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CATEGORIES: BETWEEN CUBES
AND GLOBES. SKETCH I1

For a finite partially ordered set 𝐼, we define an abstract polytope 𝒫𝐼 which is a cube or
a globe in the cases of discrete or linear poset, respectively. For a poset 𝑃, we have built a
small category ♦𝑃 with finite lower subsets in 𝑃 as objects. This category ♦𝑃 = ♦+

𝑃♦
−
𝑃 is

factorized into a product of two wide subcategories ♦+
𝑃 of faces and ♦−

𝑃 of degenerations. One
can imagine a degeneration from 𝐼 to 𝐽 ⊂ 𝐼 as a projection of an abstract polytope 𝒫𝐼 to
the subspace spanned by 𝐽 . Morphisms in ♦+

𝑃 with fixed target 𝐼 are identified with faces of
𝒫𝐼 . The composition in ♦𝑃 admits the natural geometric interpretation. On the category ̂︁♦𝐼 of
presheaves on ♦𝐼 , we construct a monad of free category in two steps: for a terminal presheaf,
the free category is obtained via a generalized nerve construction; in the general case, the cells
of a nerve are colored by elements of the initial presheaf. Strict 𝑃 -fold categories are defined as
algebras over this monad. All constructions are functorial in 𝑃 . The usual theory of globular
and cubical higher categories can be translated in a natural way into our general context.
K e yw o r d s: category theory.

1. Introduction
Usually, the higher-dimensional category means a cat-
egory with globular cells [1, 5]. Another version use-
ful in many contexts is cubical categories [3]. Here,
we introduce and study intermediate cases of higher-
dimensional categories with cells whose shapes are de-
termined by partially ordered sets (posets). The con-
cept of abtsract polytope ([6]) generalizes the notions
of convex polytope, polyhedral fan, and tessellations
and shows itself very useful in the regular context,
when the symmetry group acts transitively on full
flags. We define an abstract polytope 𝒫𝐼 for each fi-
nite poset 𝐼. This is a cube or a globe in the cases of
discrete or linear poset, respectively. In the general
case, this abstract polytope is irregular, not a convex
polytope or fan.

Each face of an abstract polytope 𝒫𝐼 is again an
abstract polytope 𝒫𝐽 for some lower set 𝐽 ∈ 𝒪(𝐼),
i.e., for each poset 𝑃, these data are organized into a
category of faces ♦+

𝑃 . Then, for a poset 𝑃, we build a
small category ♦𝑃 , where objects are identified with
polytopes 𝒫𝐼 for finite lower subsets 𝐼 ⊆ 𝑃 . Mor-
phisms are uniquely factorized into a product of a
degeneration from ♦−

𝑃 := 𝒪(𝑃 )op followed by a face
from ♦+

𝑃 of faces.
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On the category ̂︁♦𝑃 of presheaves on ♦𝑃 , we con-
struct a monad of free category in two steps: for
the terminal presheaf 1 ∈ ̂︁♦𝑃 , the free category is
obtained via a generalized nerve construction; for a
general presheaf 𝑋 : ♦𝑃 → 𝒮et, to obtain ℱ𝑋, cells
of the nerve of 1 are colored by elements of the ini-
tial presheaf 𝑋. Strict 𝑃 -fold categories are defined
as algebras over this monad. The functoriality of all
constructions in 𝑃 can be used to translate. The usual
theory of globular and cubical higher categories in a
natural way can bed into our general context.

2. Posets and Abstract Polytopes

Let 𝑃 be a partially ordered set (poset). A subset
𝐼 ⊆ 𝑃 is called a lower set (resp., upper set), if, for
each 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝑃 with 𝑦 ≤ 𝑥 (resp., 𝑦 ≥ 𝑥), we
have 𝑦 ∈ 𝐼. Note that lower sets in 𝑃 are upper sets
in the opposite poset 𝑃 op and vice versa; 𝐼 ⊆ 𝑃 is a
lower set, if its complement 𝑃 ∖ 𝐼 is an upper set.

