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POLARIZATION OF THE VACUUM
OF THE QUANTIZED SPINOR FIELD
BY A TOPOLOGICAL DEFECT
IN THE TWO-DIMENSIONAL SPACE 1

The two-dimensional space with a topological defect is a transverse section of the three-
dimensional space with an Abrikosov–Nielsen–Olesen vortex, i.e. a gauge-flux-carrying tube
which is impenetrable for quantum matter. Charged spinor matter field is quantized in this
section with the most general mathematically admissible boundary condition at the edge of the
defect. We show that a current and a magnetic field are induced in the vacuum. The depen-
dence of results on the boundary conditions is studied, and we find that the requirement of
finiteness of the total induced vacuum magnetic flux removes an ambiguity in the choice of
boundary conditions. The differences between the cases of massive and massless spinor matters
are discussed.
K e yw o r d s: vacuum polarization, vortex, current, magnetic flux.

1. Introduction

Topological phenomena are of great interest and im-
portance because of their universal nature connected
with general properties of space-time, on the one
hand, and their numerous practical aspects, on the
other hand. In 1959, Aharonov and Bohm [1] consid-
ered the quantum-mechanical scattering of a charged
particle on a magnetic vortex and found an effect
that does not depend on the depth of penetration
of the charged particle into the region of the vor-
tex flux. Thus, it was demonstrated for the first time
that the quantum-mechanical motion of charged par-
ticles can be affected by the magnetic flux from the
region impenetrable for the particles, if the first ho-
motopy group of the region accessible to the parti-
cles is nontrivial. This effect which is alien to classi-
cal physics has a great impact on the development of
various fields in quantum physics, ranging from par-
ticle physics and cosmology to condensed matter and
mesoscopic physics (see, e.g., reviews [2–4]). Howe-
ver, even more important is that the discovery made
by Aharonov and Bohm revealed a significance of
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topology in the context of fundamental principles of
quantum theory.

In 1957, Abrikosov [5] discovered that a magnetic
vortex can be formed in the type-II superconduc-
tors. Later, this result was rederived in a more general
context in relativistic field theory [6]. Such string-like
structures denoted as the Abrikosov–Nielsen–Olesen
(ANO) vortices arise as topological defects in the af-
termath of phase transitions with spontaneous break-
down of continuous symmetries; the general condition
of the existence of these structures is that the first ho-
motopy group of the group space of the broken sym-
metry group be nontrivial.

At present, much attention is paid to the study of
nonperturbative effects in quantum systems, arizing
as a consequence of the interaction of quantized mat-
ter fields with a topologically nontrivial classical field
background. The ANO vortex is described classically
in terms of a spin-0 (Higgs) field which condenses and
a spin-1 field corresponding to the spontaneously bro-
ken gauge group; the former field is coupled to the

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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latter one in the minimal way with constant 𝑒cond.
Single-valuedness of the condensate field and finite-
ness of the vortex energy implement that the vortex
flux is related to 𝑒cond:

Φ =

∮︁
𝑑xV(x) = 2𝜋/𝑒cond, (1)

where V(x) is the vector potential of the spin-1
gauge field, and the integral is over a path enclos-
ing the vortex tube once (natural units ~ = 𝑐 = 1
are used). While considering the effect of the ANO
vortex on quantized matter fields, the following cir-
cumstances should be taken into account. The quan-
tized matter field couples to a vector potential of the
vortex-forming gauge field in the minimal way with
coupling constant 𝑒. The ANO vortex is characterized
by two cores: the one (where the gauge symmetry is
unbroken) has the transverse size of the order of corre-
lation length, and the other one (where the gauge field
strength is nonzero) has the transverse size of the or-
der of penetration depth. The value of the quotient of
these length scales is known as the Ginzburg–Landau
parameter, and this value distinguishes between su-
perconductors of type-I and type-II (for a review, see,
e.g., [7]). Not going into details, we would like to em-
phasize here that the phase with spontaneously bro-
ken symmetry, where the matter field is quantized,
exists in a spatial region outside the vortex, and this
region is not simply connected: its first homotopy
group is nontrivial. Hence, we anticipate in close anal-
ogy with the Aharonov–Bohm effect that the ANO
vortex has no effect on the surrounding matter in the
framework of classical theory, and such an effect, if
exists, is of purely quantum nature. Note also that,
in view of the above, the issue of boundary condi-
tions for a quantized matter field at the edge of the
vortex takes a special significance. The least restric-
tive, but still physically acceptable, is the condition
that ensures the self-adjointness of the Hamiltonian
operator (see, e.g., [8]).

