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EFFECTIVE HADRONIC SUPERSYMMETRY
FROM QUANTUM CHROMODYNAMICS1

A quark model with potentials derived from 𝑄𝐶𝐷 that include antiquark-diquark model for
excited hadrons leads to mass formulae in very good agreement with experiments. The approx-
imate symmetries and supersymmetries of the hadronic spectrum are exploited including a
symmetry breaking mechanism.
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1. Introduction

In 1966–1968, Miyazawa extended, in a series of pa-
pers, the SU(6) group [1] to the supergroup SU(6/21).
Elements of this supergroup transform constituent
quarks and diquarks to one another. In particular, in
[2,3], he found: (a) the general definition of SU(𝑚/𝑛)
superalgebras expressing the symmetry between 𝑚
bosons and 𝑛 fermions, with Grassmann-valued pa-
rameters, (b) the derivation of a super-Jacobi iden-
tity, and (c) the relation of the baryon mass split-
ting to the meson mass splitting through a new mass
formula. That work contained the first classification
of superalgebras (later rediscovered by mathemati-
cians in the seventies). Because of the field theoretic
prejudice against SU(6), Miyazawa’s work was gen-
erally ignored. Supersymmetry was rediscovered in
the seventies within the context of the dual reso-
nance models by Ramond [4], Neveu and Schwarz
[5], with the important later contributions of Gliozzi,
Scherk, and Olive [6, 7]. Golfand and Likthman [8]
and independently Volkov and Akulov [9] proposed
the extension of the Poincaré group to the super-
Poincaré group. Examples of supersymmetric field
theories were given and the general method based on
the super-Poincaré group was discovered by Wess and
Zumino [10, 11]. QCD can be made supersymmetric
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with the addition of gluinos and squarks which re-
main to be discovered. It gives no help for throwing
light on the supersymmetric nature of the slope of the
Regge trajectories.The super-Poincaré group contains
transformations between fields associated with differ-
ent spins 0, 1

2 and 1. The Coleman–Mandula theo-
rem was amended in 1975 by Haag, Lopuszanski, and
Sohnius who showed that the super-Poincaré group
×𝐺int is the maximal symmetry of the 𝑆-matrix. Un-
fortunately, the SU(6) symmetry was still forbidden.

2. SU(6) and Hadronic Supersymmetry

To interpret the symmetries of the QCD spectrum
under a new light, we made the following observa-
tions: in the ultraviolet, the running coupling con-
stant tends to zero, and quarks behave like free par-
ticles. Thus, an approximate scaling symmetry exists
in conformity with the parton model, allowing spin
to be conserved seperately from orbital angular mo-
mentum. Spin behaves as an internal quantum num-
ber; this makes the SU(6) symmetry possible, since
the quarks are almost free Dirac particles. The single
vector-gluon exchange breaks this symmetry; thus,
as shown by Glashow, Georgi, and deRujula [12], the

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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mass degeneracy of hadrons of different spins is lifted
by a hyperfine-interaction term.

The main point of the idea can be understood
in the infrared, where the confinement sets in. The
quark-antiquark potential becomes proportional to
the distance. Careful studies of quarkonium spec-
tra and lattice-gauge calculations show that, at a
large separation, the quark forces become spin-in-
dependent. QCD is also flavor-independent. There-
fore, we will seach for approximate spin- and flavor-
independent quark binding forces. These forces are
completely consistent with the SU(6) symmetry. This
symmetry is not exact, but it is a good starting point
before the spin and flavor effects are included.

There is a good phenomenological evidence that,
in a rotationally excited baryon, a quark-diquark
((𝑞 −𝐷) structure is favored [13] over a three quark
(𝑞𝑞𝑞) structure [13–15]. Regge trajectories for mesons
and baryons are closely parallel; both have a slope
of about 0.9 GeV−2 (a proposal to find this re-
sult in QCD was put forth by Johnson and Thorn
[16, 17]). At large spins, two of the quarks form a di-
quark at one end of the string, the remaining quark
being at the other.