For an arbitrary subset 𝑋 ⊆ 𝑃 , we denote, by 𝑋↓

(resp., 𝑋↑), the smallest lower set (resp., the greatest
upper set) containing 𝑋. In the case of a singleton,
the lower set {𝑥}↓ is called principle.

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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Further, we consider posets, where all principle
lower sets are finite. Denote, by 𝒪(𝑃 ), the set of
finite lower sets in a such poset 𝑃 . Unions of finite
families and intersections of nonempty families of fi-
nite lower sets are again finite lower sets. So, 𝒪(𝑃 ) is
a distributive lattice with the smallest element ∅.

For a subset 𝑋 ⊆ 𝑃 with induced order, we de-
note, by max(𝑋) and min(𝑋), the sets of maximal
and minimal elements in 𝑋.

For two posets 𝑃 and 𝑄, one can consider the prod-
uct 𝑃 × 𝑄, coproduct 𝑃 ⊔ 𝑄, and linear sum 𝑃 + 𝑄
which is a disjoint union, where the order relation
≤𝑃+𝑄 is the union of ≤𝑃 , ≤𝑄 and 𝑃 ×𝑄.

Definition 1 ([6]). An abstract polytope of (fi-
nite) rank 𝑛 (𝑛 ≥ −1) (or 𝑛-polytope) is a poset 𝒫
with a strictly monotone rank function

rank𝒫 : 𝒫 → {−1 < 0 < ... < 𝑛}.

Elements of

𝒫𝑖 = {𝐹 ∈ 𝒫 | rank𝐹 = 𝑖}

are called 𝑖-faces. The following 4 axioms are satis-
fied:

1. 𝒫−1 =
{︀̂︀0}︀, 𝒫𝑛 =

{︀̂︀1}︀. (Hence, ̂︀0 is the least
face, and ̂︀1 is the greatest face.) Other faces are called
proper. Denote

𝒫> = 𝒫 ∖ {̂︀0}, 𝒫< = 𝒫 ∖ {̂︀1}, 𝒫<> = 𝒫 ∖ {̂︀0,̂︀1}.
2. Each flag (maximal chain) contains 𝑛+ 2 faces.
3. It is strongly connected, i.e., for every inter-

val [𝐹1, 𝐹2] with rank𝐹2 − rank𝐹1 > 2 and 𝐹, 𝐹 ′ ∈
∈ (𝐹1, 𝐹2), there is a way to pass from 𝐹 to 𝐹 ′ via
adjacent faces in (𝐹1, 𝐹2).

4. The diamond condition is satisfied: every 1-
section is a line segment, i.e., if 𝐹1 and 𝐹2 (𝐹1 < 𝐹2)
differ in rank by 2, then there are exactly two inter-
mediate faces 𝐹, 𝐹 ′ in the interval (𝐹1, 𝐹2).

Example 1. Faces of a convex polytope (including
the empty set) ordered by inclusion form an abstract
polytope.

The dual abstract polytope is defined as the op-
posite poset 𝒫op. This definition agrees with the
(barycenric) duality for convex polytopes.

Proposition 1. Given a finite poset 𝐼, there is an
abstract polytope 𝒫𝐼 , where an element of 𝒫>

𝐼 is the
pair of a lower set 𝐽 ⊆ 𝐼 and a function 𝑓 : min(𝐼∖
∖𝐽) → 2 = {0 < 1} with rank(𝐽, 𝑓) = |𝐽 |. The order

is (𝐾, 𝑔) ≤ (𝐽, 𝑓), iff 𝐾 ⊆ 𝐽 and 𝑓 = 𝑔 on min(𝐼 ∖
𝐽) ∩min(𝐼 ∖𝐾).

