+2𝜅(𝑤)𝑛(𝑤)𝐸𝑂𝑆 ]𝑑𝜔 = 0. (4)

Below, we consider two variants of the probing of the
sample: 1) a monochromatic signal and 2) a broad-
band signal.

3. Variant I

First, we write the input signal in the form

𝐸(0, 𝑡) = 𝐴 cos 𝜔0𝑡+𝐵 sin 𝜔0𝑡. (5)

Then we write the formulas for the Fourier cos- and
sin-transforms of expression (3)
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After substituting (6) and (7) into (4) and sepa-
rating the signals, we obtain a system of two integral
equations
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For narrow-band spectral lines, one can neglect the
smooth dependence on (𝜔/𝜔0)

2 and write the well-
known relations
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One can calculate integrals in (10) and (11) in the
sense of the Cauchy principal value. Formulas (10)
and (11) are analytically valid for the well-known
Drude–Lorentz model of the substance (see Ref. [9]).

4. Variant II

We will proceed from the general formula for the
optical ultra-wideband pulse, which propagates in a
medium with dispersion (1). The corresponding spec-
trum can be recorded as
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. (12)
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To exclude one of the two unknown functions,
namely 𝑘(𝜔), let us write formula (12) for two sample
lengths: 𝑧 and 2𝑧. Then we divide the square of the
first spectrum by the second one and get

[𝐹𝐸(𝑧, 𝜔)]2
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=
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Thus, we have obtained Eq. (13), in which the
unknown function 𝑛(𝜔) enters in the implicit form.
Here, 𝑠(𝜔) is the experimental spectral coefficient.

Next, we will perform a simulation of the solution
of Eq. (13) for the classical oscillator model of matter

𝑛(𝜔) = 1 +
1

2
𝑄2 1−𝑊 2

(1−𝑊 2)2 +𝑊 2𝜈2
, (14)

where 𝑄 =
𝜔𝑝

𝜔0
, 𝜔2

𝑝 = 4𝜋𝑁e2/𝑚, 𝜔𝑝 ≪ 𝜔0, 𝑊 = 𝜔
𝜔0

,
𝜈 = 𝜈

𝜔0
.

Dependences (14) for three concentrations (param-
eter 𝑄) are shown in Fig. 1.

The probing femtosecond optical pulse can be rep-
resented as a zero-order elementary wave packet [10]

𝐸0(0, 𝑡) = cos

[︂
2𝜋𝑡

𝑇

]︂
− cos

[︂
4𝜋𝑡

𝑇

]︂
, (15)

where 𝑡 = 𝑡𝜔0,

𝑇 = 𝑇𝜔0.

The shape of the pulse and the corresponding
Fourier cos- and sin-transforms are shown in Figs. 2
and 3. We have

𝐸𝑂𝐶(𝜔) = − 12𝜋2(𝜔𝑇 ) sin[𝑇𝜔]

64𝜋4 − 20𝜋2(𝜔𝑇 )2 + (𝜔𝑇 )4
, (16)

𝐸𝑂𝑆(𝜔) = − 12𝜋2(−1 + cos[𝑇𝜔])

64𝜋4 − 20𝜋2(𝜔𝑇 )2 + (𝜔𝑇 )4
. (17)

Let us calculate the spectral coefficient 𝑆(𝜔) with
formulae (13), (14), (16), and (17): 𝑄2 = 0.0001,
𝜈2 = 1

12 , 𝜔0𝑧
𝑐 = 5, 𝑇𝜔0 = 8. The result is shown in

Fig. 4. The spectral dependence 𝑆(𝜔) is rather com-
plex. Therefore, we cannot refine the simple numeri-
cal solution of Eqs. (13).