If the quarks are light, the underlying quark-
diquark symmetry leads to the Miyazawa symmetry
between mesons and baryons. Thus, we may attempt
to study hadrons with the weakly broken supergroup
SU(6/21), even though the fundamental theory is not
supersymmetric. For quarks, the generators of the
Poincaré group and those of the color group SU(3)𝑐
commute. It is only the effective Hamiltonian which
exhibits an approximate supersymmetry among the
bound states 𝑞𝑞 and 𝑞𝐷 (𝐷 = 𝑞𝑞).

A lot of remarkable papers were put out by Brod-
sky and collaborators in recent times [14–20] on
the diquark physics using superconformal and su-
persymmetric algebras through the embedding of
superconformal quantum mechanics into the 𝐴𝑑𝑆
space. They show the possibility of constructing an
effective supersymmetric QCD light-front Hamilto-
nian for hadrons, exhibiting relations between meson,
baryon, and tetraquark spectra with emphasis on the
connections between light, heavy-light, and double-
heavy hadrons. Their work has immense relationship
to our own work from a slightly different perspec-
tive. We refer the reader to glance at their papers
and see the thorough relationship to the latest exper-
imental searches and findings on this subject.

3. Color Algebra and Octonions

The exact unbroken color group SU(3)𝑐 is the back-
bone of the strong interaction. It is worthwhile to un-
derstand its role in the diquark picture more clearly.

Two of the colored quarks in a baryon combine into
an antitriplet 3×3 = 3̄+(6), 3× 3̄ = 1+(8). The (6)
partner of the diquark and the (8) partner of the nu-
cleon do not exist. In the hadron dynamics, the only
color combinations to consider are 3 × 3 → 3̄ and
3̄× 3 → 1. These relations yield the existence of split
octonion units through a representation of the Grass-
mann algebra {𝑢𝑖, 𝑢𝑗} = 0, 𝑖 = 1, 2, 3. The operators
𝑢𝑖, unlike ordinary fermion operators, are not asso-
ciative. We also have 1

2 [𝑢𝑖, 𝑢𝑗 ] = 𝜖𝑖𝑗𝑘𝑢
*
𝑘. The Jacobi

identity do not hold, since [𝑢𝑖, [𝑢𝑗 , 𝑢𝑘]] = −𝜎𝑖𝑒7 ̸= 0,
where 𝑒7 anticommutes with 𝑢𝑖 and 𝑢*𝑖 .

The algebra of split octonions is crucial for the
suppression of unwanted states and is fully discussed
in our papers [25–27] in detail. The automorphism
group of the algebra is just SU(3)𝑐. It is a subgroup
of 𝐺2, the automorphism group of the octonion (Cay-
ley) algebra. Gürsey and collaborators discovered a
link between color and octonions, earlier in connec-
tion with a grand-unified theory of leptons and quarks
with a natural color embedding (the non-colored part
has units 𝑢0 = 1

2 (1 + 𝑖𝑒7) and 𝑢*0 = 1
2 (1− 𝑖𝑒7) associ-

ated with the lepton number). We ask the interested
reader to glance through our papers.

4. Internal SUSY
and Classification Schemes

Using the internal supersymmetry, it is possible to
construct a combined classification scheme for mesons
and baryons with Miyazawa’s SU(6/21) in a mod-
ern context. We have already shown [14, 15]: (1) the
parallelism and the splitting of Regge trajectories for
mesons and baryons can be calculated at high angu-
lar momenta. (2) Hadronic mass formulas can be de-
rived, which agree remarkably well with experiments
[15]. This scheme naturally leads to the existence of
𝐷�̄� (𝐷 = 𝑞𝑞, �̄� = 𝑞𝑞) bound states. It is now con-
firmed experimentally [28] that 𝑎0(980) and 𝑓0(975)
mesons are 𝐷�̄� states. (3) There is also a deep con-
nection between the hadronic (SU(6/21)) scheme we
have developed and the mass formulae derived from
spectrum-generating algebras which also assume an
effective supersymmetry [29, 30]. The fact that both
supersymmetries (in hadrons and nuclei) are effective
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S. Catto, Y. Gürcan, B. Nicolescu, E. Yu

“dynamical” supersymmetries leads to many novel ex-
perimental observations. (For recent reviews, we refer
to Iachello’s article in [31] and an extensive review in
[28].) (4) Split octonionic algebras were used to un-
derstand the suppression of unwanted states. These
algebras are embedded in a new larger algebra that
puts quarks, diquarks, and exotics in the same su-
permultiplet as hadrons. The result is to naturally
suppress quark configurations that are symmetric in
color and space and antisymmetric in the remaining
flavor, spin, and position variables.