Proposition 2. This correspondence extends to
the functor 𝒫− from the category of finite posets
and bijectons to the full subcategory of abstract poly-
topes in the category of posets. For two partial or-
ders ≤1 ⊆≤2 on the same finite set 𝐼: a face (𝐽, 𝑓) ∈
∈ 𝒫𝐼,≤1

is mapped to a face of 𝒫𝐼,≤2
presented by

𝐼 ∖ (𝐼 ∖𝐽)↑≤2 ∈ 𝒪(𝐼,≤2) and the restriction of 𝑓 from
min≤1

(𝐼 ∖ 𝐽) to min≤2
(𝐼 ∖ 𝐽)↑≤2 .

Remark 1. The dual polytope 𝒫op
𝐼op admits a ge-

ometric realization in the linear space R𝐼 of formal
sums 𝑥 =

∑︀
𝑖∈𝐼 𝑥𝑖 · 𝑖, 𝑥𝑖 ∈ R. A subset 𝐽 ⊆ 𝐼 deter-

mines a linear subspace R𝐽 ⊆ R𝐼. Let us consider a
configuration generated by the subspaces R𝐽 spanned
on lower subsets 𝐽 ⊆ 𝐼. The subspaces of codimension
1 split each given subspace into polyhedral cones. Note
that, for an element 𝑗 ∈ 𝐽 of a lower set, 𝐽 ∖ {𝑗} is
a lower set, iff 𝑗 ∈ max 𝐽 . So, we obtain a collection
of cones 𝐶𝑓

𝐽 indexed by pairs (𝐽, 𝑓) of a lower subset
𝐽 ⊆ 𝐼 and a function 𝑓 : max 𝐽 → 2 := {0, 1}, where

𝐶𝑓
𝐽 :={(𝑥𝑗)𝑗∈𝐽 ∈ R𝐽 | ∀𝑗 ∈ max 𝐽

∑︁
𝑗

(−1)𝑓(𝑗) 𝑥𝑗 ≤ 0}.

This is a poset ordered by inclusion: 𝐶𝑔
𝐾 ⊆ 𝐶𝑓

𝐽 iff
𝐾 ⊆ 𝐽 and 𝑓 = 𝑔 on max 𝐽 ∩ max𝐾.

Intersections of the above cones with the unit sphere
𝑆𝐼 :=

{︀
𝑥 |

∑︀
𝑖∈𝐼 𝑥

2
𝑖 = 1

}︀
determine a spherical tessel-

lation of 𝑆𝐼 by a fragment of big subspheres 𝑆𝐽 =
= R𝐽 ∩𝑆𝐼 . The greatest element is identified with the
closed unit ball.

According to [4], one can define four types of prod-
ucts (join, sum, direct product, topological product)
for a family (𝒫𝑗)𝑗∈𝐽 of abstract polytopes taking a
Cartesian product of undelying posets for 𝒫𝑗 , 𝒫>

𝑗 ,
𝒫<
𝑗 , and 𝒫<>

𝑗 , respectively.
The construction 𝒫− turns the coproduct into a

direct product and the ordered sum to an ordered
sum:

Proposition 3. For finite posets 𝐼1 and 𝐼2,

𝒫>
𝐼1⊔𝐼2

∼= 𝒫>
𝐼1

× 𝒫>
𝐼2
, 𝒫<>

𝐼1+𝐼2
∼= 𝒫<>

𝐼1
+ 𝒫<>

𝐼2
.

Example 2. For a singleton *, 𝒫* is an interval.
If 𝐼 ∼=

∐︀
𝐼 * is a discrete poset, then 𝒫>

𝐼
∼=

∏︀
𝐼 𝒫>

*
is a cube.