The stress-energy tensor corresponding to the ANO
vortex has diagonal nonvanishing components only:
−𝑇𝑧𝑧 = 𝑇00 > 0, 0 < −𝑇𝑟𝑟 ≪ 𝑇00, 0 < −𝑟−2 𝑇𝜙𝜙 ≪
≪ 𝑇00 (see, e.g., [9]). The stress-energy tensor is a
source of gravity according to the Einstein–Hilbert
equation

𝑅𝜌𝜌′ − 1

2
𝑔𝜌𝜌′𝑅 = 8𝜋Ģ𝑇𝜌𝜌′ , (2)

where 𝑅𝜌𝜌′ is the Ricci tensor, 𝑅 = 𝑔𝜌𝜌
′
𝑅𝜌𝜌′ is the

scalar curvature, and Ģ is the gravitational constant;
we use the notations adopted in [10]. Taking the trace
over Lorentz indices in (2), one gets that the space-
time region of the vortex core is characterized by the
positive scalar curvature, 𝑅 > 16𝜋Ģ𝑇00, since 𝑇00 is
positive there. The space-time outside the vortex core
is flat (𝑅 = 0), but non-Minkowskian, with the metric
given by the squared length element

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝜈−2𝑟2𝑑𝜙2 + 𝑑𝑧2, (3)

where

𝜈 = (1− 4Ģ𝑀)−1, (4)

𝑀 is the linear density of a mass stored in the core,
which can be estimated to be of the order of the
squared mass of the condensate field. A transverse
(𝑧 = const) section of the outer space is a conical
surface with the deficit angle equal to 8𝜋Ģ𝑀 .

Quantum-field-theoretical models in the (2 + 1)-
dimensional space-time exhibit a lot of interesting fea-
tures such as the fermion number fractionization, par-
ity violation, and flavor symmetry breaking (for the
review, see [11, 12]). A regular configuration (i.e. a
function continuous in the whole that can grow at
most as 𝑂(|x − x𝑤|−2+𝜀) (𝜀 > 0) at separate points)
of a magnetic field induces the fermion number in
the vacuum of a quantized spinor matter field in the
two-dimensional space (surface) which is pierced by
the magnetic field strength lines; the fermion num-
ber density is proportional to the field strength, and
the total fermion number is proportional to the total
field flux [13]. The effect of a singular configuration
of the magnetic field on the vacuum is quite different;
the point where the field strength pierces the surface
is punctured, and the total vacuum fermion number
which is induced on the surface out of a puncture is
periodic in the value of the total flux of the singular
field configuration. This was realized in a rather gen-
eral context in [14–16], where it was proven for the
first time that the flux through the regions nonac-
cessible for the quantized spinor matter field induces
the fermion number in its vacuum, thus providing a
manifestation of the Aharonov–Bohm effect (that is
characterized by the periodic dependence on the ex-
cluded magnetic flux) [1] in quantum field theory.

The case of the excluded magnetic flux is similar
to the case of a topological defect in the form of the
ANO vortex. In the last case, the role of a magnetic
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field is played by the gauge field corresponding to the
spontaneously broken symmetry, and the vacuum of a
quantized spinor matter field exists out of the vortex
core. As a first step, one can neglect the transverse
size of the vortex and formally put the correlation
length equal to zero. However, the issue of the choice
of boundary conditions even for a vortex with the van-
ishing transverse size is of primary importance. This
issue was not touched upon in [14–16], it was elab-
orated later with the use of the most general set of
boundary conditions ensuring the self-adjointness of
the relevant Dirac Hamiltonian operator. Namely, all
vacuum polarization effects which are induced by a
singular vortex in quantum spinor matter were ob-
tained in [17–21] for the case of massive spinor and
in [22–24] for the case of massless spinor. It should
be noted that some vacuum polarization effects in
the background of a singular vortex were considered
earlier in [25–27] for particular boundary conditions;
however, the results in [26,27] are actually erroneous,
since the periodicity in the value of the flux of a sin-
gular vortex was overlooked in an endeavor to imitate
the results which are appropriate for the case of reg-
ular field configuration.