5. Semirelativistic Hamiltonian

We now present an effective Hamiltonian obtained
from a two-body Schrödinger–Dirac approximation to
the quark-QCD system after the elimination of the
gluon degrees of freedom.

Ignoring the center-of-mass motion, we can write a
semirelativistic wave equation for the wave function
for a two-body system (either 𝑞𝑞, or 𝑞𝐷) 𝜓12(𝑟) of the
bilocal object with energy eigenvalues Ω12, namely,

(Ω12 − 𝑉𝑐)𝜓12 =

2∑︁
𝑖=1

⎧⎨⎩
[︃(︂
𝑚𝑖 +

1

2
𝑉𝑠

)︂2
−∇2

]︃1/2⎫⎬⎭𝜓12.

(1)
The scalar and vector potentials are given by

𝑉𝑠 = 𝑏𝑟, 𝑉𝑐 = −4

3

𝛼𝑠

𝑟
+ 𝜅12

𝑠1 𝑠2
𝑚1𝑚2

, (2)

where 4
3 is the color factor, 𝛼𝑠 is the strong coupling

constant at the energy Ω12, and the spin-dependent
part of the vector potential is the hyperfine struc-
ture correction due to the gluon exchange with 𝜅12 =
= |𝜓12(0)|2. We see that, at large 𝑟, by neglecting the
mass difference (𝑚2−𝑚1), we find the same equation
for both (𝑞 − 𝑞) and 𝑞 − 𝐷 systems, except for the
presence of the hyperfine term that breaks the sym-
metry between 𝑞 and 𝐷. To this approximation, we
can transform the second constituent 𝑞 into 𝐷 and
vice versa without changing the energy eigenvalue
Ω. This means that the system admits the approx-
imate 𝑆𝑈(6/21) supersymmetry transformation
𝛿𝑞𝑖𝛼 = �̄�𝛼𝛽𝛾 (𝐷𝑖)𝛽𝛾 ,

𝛿(𝐷𝑖)𝛽𝛾 = 𝑏𝛼𝛽𝛾 𝑞𝑖𝛼
(3)

in addition to the SU(6) transformation
𝛿𝑞𝑖𝛼 = 𝑚𝛽

𝛼 𝑞𝑖𝛽 ,

𝛿(𝐷𝑖)𝛽𝛾 = 𝑛𝛽𝛾𝜌𝜎 (𝐷𝑖)𝜌𝜎.
(4)

The breaking of both 𝑆𝑈(6) and 𝑆𝑈(6/21) is due
to the hyperfine term, while the supersymmetry is
further broken by the quark-diquark mass difference
𝑚1 −𝑚2.

Now, considering the Hamiltonian of Eq.(1), we can
write, in the center-of-mass system,

−∇2 = 𝑝2 = 𝑝2𝑟 +
ℓ(ℓ+ 1)

𝑟2
, (5)

where ℓ is associated with the orbital excitation of
the system. For high rotational excitations, the ex-
pectation value of 𝑟 is large, by corresponding to
a stretched string. The angular momentum ℓ is also
large. The value of the centrifugal energy which is
proportional to ℓ(ℓ+1)

𝑟2 has a similarly large value.
Since 𝑉𝑠 proportional to 𝑟 will also have a high ab-
solute value, the constituent masses become negligi-
ble in the high relativistic limit. On the other hand,
the radial excitation term 𝑝2𝑟 can be neglected on the
leading trajectory associated with the lowest radial
energy.