If 𝐼 ∼=
∑︀

𝐼 * is totally ordered, then 𝒫<>
𝐼

∼=
∼=

∑︀
𝐼 𝒫<>

* is a globe with a pair of proper faces in
each dimension.
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A 2-element poset is either discrete or totally or-
dered. For 3-element poset, there exists three more
possibilities:
– 𝒫>

*⊔(*+*)
∼= 𝒫>

* × 𝒫>
*+* is a cylinder;

– 𝒫<>
(*⊔*)+*

∼= 𝒫<>
*⊔* + 𝒫<>

* is a “pillow”;
– 𝒫<>

*+(*⊔*)
∼= 𝒫<>

* + 𝒫<>
*⊔* is a “banana”.

3. Polytopical Categories

A category 𝒞 is factorized into a product of two sub-
categories 𝒞+, 𝒞− →˓ 𝒞, if every morphism in 𝒞 fac-
tors uniquely as a map in 𝒞− followed by a map in
𝒞+. Then we write 𝒞 = 𝒞+𝒞−. (In this case, 𝒞+ and
𝒞− are automatically wide subcategories.) So, the
composition 𝑓𝑔 in the opposite order with 𝑓 ∈ 𝒞−,
and 𝑔 ∈ 𝒞+ admits the unique factorization 𝑓𝑔 ∘ 𝑓𝑔

with 𝑓𝑔 ∈ 𝒞+ and 𝑓𝑔 ∈ 𝒞−. ...
Entwining conditions:
∙ 𝒞+ is a left module over 𝒞−:

𝑓1𝑓2𝑔 = 𝑓1(𝑓2𝑔), 1𝑔 = 𝑔;

∙ 𝒞− is a right module over 𝒞+:

𝑓𝑔1𝑔2 = (𝑓𝑔1)𝑔2 , 𝑓1 = 𝑓 ;

∙ “cocycle conditions”:

(𝑓1𝑓2)
𝑔 = 𝑓

(𝑓2𝑔)
1 ∘ 𝑓𝑔

2 , 1𝑔 = 1;

𝑓 (𝑔1𝑔2) =
𝑓𝑔1 ∘ (𝑓𝑔1 )𝑔2,

𝑓1 = 1.

Theorem 1. Given a poset 𝑃, there exists a small
category ♦𝑃 = ♦+

𝑃♦
−
𝑃 factorized into a product of two

wide subcategories ♦+
𝑃 of faces and ♦−

𝑃 of degenera-
tions.

∙ The subcategory of degenerations ♦−
𝑃 =

𝒪(𝑃 )op. Denote, by 𝜄𝐼⊆𝐽 , the unique element of
♦−
𝑃 (𝐽, 𝐼) for 𝐼 ⊆ 𝐽 in 𝒪(𝑃 ).
∙ There exists a functor ♦+

𝑃 → 𝒪(𝑃 ) identical on
objects. Equivalently, this means that if ♦+

𝑃 (𝐼, 𝐽) is
non-empty, then 𝐼 ⊆ 𝐽 . In this case, ♦+

𝑃 (𝐼, 𝐽) is the
set of functions [[𝐼, 𝐽 ]] → 2 = {0, 1}, where

[[𝐼, 𝐽 ]] = {𝑎 ∈ 𝐽 ∖ 𝐼 | 𝐼 ∪ {𝑎} ∈ 𝒪(𝑃 )} = min(𝐽 ∖ 𝐼).

For 𝐼 ⊆ 𝐽 ⊆ 𝐾 in 𝒪(𝑃 ), we have [[𝐼,𝐾]] ⊆ [[𝐼, 𝐽 ]]⊔
⊔[[𝐽,𝐾]], and the composition of 𝑓 : [[𝐼, 𝐽 ]] → 2 and
𝑔 : [[𝐽,𝐾]] → 2 is a function 𝑔 ∘ 𝑓 : [[𝐼,𝐾]] → 2 with

(𝑔 ∘ 𝑓)(𝑎) =

{︃
𝑓(𝑎), if 𝑎 ∈ [[𝐼, 𝐽 ]],

𝑔(𝑎), if 𝑎 ∈ [[𝐽,𝐾]].