As a next step, one has to take the conicity of space
out of the vortex into account. This task was consid-
ered in a number of papers, see [28–35], for quantized
both scalar and spinor matter fields, sometimes in-
completely and inconclusively as regards to the case
of massive matter. The last step is to take the nonva-
nishing correlation length into account, i.e. the trans-
verse size of a vortex. This task was considered in [36–
38] for quantum spinor matter under a specific bound-
ary condition, and in [39–42] for quantum scalar mat-
ter under the Dirichlet boundary condition in space
of arbitrary dimension.

The aim of the present work is to study the impact
of a boundary condition of the most general form on
the vacuum polarization effects which are induced by
the ANO vortex in quantum spinor matter in (2+1)-
dimensional space-time. Of primary interest are such
characteristics of the vacuum, as current, parity-
violating condensate and energy-momentum tensor 2,
since the fermion number and angular momentum

2 It should be noted that current and energy-momentum ten-
sor are the only vacuum characteristics which are induced
by the ANO vortex in quantum scalar matter in space-time
of arbitrary dimension, see [43–45].

change sign under the transition to the inequivalent
irreducible representation of the Dirac–Clifford alge-
bra in (2 + 1)-dimensional space-time.

2. Current and Magnetic Field
Which are Induced in the Vacuum

Postponing the consideration of parity-violating con-
densate and energy-momentum tensor to subsequent
publications, we start with the induced vacuum cur-
rent which is given by expression

j(x) = −1

2

∑︁∫︁
sgn(E)𝜓†

E(x)𝛼𝜓E(x), (5)

where 𝜓𝐸(x) is the solution to the stationary Dirac
equation,

𝐻𝜓𝐸(x) = 𝐸𝜓𝐸(x),

𝐻 = −i𝛼

(︂
𝜕 − i𝑒V +

i

2
𝜔

)︂
+ 𝛽𝑚,

(6)

V(x) and 𝜔(x) are the bundle and spin connections,
symbol ∑︀∫︀ denotes the summation over the discrete
part and the integration over the continuous part of
the energy spectrum, and sgn(u) is the sign function
(sgn(u) = ±1 at 𝑢 ≷ 0). As a consequence of the
Maxwell equation,

𝜕 × BI(x) = 𝑒 j(x), (7)

the magnetic field strength, BI(x), is also induced in
the vacuum; here, the electromagnetic coupling con-
stant, 𝑒, differs in general from 𝑒. The total flux of
the induced vacuum magnetic field is

ΦI =

∫︁
𝑑𝜎BI(x). (8)

In the background of the ANO vortex, the only one
component of the bundle and spin connections is non-
vanishing:

𝑉𝜙 =
Φ

2𝜋
, 𝑤𝜙 = i

𝜈 − 1

𝑟
𝛼𝜙𝛼𝑟, (9)

and the Dirac Hamiltonian operator takes the form

𝐻 = −i

[︂
𝛼𝑟

(︂
𝜕𝑟 +

1− 𝜈

2𝑟

)︂
+ 𝛼𝜙

(︂
𝜕𝜙 − i

𝑒Φ

2𝜋

)︂]︂
+ 𝛽𝑚,

(10)

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 11 1071



Yu.A. Sitenko, V.M. Gorkavenko

where

𝛼𝑟 = 𝛼𝑟 =

(︂
0 i𝑒−i𝜙

−i𝑒i𝜙 0

)︂
,

𝛼𝜙 =
𝜈

𝑟

(︂
0 𝑒−i𝜙

𝑒i𝜙 0

)︂
, 𝛼𝜙 =

𝑟2

𝜈2
𝛼𝜙.

(11)

Decomposing the function 𝜓𝐸(x) as

𝜓𝐸(x) =
∑︁
𝑛∈Z

(︃
𝑓𝑛(𝑟, 𝐸)𝑒i𝑛𝜙

𝑔𝑛(𝑟, 𝐸)𝑒i(𝑛+1)𝜙

)︃
(12)

(Z is the set of integer numbers), we present the Dirac
equation as a system of two first-order differential
equations for radial functions:[︃
−𝜕𝑟 +