The ground-state energy eigenvalue 𝐸 of the
Hamiltonian can be estimated, by using the Heisen-
berg uncertainty principle. This leads to the replace-
ment of 𝑟 by Δ𝑟 and 𝑝𝑟 by

Δ𝑝𝑟 =
1

2
(Δ𝑟)−1 (~ = 1). (6)

Then 𝐸 as a function of Δ𝑟 is minimized for the
value of 𝑟0 of Δ𝑟. The quantity 𝑟0 corresponds to the
Bohr radius for the bound state. The confining energy
associated with this Bohr radius is obtained from the
linear confining potential 𝑆(𝑟) = 𝑏𝑟, so that the ef-
fective masses of the constituents become

𝑀1 = 𝑚1 +
1

2
𝑆0, 𝑀2 = 𝑚2 +

1

2
𝑆0 (𝑆0 = 𝑏𝑟0). (7)

For a meson, 𝑚1 and 𝑚2 are the current quark
masses while 𝑀1 and 𝑀2 can be interpreted as the
constituent quark masses. Note that, even in the
case of vanishing quark masses associated with the
perfect chiral symmetry, the confinement results in
nonzero constituent masses that spontaneously break
the 𝑆𝑈(2)× 𝑆𝑈(2) symmetry of the 𝑢 and 𝑑 quarks.

Let us illustrate this method on the simplified spin-
free Hamiltonian involving only the scalar poten-
tial. In the center-of-mass system, 𝑝(1) + 𝑝(2) = 0 or
𝑝(1) = −𝑝(2) = 𝑝. The semirelativistic Hamiltonian
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of the system is then given by

𝐸12Φ =

2∑︁
𝑖=1

√︂(︁
𝑚𝑖 +

1

2
𝑏𝑟
)︁2

+ 𝑝2 Φ. (8)

Taking 𝑚1 = 𝑚2 = 𝑚 for the quark-antiquark sys-
tem, we have

𝐸12Φ = 2

√︂(︁
𝑚+

1

2
𝑏𝑟
)︁2

+ 𝑝2𝑟 +
ℓ(ℓ+ 1)

𝑟2
Φ, (9)

where we have written the momentum part in spher-
ical coordinates.

Putting

𝑏 = 𝜇2, 𝜌 = 𝜇 𝑟 (10)

for the 𝑞 − 𝑞 system, we find 𝐸12 by minimizing the
function

𝐸𝑞𝑞 = 2

√︃(︂
𝑚+

1

2
𝜇𝜌

)︂2
+
𝜇2

𝜌2

(︂
ℓ+

1

2

)︂2
. (11)

For 𝑢 and 𝑑 quarks, 𝑚 is small and can be neglected
so that

𝐸2 = 𝜇2[𝜌2 + 𝜌−2(2ℓ+ 1)2], (12)

which has a minimum for

𝜌2 = 𝜌20 = 2ℓ+ 1, (13)

by giving

𝐸2
min = 𝐸2(𝜌0) = 4𝜇2

(︂
ℓ+

1

2

)︂
. (14)

Thus, we obtain a linear Regge trajectory with

𝛼′ =
1

4
𝜇−2 =

𝑏

4
. (15)

We also have 𝐽 = ℓ + 𝑆, where 𝑆 arises from the
quark spins. Experimentally,

𝛼′ = 0.88 (GeV)−2 (16)

for mesons, by giving a value of 0.54 GeV for 𝜇. A
more accurate calculation (see [4]) gives

𝛼′ = (2𝜋𝜇2)−1, 𝜇 ∼ 0.43 GeV. (17)

The constituent quark mass can be defined in two
ways

𝑀𝑐(ℓ) =
1

2
𝐸min = 𝜇

√︂
ℓ+

1

2
(18)

or

𝑚′
𝑐(ℓ) = 𝑆0 =

1

2
𝜇𝜌0 =

𝜇√
2

√︂
ℓ+

1

2
. (19)