This composition is associative with unit given by the
unique function [[𝐼, 𝐼]] = ∅ → 2 for each 𝐼 ∈ 𝒪(𝑃 ).

∙ Entwining data: for 𝐼 ⊆ 𝐽 ⊇ 𝐾 in 𝒪(𝑃 ) and
𝑓 : [[𝐼, 𝐽 ]] → 2,

– 𝜄𝐾≤𝐽
𝑓 = 𝜄𝐾∩𝐼≤𝐼 ;

– 𝜄𝐾≤𝐽 𝑓 : [[𝐾 ∩ 𝐼,𝐾]] → 2 is the restriction of 𝑓 on
[[𝐾 ∩ 𝐼,𝐾]] ⊆ [[𝐼,𝐾]];

4. 𝑃 -Categories

Denote, by ̂︁♦𝑃 = [♦𝑃 ,𝒮et], the category of presheves
𝑋 : ♦𝑃 → 𝒮et. In particular, ̂︁♦* is the category of
oriented graphs with unital loops.

The 𝑃 -category structure on a presheaf from ̂︁♦𝑃 is
given by a composition in each direction 𝑎 ∈ 𝑃 .

For 𝐼 ∈ 𝒪(𝑃 ) and 𝑎 ∈ 𝐼, we consider a low set
𝐼𝑎 = 𝐼 r {𝑎}↑. For two different 𝑎, 𝑏 ∈ 𝐼, the low sets
𝐼𝑎 and 𝐼𝑏 are different.

We have min(𝐼 r 𝐼𝑎) = {𝑎}. So, we have a functor
𝜄𝐼,𝑎 : ♦* → ♦𝑃 whose image is a full subcategory
with objects 𝐼 and 𝐼𝑎. For a presheaf 𝑋 ∈ ̂︁♦𝑃 , the
composition 𝑋 ∘ 𝜄𝐼,𝑎 ∈ ̂︁♦*.

For each 𝐼 ∈ 𝒪(𝑃 ) and discrete subposet {𝑎 ̸=
̸= 𝑏} ⊆ 𝐼, we have a functor 𝜄′𝐼,𝑎,𝑏 : ♦*⊔* → ♦𝑃 . For
each 𝐼 ∈ 𝒪(𝑃 ) and ordered pair {𝑎 < 𝑏} ⊆ 𝐼, we have
a functor 𝜄′′𝐼,𝑎,𝑏 : ♦*+* → ♦𝑃 .

Definition 2. A strict 𝑃 -category structure on a
presheaf 𝑋 ∈ ̂︁♦𝑃 is given by a usual category struc-
ture on each oriented graph 𝑋 ∘ 𝜄𝐼,𝑎, 𝑎 ∈ 𝐼 ∈ 𝒪(𝑃 )
satisfying the compatibility conditions:

∙ For each 𝐼 ∈ 𝒪(𝑃 ) and discrete subposet {𝑎 ̸=
̸= 𝑏} ⊆ 𝐼, the induced structure on the presheaf
𝑋 ∘ 𝜄′𝐼,𝑎,𝑏 : ♦op

*⊔* → 𝒮et turns it into a strict dou-
ble category.

∙ For each 𝐼 ∈ 𝒪(𝑃 ) and ordered pair {𝑎 < 𝑏} ⊆
⊆ 𝐼, the induced structure on the presheaf 𝑋 ∘ 𝜄′′𝐼,𝑎,𝑏 :
♦op
*+* → 𝒮et turns it into a strict 2-category.
Alternatively, we can describe a direct construction

of the free 𝑃 -category monad ℱ on ̂︁♦𝑃 together with
a category Δ𝑃 and a nerve analog.