𝜈
(︀
𝑛− 𝑛c − 𝐹 + 1

2

)︀
− 1

2

𝑟

]︃
𝑓𝑛 = (𝐸 +𝑚)𝑔𝑛,[︃

𝜕𝑟 +
𝜈
(︀
𝑛− 𝑛c − 𝐹 + 1

2

)︀
+ 1

2

𝑟

]︃
𝑔𝑛 = (𝐸 −𝑚)𝑓𝑛,

(13)

where

𝑛c =

[︂
𝑒Φ

2𝜋

⃒⃒⃒⃒]︂
, 𝐹 =

{⃒⃒⃒⃒︂
𝑒Φ

2𝜋

⃒⃒⃒⃒}︂
, (14)

[|𝑢|] is the integer part of the quantity 𝑢 (i.e. the in-
teger which is less than or equal to 𝑢), and {|𝑢|} =
= 𝑢 − [|𝑢|] is the fractional part of the quantity
𝑢, 0 ≤ {|𝑢|} < 1. Using (11) and (12), one gets
𝑗𝑟 = 0, and the only component of the induced vac-
uum current,

𝑗𝜙(𝑟) = − 𝑟
𝜈

∑︁∫︁ ∑︁
𝑛∈Z

sgn(𝐸)𝑓𝑛(𝑟, 𝐸)𝑔𝑛(𝑟, 𝐸), (15)

is independent of the angular variable. The induced
vacuum magnetic field strength is directed along the
vortex axis,

𝐵I(𝑟) = 𝑒𝜈

∞∫︁
𝑟

𝑑𝑟′

𝑟′
𝑗𝜙(𝑟

′), (16)

with the total flux

ΦI =
2𝜋

𝜈

∞∫︁
𝑟0

𝑑𝑟 𝑟𝐵I(𝑟), (17)

where it is assumed without loss of generality that
the vortex core has the form of a tube of radius 𝑟0.

We prove that the most general boundary condition
ensuring the self-adjointness of the operator 𝐻 (10)
is

(𝐼 − i𝛽𝛼𝑟 𝑒−i𝜃𝛼𝑟

) 𝜓|𝑟=𝑟0
= 0, (18)

where 𝜃 is the self-adjoint extension parameter. This
condition is also the most general one ensuring the ab-
sence of the matter flux across the vortex core edge,
i.e. the confinement of the matter field to the region
out of the vortex core. Imposing the boundary condi-
tion (18) on the solution to the Dirac equation, 𝜓𝐸(x)
(12), we obtain the condition for the modes:

cos

(︂
𝜃

2
+
𝜋

4

)︂
𝑓𝑛(𝑟0, 𝐸) = − sin

(︂
𝜃

2
+
𝜋

4

)︂
𝑔𝑛(𝑟0, 𝐸).

(19)

Using the explicit form of the modes satisfying (13)
and (19), we derive the analytic expressions for the
induced vacuum current, 𝑗𝜙(𝑟) (15), and the induced
vacuum magnetic field, 𝐵I(𝑟) (16), in the case of 𝜈 ≥
≥ 1 and 0 < 𝐹 < 1, and in the case of 1

2 ≤ 𝜈 < 1
and 1

2

(︀
1
𝜈 − 1

)︀
< 𝐹 < 1

2

(︀
3− 1

𝜈

)︀
. The results can be

presented in the form

𝑗𝜙(𝑟) = 𝑗
(𝑎)
𝜙 (𝑟) + 𝑗

(𝑏)
𝜙 (𝑟; 𝑟0),

𝐵I(𝑟) = 𝐵
(𝑎)
I (𝑟) +𝐵

(𝑏)
I (𝑟; 𝑟0),

(20)

where the whole dependence on 𝑟0 is contained in 𝑗(𝑏)𝜙

and 𝐵(𝑏)
I , moreover,

lim
𝑟0→0

𝑗(𝑏)𝜙 (𝑟; 𝑟0) = 0, lim
𝑟0→0

𝐵
(𝑏)
I (𝑟; 𝑟0) = 0. (21)

The crucial point is the behavior of 𝑗(𝑏)𝜙 and 𝐵
(𝑏)
I at

𝑟 → 𝑟0. If

lim
𝑟→𝑟0

𝑗(𝑏)𝜙 (𝑟; 𝑟0) (𝑟 − 𝑟0)
2 = 0 (22)

and, consequently,

lim
𝑟→𝑟0

𝐵
(𝑏)
I (𝑟; 𝑟0) (𝑟 − 𝑟0) = 0, (23)

then the flux ΦI (17) is finite. A careful numerical
analysis reveals that condition (22) is fulfilled in the
cases 𝜃 = 0 and 𝜃 = 𝜋 only. The case of 𝐹 = 1/2
needs a special comment, because of the oddness in 𝜃
in this case. Whereas the current and, consequently,
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the induced magnetic field with its flux vanish at 𝜃 =
0, they are nonvanishing and discontinuous in 𝜃 at
𝜃 = 𝜋. Namely, we obtain