The first definition gives, for ℓ = 0,

𝑀𝑐 = 0.3 GeV for 𝜇 = 0.43 (20)

for 𝑢 and 𝑑 quarks.
When the Coulomb-like terms are introduced in

the simplified Hamiltonian (9) with negligible quark
masses, one obtains

𝐸 =
𝜇

𝜌

[︁
− �̄�+

√︀
𝜌4 + (2ℓ+ 1)2

]︁
(21)

with

�̄� =
4

3
𝛼𝑠 for (𝑞𝑞), �̄� =

2

3
𝛼𝑠 for (𝑞𝑞). (22)

The minimization of 𝐸 gives

𝐸0 = 𝜇𝑢
−1
4

0 (−�̄�+
√︀
𝑢0 + (2ℓ+ 1)2), (23)

where 𝑢0(𝜖) = 𝜌40 so that

𝑢0(𝜖) = (2ℓ+ 1)2

(︃
1 +

1

2
𝛽2 + 𝜖

√
2𝛽

√︂
ℓ+

1

8
𝛽2

)︃
, (24)

𝜖 = ±1, 𝛽 =
�̄�

(2ℓ+ 1)
. (25)

The minimum 𝐸0 is obtained for 𝜖 = −1, by giving,
to the second order in 𝛽:

𝐸0 = 𝜇
√︀
2(2ℓ+ 1)

(︂
1− 𝛽√

2
3
𝛽2

8

)︂
. (26)

Linear Regge trajectories are obtained, if 𝛽2 is neg-
ligible. Then, for mesons,

𝐸2
0 = 4𝜇2ℓ+ 2𝜇2(1−

√
2�̄�). (27)

The quantity 𝛽2 is negligible for small ℓ, only if we
take the lowest estimate for 𝛼𝑠, giving 0.4 for �̄� in the
𝑞𝑞 case. For mesons with 𝑢, 𝑑 constituents, incorpo-
rating their spins through the Breit term, we obtain
approximately

𝑚𝜌 ≃ 𝑚𝜔 = 𝐸0 +
𝑐

4
, 𝑚𝜋 = 𝐸0 −

3𝑐

4
, (28)

where 𝑐 = 𝐾 Δ𝑉
𝑀2

𝑞
, and 𝑀𝑞 is the constituent quark

mass. This gives

𝐸0 =
(3𝑚𝜌 +𝑚𝜋)

4
= 0.61 GeV. (29)
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Note that the deviation from experimental data is less
than 1%.

For the Regge slope being of the order of 1 GeV,
the average meson mass of the same order is ob-
tained from Eq. (26) in the linear trajectory approx-
imation. In this approximation, �̄� should be treated
like a parameter, rather than be placed by its value
derived from QCD under varying assumptions. Using
Eq. (17) for 𝜇, one gets a better fit to the meson
masses by taking 𝛼𝑠 ∼ 0.2.

Turning now to baryon masses, we must firstly es-
timate the diquark mass. For the 𝑞𝑞 system, we have

𝑀𝐷 = 𝜇

(︂√
2− 2

3
𝛼𝑠

)︂
(30)

that is slightly higher than the average meson mass

�̃� = 𝜇

(︂√
2− 4

3
𝛼𝑠

)︂
. (31)

Here, we note that 𝐸 is not very sensitive to the
precise value of the QCD running coupling constant
in the GeV range. Taking 𝛼𝑠 ∼ 0.3 changes 𝐸𝑞𝑞 from
0.55 to 0.54 GeV.

Note that Eq. (30) gives 𝑚𝐷 = 0.55𝐺𝑒𝑉 . For ex-
cited 𝑞 − 𝑞 and 𝑞 − 𝐷 systems, if the rotational ex-
citation energy is large compared with 𝜇, then both
the 𝑚𝐷 and the Coulomb term − 4

3
𝛼𝑠

𝑟 (same for the
𝑞−𝐷 and 𝑞− 𝑞 systems) can be neglected. Thus, for
both the (𝑞 −𝐷) [excited baryon] and 𝑞 − 𝑞 [excited
meson] systems, we have Eq. (14), namely,

(𝐸𝑞−𝐷)2 ∼ (𝐸𝑞−𝑞)2 ∼ 4𝜇2ℓ+ 2𝜇2. (32)