Fig. 1. Dispersion of the refractive index 𝑛(𝜔): 1 – 𝑄2 = 0.02;
2 – 𝑄2 = 0.04; 3 – 𝑄2 = 0.06; 4 – 𝑄2 = 0.08; 5 – 𝑄2 = 0.10;
𝜈2 = 1/12

Fig. 2. Shape of a femtosecond pulse 𝐸0(𝑡) of the zero order

Fig. 3. Fourier cos- and sin-transforms of a pulse 𝐸0(𝑡):
𝑇𝜔0 = 8. 𝑇 – pulse duration, 𝑇𝜔 = 𝑇𝜔

The results of numerical calculations for the 𝑛(𝜔)
dependence are shown in Figs. 5 and 6.

The increase of the concentration by two times
[𝑄2 = 0.02 (Fig. 5), 𝑄2 = 0.04 (Fig. 6)] leads to
the appearance of the instability of solutions at some
frequencies.
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Fig. 4. Spectral coefficient 𝑆(𝜔): 𝑄2 = 0.0001, 𝜈2 = 1
12

,
𝜔0𝑧
𝑐

= 5, 𝑇𝜔0 = 8

Fig. 5. Numerical calculation of the refractive index 𝑋 =

= 𝑛(𝜔): 𝑄2 = 0.02, 𝜈2 = 1
12

, 𝑧 = 5, 𝑇𝜔0 = 8, 𝐼 = 100𝑤/𝑤0

Fig. 6. Numerical calculation of the refractive index 𝑋 =

= 𝑛(𝜔): 𝑄2 = 0.04, 𝜈2 = 1
12

, 𝑧 = 5, 𝑇𝜔0 = 8, 𝐼 = 100𝑤/𝑤0

A refinement of the calculation algorithm, in par-
ticular, the optimization of the choice of the initial
calculation point, improves the stability of the solu-
tion. In Fig. 7, we show a solution for 𝑄2 = 0.1.

a

b
Fig. 7. Numerical calculation of the refractive index 𝑋 =

= 𝑛(𝜔): 𝑄2 = 0.1, 𝜈2 = 1
12

, 𝑧 = 10, 𝑇𝜔0 = 8; (a) 0 ≤ 𝜔 ≤ 999,
(b) 999 ≤ 𝜔 ≤ 2000 (compare with the data in Fig. 1, curve 5)
𝐼 = 1000𝑤/𝑤0

The dispersion curves in Fig. 7, a, b fit the data in
Fig. 1 (curve 5). This is due to the improvement of
the calculation algorithm. Namely, we use the value
𝑛(𝜔) calculated on the previous step as the “initial
calculation point”.

5. Conclusions

1. The fundamental ground for obtaining the К–К
relations is the principle of causality. This is not sur-
prising, since they are written for monochromatic (in-
finite in time) signals.

2. The analysis of the exact solution of the wave
equation for pulse signals propagating in a disper-
sion medium does not require the application of the
principle of causality. It is automatically contained in
the solution for physically realizable electromagnetic
pulses.
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3. The analysis of the spectra of ultra-wideband
signals at the output of two samples of different
lengths allows us to find the dispersion of both 𝑛(𝜔)
and 𝜅(𝜔).

4. In the optical range, the algorithm for numerical
calculations of 𝑛(𝜔) and 𝜅(𝜔) is complicated, because,
as usual, 𝐿 ≫ 2𝜋𝑐/𝜔, 𝐿 – sample length.

I am sincerely grateful to V.P.Myhashko for the
assistance in the working on article materials
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СПIВВIДНОШЕНННЯ
КРАМЕРСА–КРОНIГА – ДОПОВНЮЮЧА
“TIME-DOMAIN” СПЕКТРОСКОПIЮ МЕТОДИКА

Р е з ю м е

Запропоновано новий метод одержання спiввiдношень
Крамерса–Кронiга, що ґрунтується на аналiзi отриманого
ранiше розв’язку хвильового рiвняння для фемтосекундних
iмпульсiв у диспергуючому середовищi. Вказаний розв’язок
використаний нами для подальшого розвитку методики
“time-domain” спектроскопiї для вимiрювання обох матерi-
альних параметрiв речовини 𝑛(𝜔) i 𝜅(𝜔) одночасно.
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