ΦI|𝐹=1/2, 𝜃=𝜋±
=

= ± 𝑒

8𝑚
𝑒2𝑚𝑟0

[︀
Γ(2, 2𝑚𝑟0)− 4𝑚2𝑟20Γ(0, 2𝑚𝑟0)

]︀
, (24)

where

Γ(𝑧, 𝑢) =

∞∫︁
𝑢

𝑑𝑦 𝑦𝑧−1e−𝑦

is the incomplete gamma-function; in particular,

lim
𝑟0→0

ΦI|𝐹=1/2, 𝜃=𝜋±
= ± 𝑒

8𝑚
. (25)

In the case of 𝐹 ̸= 1/2, the continuity in 𝜃 is main-
tained, and we obtain the following representation for
the induced vacuum magnetic flux:

ΦI

⃒⃒
𝜃=𝜋

2 ∓𝜋
2

= Φ
(𝑎)
I

⃒⃒
𝜃=𝜋

2 ∓𝜋
2

+Φ
(𝑏)
I

⃒⃒
𝜃=𝜋

2 ∓𝜋
2

, 𝐹 ̸= 1/2,

(26)
where

Φ
(𝑎)
I

⃒⃒⃒
𝜃=𝜋

2 ∓𝜋
2

=

=
𝑒

4𝜈𝑚

{︃
[|𝜈/2|]∑︁
𝑝=1

exp[−2𝑚𝑟0 sin(𝑝𝜋/𝜈)]
sin[(2𝐹 − 1)𝑝𝜋]

sin3(𝑝𝜋/𝜈)
−

− 𝜈

4𝑁
(−1)

𝑁
sin (2𝑁𝐹𝜋) e−2𝑚𝑟0 𝛿𝜈, 2𝑁

}︃
+

+sgn

(︂
𝐹 − 1

2

)︂
𝑒

8𝜋𝑚

∞∫︁
0

𝑑𝑢

cosh3(𝑢/2)
e−2𝑚𝑟0 cosh(𝑢/2) ×

×

{︃
cos

[︂
𝜈

(︂
𝐹 − 1

2

)︂
𝜋)

]︂
cosh

[︂
𝜈

(︂
𝐹 − 1

2

⃒⃒⃒⃒
− 1

)︂
𝑢

]︂
−

− cos

[︂
𝜈

(︂
𝐹 − 1

2

⃒⃒⃒⃒
− 1

)︂
𝜋

]︂
cosh

[︂
𝜈

(︂
𝐹 − 1

2

)︂
𝑢

]︂}︃
×

× [cosh(𝜈𝑢)− cos(𝜈𝜋)]
−1
, (27)

Φ
(𝑏)
I

⃒⃒⃒
𝜃=𝜋

2 ∓𝜋
2

=
𝑒

(4𝜋)2
𝑟0

∞∫︁
𝑚𝑟0

𝑑𝑣 𝑣√︀
𝑣2 −𝑚2𝑟20

×

×

{︃
1

2

[︃
sgn

(︂
𝐹 − 1

2

)︂(︃
𝐶

(±)
1
2+𝜈(𝐹− 1

2)
(𝑣)+𝐶

(±)
1
2−𝜈(𝐹− 1

2)
(𝑣)

)︃
+

+𝐶
(±)
1
2+𝜈(𝐹− 1

2)
(𝑣)− 𝐶

(±)
1
2−𝜈(𝐹− 1

2)
(𝑣)

]︃
𝐷 1

2+𝜈|𝐹− 1
2 |(𝑣)+

+

∞∑︁
𝑙=1

[︁
𝐶

(±)

𝜈(𝑙+𝐹− 1
2)+

1
2

(𝑣)𝐷𝜈(𝑙+𝐹− 1
2 )+

1
2
(𝑣)−

−𝐶
(±)

𝜈(𝑙−𝐹+ 1
2)+

1
2

(𝑣)𝐷𝜈(𝑙−𝐹+ 1
2)+

1
2
(𝑣)
]︁}︃
, (28)