This gives again Eq. (15), i.e.,

(𝛼′)𝑞−𝐷 = (𝛼′)𝑞−𝑞
∼=

1

4𝜇2
or

(︂
1

2𝜋𝜇2

)︂
(33)

as an explanation of the hadronic supersymmetry in
the nucleon and meson Regge spectra. We also have,
by extrapolating to small

Δ(𝑀2)𝑞−𝐷 = Δ(𝑚2)𝑞−𝑞 = 4𝜇2Δℓ =
1

𝛼′Δℓ. (34)

For Δℓ = 1, we find

𝑚2
Δ −𝑚2

𝑁 = 𝑚2
𝜌 −𝑚2

𝜋. (35)

It is the relation derived by Miyazawa. It is again
resurrected in our calculation through the assumption

that the 𝑈(6/21) symmetry is broken by an operator
that behaves itself like the 𝑠 = 0, 𝐼 = 0 member
of the 35 × 35 representation of 𝑆𝑈(6), which was
true to 5%. This corresponds to the confined quark
approximation with 𝛼𝑠 = 0.

In addition, our potential model gives a more ac-
curate symmetry breaking (𝛼𝑠 ∼ 0.2):

9

8
(𝑚2

𝜌 −𝑚2
𝜋) = 𝑚2

Δ −𝑚2
𝑁 (36)

with an accuracy of 1%.
This mass-squared formula arises from the second-

order iteration of the 𝑞−𝐷, 𝑞−𝑞 Dirac equation. The
factor 9

8 comes from

1

2

(︂
4

3
𝛼𝑠

)︂2
=

8

9
𝛼2
𝑠. (37)

At this point, it is more instructive to derive a first-
order mass formula. Since the constituent quark mass
𝑀𝑞 is given by Eq. (18) (ℓ = 0), we have

𝑀𝑞 =
𝜇√
2

(38)

so that

�̄� = 2𝑀𝑞

(︃
1−

√
2

3
𝛼𝑠

)︃
≃ 1.8𝑀𝑞. (39)

When the baryon is regarded as a 𝑞 − 𝐷 system,
each constituent gains an effective mass 1

2𝜇𝜌0 which
was approximately the effective mass of the quark in
a meson. Hence, the effective masses of 𝑞 and 𝐷 in a
baryon are

𝑚′
𝑞 ≃𝑀𝑞, 𝑚′

𝐷 =𝑀𝐷 +𝑀𝑞 ≃ 3𝑀𝑞. (40)

The spin splittings for a nucleon 𝑁 and the Δ are
given by the Breit term

Δ𝑀 = 𝐾Δ𝑉
𝑆𝑞 𝑆𝐷

𝑚′
𝑞𝑚

′
𝐷

. (41)

For a nucleon with spin 1
2 , the term 𝑆𝑞 · 𝑆𝐷 gives

−1, while it has the value 1
2 for Δ with spin 3

2 . Using
the same 𝐾 for mesons and baryons which are both
considered to be a bound state of a color triplet with
a color antitriplet, we can relate the baryon splitting
Δ𝑀 to the meson splitting Δ𝑚, for which 𝑆𝑞 · 𝑆𝑞

takes the values 1
4 and −3

4 . Hence, we find

Δ𝑀 =𝑀Δ −𝑀𝑁 =
3

2

𝐾Δ𝑉

𝑚′
𝑞𝑚

′
𝐷

=
1

2

𝐾Δ𝑉

𝑀2
𝑞

(42)
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and

Δ𝑚 =
𝐾Δ𝑉

𝑀2
𝑞

, (43)

which leads to a linear mass formula

Δ𝑀 =
1

2
Δ𝑚, (44)

which is well satisfied and was verified before using
the three-quark constituents for a baryon.