Definition 3. Let 𝑃 be a partial order. A finite
presheaf on 𝑃 is a functor 𝑋 : 𝑃 op → ℱ inSet to finite
sets with finite support supp𝑋 := {𝑝 ∈ 𝑃 |𝑋(𝑝) ̸=
̸= ∅}. A partial order on a finite presheaf 𝑋 is a par-
tial order on each 𝑋(𝑝) such that, for each ordered
pair 𝑝 ≤ 𝑞 in 𝑃, the corresponding map 𝑋(𝑞) → 𝑋(𝑝)
is monotone. The morphism of ordered presheaves on
𝑃 is a natural transformation 𝜙 : 𝑋 → 𝑌 such that
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𝜙(𝑝) : 𝑋(𝑝) → 𝑌 (𝑝) is a monotone map for each
𝑝 ∈ 𝑃 . For a pair of partial orders on a presheaf 𝑋,
we write ≤⊆≤′, if 𝑥 ≤ 𝑦 yields 𝑥 ≤′ 𝑦 for each 𝑝 ∈ 𝑃
and 𝑥, 𝑦 ∈ 𝑋(𝑝). A total order on 𝑋 is the maximal
element in the set of partial orders on 𝑋 with respect
to the above inclusion ⊆.

We denote, by Δ𝑃 , the skeletal category of totally
ordered finite presheaves on a partial order 𝑃 . The
distributive lattice 𝒪(𝑃 ) is identified with the full sub-
category [𝑃 ] →˓ Δ𝑃 of presheaves 𝑋, where each 𝑋(𝑝)
is the empty set or singleton 1.

Example 3. If 𝑃 = 1 is the singleton, then Δ1 =
= Δ is the category of finite ordinals 𝑛 := {0 < 1 <
< ... < 𝑛− 1} and monotone maps.

For a finite product Δ𝑃1×...×𝑃𝑛
= Δ𝑃1

× ...×Δ𝑃𝑛
.

In particular, Δ𝐼 = Δ𝐼 for a finite discrete set 𝐼.
Let 𝑃 = 1, 2, ..., 𝜔 be a locally finite ordinal. The

total order on a finite presheaf 𝑋 ∈ ̂︀𝑃 gets a linear
order on each 𝑋(𝑝), 𝑝 ∈ 𝑃 . Moreover, Δ𝑛 is the cat-
egory of functors [𝑛op,Δ] or 𝑛-trees from [2].

For a presheaf 𝑋 : 𝒞op → 𝒮et, the correspond-
ing discrete opfibration el(𝑋)op → 𝒞op is the pull-
back of the universal opfibration 1/𝒮et → 𝒮et along
the functor 𝑋; objects of el(𝑋) are pairs 𝐶 ∈ Ob 𝒞
and 𝑥 ∈ 𝑋(𝐶), morphisms (𝐶, 𝑥) → (𝐶 ′, 𝑥′) are mor-
phisms 𝑓 : 𝐶 → 𝐶 ′ in ♦𝑃 such that 𝑋(𝑓)(𝑥′) = 𝑥.

The totally ordered finite presheaf 𝑋 : 𝑃 op →
→ ℱ inSet determines a presheaf 𝐹𝑋 : ♦op

𝑃 → 𝒮et,
where 𝐹𝑋(𝐼) is the set of sections of the corresponding

discrete opfibration el(𝑋|𝐼)op → ♦op
𝑃 . The presheaf

𝐹𝑋 represent a complex of abstract polytopes glued
together according to the total order. Elements of ℱ1,
the free 𝑃 -category monad applied to the terminal
presheaf 1 ∈ ̂︁♦𝑃 , are identified with all such com-
plexes. For 𝑌 ∈ ̂︁♦𝑃 , the elements of the free 𝑃 -cate-
gory ℱ𝑌 are elements of ℱ1 colored by suitable ele-
ments of 𝑌 .
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КАТЕГОРIЇ: МIЖ КУБIЧНИМИ ТА СФЕРИЧНИМИ

Р е з ю м е

Вивчаються багатовимiрнi категорiї, форма клiтин яких за-
лежить вiд частково-впорядкованої множини.
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