𝐶(±)
𝜌 (𝑣) =

{︁
𝑣𝐼𝜌(𝑣)𝐾𝜌(𝑣)± 𝑚𝑟0[𝐼𝜌(𝑣)𝐾𝜌−1(𝑣)−

− 𝐼𝜌−1(𝑣)𝐾𝜌(𝑣)]− 𝑣𝐼𝜌−1(𝑣)𝐾𝜌−1(𝑣)
}︁
×

× [𝑣𝐾2
𝜌(𝑣)±2𝑚𝑟0𝐾𝜌(𝑣)𝐾𝜌−1(𝑣)+𝑣𝐾

2
𝜌−1(𝑣)]

−1, (29)

and

𝐷𝜌(𝑣) = 𝜌𝐾2
𝜌(𝑣)− (𝜌− 1)𝐾𝜌+1(𝑣)𝐾𝜌−1(𝑣)+

+ 𝑣

[︂
𝐾𝜌(𝑣)

𝑑

𝑑𝜌
𝐾𝜌−1(𝑣)−𝐾𝜌−1(𝑣)

𝑑

𝑑𝜌
𝐾𝜌(𝑣)

]︂
. (30)

In particular,

lim
𝑟0→0

ΦI

⃒⃒⃒
𝜃=𝜋

2 ∓𝜋
2

= − 𝑒

6𝑚

[︂
𝐹 − 1

2
− 1

2
sgn

(︂
𝐹 − 1

2

)︂]︂
×

×

{︃
3

4
− 𝜈2

[︂
1

4
−
⃒⃒⃒⃒
𝐹 − 1

2

⃒⃒⃒⃒
− 𝐹 (1− 𝐹 )

]︂}︃
, 𝐹 ̸= 1/2.

(31)

The case of massless quantized spinor field is char-
acterized by certain peculiarities. First, there is the
invariance under the transformation 𝜃 → 𝜋−𝜃. Thus,
the results are continuous in 𝜃, and their values at
𝜃 = 0 and 𝜃 = 𝜋 coincide, in particular,

𝑗𝜙(𝑟)|𝐹= 1
2 , 𝜃=0 = 𝑗𝜙(𝑟)|𝐹= 1

2 , 𝜃=𝜋 = 0 (32)

and

𝐵I(𝑟)|𝐹= 1
2 , 𝜃=0 = 𝐵I(𝑟)|𝐹= 1

2 , 𝜃=𝜋 = 0. (33)

Second, instead of the exponential decrease, 𝑗𝜙 and
𝐵I decrease as 𝑟−1 at large distances from the ANO
vortex. Consequently, the flux ΦI, see (17), is given by
an integral which is linearly divergent at 𝑟 → ∞. The-
refore, we have no choice but to introduce a cutoff
𝑟max > 𝑟 and the restricted flux,

ΦI(𝑟max) =
2𝜋

𝜈

𝑟max∫︁
𝑟0

𝑑𝑟 𝑟𝐵I(𝑟). (34)
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As follows from our numerical analysis of the inte-
grand in (34) near the lower limit of integration, rela-
tion (22) is fulfilled, and the flux ΦI(𝑟max) (34) is finite
at 𝜃 = 𝜋

2 ∓ 𝜋
2 only. We get immediately:

ΦI(𝑟max)

⃒⃒
𝜃=𝜋

2 ∓𝜋
2

= 0, 𝐹 = 1/2. (35)

As to 𝐹 ̸= 1/2, although we obtain the analytic ex-
pression for ΦI(𝑟max)

⃒⃒
𝜃=𝜋

2 ∓𝜋
2

for arbitrary 𝑟max > 𝑟0,
the physically sensible case is that of 𝑟max ≫ 𝑟0. Re-
taining only terms which are maximal in the latter
case, we get the expression for the flux:

ΦI(𝑟max)