The formation of diquarks which behave like anti-
quarks, as far as QCD is concerned, is crucial to the
hadronic supersymmetry and to the quark dynam-
ics for excited hadrons. The splittings in the mass
spectrum are well understood on the basis of spin-
dependent terms derived from QCD. This approach
to hadronic physics has led to many profound inves-
tigations recently. To see the symmetry breaking ef-
fect, we note that the mass of a hadron will take the
approximate form

𝑚12 = 𝑚1 +𝑚2 +𝐾
𝑆1 𝑆2

𝑚1𝑚2
, (45)

where 𝑚𝑖 and 𝑆𝑖 (𝑖 = 1, 2) are, respectively, the
constituent mass and the spin of a quark or a di-
quark. The spin-dependent Breit term will split the
masses of hadrons of different spin values. If we as-
sume 𝑚𝑞 = 𝑚𝑞 = 𝑚, where 𝑚 is the constituent mass
of 𝑢 or 𝑑 quark, and denote the mass of a diquark by
𝑚𝐷, then this approximation gives

𝑚𝜋 = (𝑚𝑞𝑞)𝑠=0 = 2𝑚−𝐾
3

4𝑚2
, (46)

𝑚𝜌 = (𝑚𝑞𝑞)𝑠=1 = 2𝑚+𝐾
1

4𝑚2
, (47)

𝑚Δ = (𝑚𝑞𝐷)𝑠=3/2 = 𝑚+𝑚𝐷 +𝐾
1

2𝑚𝑚𝐷
, (48)

𝑚𝑁 = (𝑚𝑞𝐷)𝑠=1/2 = 𝑚+𝑚𝐷 −𝐾
1

𝑚𝑚𝐷
. (49)

Eliminating 𝑚, 𝑚𝐷, and 𝐾, we obtain the mass rela-
tion

8

3

2𝑚Δ +𝑚𝑁

3𝑚𝜌 +𝑚𝜋
= 1 +

3

2

𝑚𝜌 −𝑚𝜋

𝑚Δ −𝑚𝑁
(50)

which agrees with experiment to 8%.

6. Open Questions

A derivation of an effective relativistic QCD poten-
tial from the lattice gauge theory or from analytic
techniques is needed. This must await a better under-
standing of fermion loop corrections and the incorpo-
ration of a chiral symmetry. The logarithmic varia-
tion of the running coupling constant on 𝑞 − 𝑞 and
𝑞−𝐷 spectra has already been considered in the con-
text of a semirelativistic theory. This does not change
the qualitative picture presented here. The next step
should be the setting up of an effective relativistic
theory based on the Dirac equation for the quark and
the Klein–Gordon equation for the antiquark, exhibit-
ing the invariance under the relativistic supersymme-
try. This might be achieved with the Wess–Zumino
Lagrangian constructed out of a gluon field inter-
acting with the vector superfield multiplet (it con-
tains the quark and the antidiquark). The prelimi-
nary work in this direction has already been presented
in our papers, and the derivations of new mass formu-
lae have shown good agreement with experiments. It
is important to attempt calculations of decay widths,
magnetic moments, charge radii, and form factors.

The two-body relativistic Hamiltonian with the
𝑆𝑈(6/21) symmetry between quarks and antidi-
quarks derived previously can be extended to include
the symmetries of three-quark systems. The new Ha-
miltonian is invariant under the discrete group 𝑆3.
Hence, its eigenstates are eigenstates of 𝑆3. The split-
ting of three quarks into 𝑞 and 𝐷 will break the 𝑆3

symmetry down to 𝑍2 ∼ 𝑆2 which has two eigensta-
tes. Such considerations should lead to phenomeno-
logically viable models from which hadronic proper-
ties can be extracted.

A possible Skyrme model that can compete with
the QCD-inspired potential model presented here is
still hidden in the future, For a preliminary work in
that area, we refer the reader to our paper [32].
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ЕФЕКТИВНА ГАДРОННА
СУПЕРСИМЕТРIЯ З КВАНТОВОЇ
ХРОМОДИНАМIКИ

Р е з ю м е

Кваркова модель з потенцiалами, отриманими з КХД, яка
включає модель антикварк-дiкварка для збуджених адро-
нiв, дає масовi формули, що дуже добре узгоджуються з
експериментом. Використовуються наближенi симетрiї та
суперсиметрiї гадронного спектру включно iз механiзмом
порушення симетрiї.
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