⃒⃒
𝜃=𝜋

2 ∓𝜋
2

=
𝑒 𝑟max

4𝜈

{︃
[|𝜈/2|]∑︁
𝑝=1

sin[(2𝐹 − 1)𝑝𝜋]

sin2(𝑝𝜋/𝜈)
−

− 𝜈

4𝑁
(−1)𝑁 sin(2𝑁𝐹𝜋) 𝛿𝜈, 2𝑁

}︃
+

+sgn

(︂
𝐹 − 1

2

)︂
𝑒 𝑟max

8𝜋

∞∫︁
0

𝑑𝑢

cosh2(𝑢/2)
×

×
{︂
cos

[︂
𝜈

(︂
𝐹 − 1

2

)︂
𝜋

]︂
cosh

[︂
𝜈

(︂
𝐹 − 1

2

⃒⃒⃒⃒
− 1

)︂
𝑢

]︂
−

− cos

[︂
𝜈

(︂
𝐹 − 1

2

⃒⃒⃒⃒
− 1

)︂
𝜋

]︂
cosh

[︂
𝜈

(︂
𝐹 − 1

2

)︂
𝑢

]︂}︂
×

× [cosh(𝜈𝑢)− cos(𝜈𝜋)]
−1

+𝑂 (𝑒 𝑟0), 𝐹 ̸= 1/2, (36)

and the relation between the current and the mag-
netic field:

𝜈𝑒 𝑗𝜙(𝑟)|𝜃=𝜋
2 ∓𝜋

2
=

𝑟max

𝑟max − 𝑟
𝐵I(𝑟)|𝜃=𝜋

2 ∓𝜋
2
=

=
𝜈

𝜋𝑟max𝑟
ΦI(𝑟max)

⃒⃒
𝜃=𝜋

2 ∓𝜋
2

, 𝑟 ≫ 𝑟0. (37)

In particular, we get, in the case of 𝜈 = 1,

ΦI(𝑟max)

⃒⃒
𝜈=1, 𝜃=𝜋

2 ∓𝜋
2

=

=
𝑒

4
𝑟max tan(𝐹𝜋)

⃒⃒⃒⃒
𝐹 − 1

2

⃒⃒⃒⃒ (︂
𝐹 − 1

2

⃒⃒⃒⃒
− 1

)︂
+𝑂(𝑒𝑟0)

(38)
and

𝑒𝑗𝜙(𝑟)|𝜈=1, 𝜃=𝜋
2 ∓𝜋

2
=

=
𝑟max

𝑟max − 𝑟
𝐵𝐼(𝑟)|𝜈=1, 𝜃=𝜋

2 ∓𝜋
2
=

=
𝑒

4𝜋𝑟
tan(𝐹𝜋)

⃒⃒⃒⃒
𝐹 − 1

2

⃒⃒⃒⃒ (︂
𝐹 − 1

2

⃒⃒⃒⃒
− 1

)︂
, 𝑟 ≫ 𝑟0.(39)

The last relation for the current was first obtained in
[24] [see (10.6) in this reference, where the definition
of the current differs by extra 𝑟−1]. Note a disconti-
nuity at 𝐹 = 1/2, which is independent of 𝜈,

lim
𝐹→(1/2)±

𝑒𝑗𝜙(𝑟)|𝜃 ̸=±𝜋
2
= ± 𝑒

4𝜋2𝑟
, 𝑟 ≫ 𝑟0. (40)

This is distinct from the case of quantized scalar
field under the Dirichlet boundary condition, when
the current is continuous and vanishing at 𝐹 = 1/2
[44, 46, 47], see the appropriate expression from these
references at 𝑚 = 0 and 𝜈 = 1:

𝑒𝑗𝜙(𝑟)|scalar,Dirichlet = − 𝑒

4𝜋𝑟
tan(𝐹𝜋)

(︂
𝐹 − 1

2

)︂2
. (41)

3. Discussion and Conclusion

The effects of conicity, which are characterized by the
value of the deficit angle, 8𝜋Ģ𝑀 , are negligible for the
ANO vortices in ordinary superconductors, since the
constant Ģ is of order of the Planck length squared,
and the quantity 𝑀 is of order of the inverse correla-
tion length squared. However, topological defects of
the type of ANO vortices also arize in another field –
in cosmology and high energy physics, where they
attained the name of cosmic strings [48, 49]. Cosmic
strings with 8𝜋Ģ𝑀 ∼ 1 are definitely ruled out by
astrophysical observations, but there remains a room
for cosmic strings with 8𝜋Ģ𝑀 ∼ 10−6 and less (see,
e.g., [50]), although the direct evidence for their ex-
istence is lacking.

A recent development in material science also pro-
vides an unexpected link between condensed mat-
ter and high-energy physics, which is caused to
a large extent by the experimental discovery of
graphene – a two-dimensional crystalline allotrope
formed by a monolayer of carbon atoms [51]. A sin-
gle topological defect (disclination) warps a sheet
of graphene, rolling it into a nanocone which is
similar to the transverse section of a spatial re-
gion out of a cosmic string; carbon nanocones with
deficit angles equal to 𝑁𝑑𝜋/3 (𝑁𝑑 is a possible num-
ber of sectors which are removed from the hexago-
nal lattice: 𝑁𝑑 = 1, 2, 3, 4, 5, i.e. 𝜈 = 6

5 ,
3
2 , 2, 3, 6)

were observed experimentally, see [52] and refer-
ences therein. Moreover, theory also predicts saddle-
like nanocones with the deficit angle taking nega-
tive values unbounded from below (sectors can be
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added: 𝑁𝑑 = −1,−2,−3,−4,−5,−6, ...,−∞, i.e. 𝜈 =
= 6

7 ,
3
4 ,

2
3 ,

3
5 ,

6
11 ,

1
2 , ..., 0), which can be regarded as

corresponding to the cosmic strings with negative
mass density. Note that nanoconical structures may
arise as well in a diverse set of condensed matter sys-
tems known as the two-dimensional Dirac materials,
ranging from honeycomb crystalline allotropes (sil-
icene and germanene [53], phosphorene [54]) to high-
temperature cuprate superconductors [55] and topo-
logical insulators [56].

Since the transverse size of the ANO vortex is
related to the correlation length, its nonvanishing
value, 𝑟0, should be taken into account. We have
considered the current and the magnetic field which
are induced in the vacuum of a quantized spinor
field in the case of 𝜈 ≥ 1 and 0 < 𝐹 < 1,
and in the case of 1

2 ≤ 𝜈 < 1 and 1
2

(︀
1
𝜈 − 1

)︀
<

< 𝐹 < 1
2

(︀
3− 1

𝜈

)︀
. The dependence of these charac-

teristics of the vacuum on boundary conditions en-
suring the impenetrability of the vortex core is an-
alyzed, and we find that the demand of finite-
ness of the total induced vacuum magnetic flux re-
moves an ambiguity in the choice of boundary con-
ditions. The case of massless quantized spinor field
requires the introduction of the maximal size of a
system, 𝑟max. We discover that, for physically sensi-
ble values 𝑟max ≫ 𝑟0, the vacuum polarization ef-
fects in this case, in distinction from the case of
massive quantized spinor field, are independent of
the transverse size of the ANO vortex. Due to this
distinction, the results in the massless case are dis-
continuous at 𝐹 = 1/2 with a jump which is in-
dependent of 𝜈, whereas the results in the massive
case at 𝜃 = 0 are continuous in 𝐹 and vanishing at
𝐹 = 1/2, as long as the transverse size of the vortex
is nonvanishing.
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National Academy of Sciences of Ukraine (project
No. 01172U000237), from the Program of Fundamen-
tal Research of the Department of Physics and As-
tronomy of the National Academy of Sciences of
Ukraine (project No. 0117U000240), and from the
ICTP – SEENET-MTP project NT-03 “Cosmology –
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ПОЛЯРИЗАЦIЯ ВАКУУМУ
КВАНТОВАНОГО СПIНОРНОГО ПОЛЯ
ЗА НАЯВНОСТI ТОПОЛОГIЧНОГО ДЕФЕКТУ
У ДВОВИМIРНОМУ ПРОСТОРI

Р е з ю м е

Двовимiрний простiр з топологiчним дефектом є попере-
чним зрiзом тривимiрного простору з вихором Абрикосова–
Нiльсена–Олесена, який являє собою непроникливу для

квантованої матерiї трубку з потоком калiбрувального по-
ля. Заряджене поле спiнорної матерiї квантується в цьо-
му зрiзi, задовольняючи найбiльш загальним математично
допустимим граничним умовам. Показано, що струм та ма-
гнiтне поле iндукуються у вакуумi. Вивчається залежнiсть
результатiв вiд граничних умов. Встановлено, що вимога
скiнченностi повного iндукованого вакуумного магнiтного
потоку усуває неоднозначнiсть у виборi граничних умов.
Обговорюються вiдмiнностi мiж випадками масивної та без-
масової спiнорної матерiї.

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 11 1077


