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BORN APPROXIMATION
FOR POLARIZATION OBSERVABLES
AT THE SCATTERING OF PROTONS BY %°Ca NUCLEI

A development of the optical model for the description of the hadron-nucleus scattering is
proposed. When describing the behavior of polarization observables for the elastic proton scat-
tering on “°Ca nuclei in the energy interval from 200 to 800 MeV, the Born approzimation
1s used. Analytical expressions for the scattering amplitudes, as well as for the differential
cross-sections and polarization observables, are obtained. The comparison of the scattering ob-
servables calculated in the 1st and 2nd Born approrimations is made. It is shown that the
observables calculated in this approach are in a reasonable agreement with the available exper-

imental data.
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1. Introduction

The development of the optical model (see [1-6]) for
investigations of the hadron scattering by nuclei is an
important fundamental problem of nuclear physics.

In the optical model, the hadron-nucleus scatter-
ing is considered by analogy with the scattering of
a wave of light by a liquid spherical drop, which is
characterized by certain values of the refraction and
absorption indices. The particle-nucleus scattering in
this case is described by a complex potential, whose
real part determines the scattered wave refraction in
the nuclear matter, and its imaginary part charac-
terizes the absorption of scattered particles by the
nucleus.

The essence of the optical model lies in the fact
that the multiparticle interaction of a projectile with
individual nucleons of the nucleus or with other parti-

© O.V. BABAK, YU.A. BEREZHNOY,
V.P. MIKHAILYUK, 2020

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 5

cles, which can exist in the nucleus, is replaced by an
effective two-particle complex potential, i.e., the com-
plicated multiparticle problem is reduced to a simple
two-particle problem. This approach greatly simpli-
fies the calculations of the scattering observables and
finds good agreement with the experimental data, as
well as with a number of more important fundamen-
tal physical arguments. Taking into account that the
optical model is a powerful tool for explaining and
interpreting a large number of experimental data in a
wide range of energies, an important conclusion that
the concept of nuclear matter is entirely realistic can
be made. This matter is characterized by certain val-
ues of the refraction and absorption coefficients for
each wavelength of a scattered hadron, i.e., its com-
plex potential is equivalent to the complex refractive
coefficient of the nuclear matter, and the imaginary
part of such potential describes the absorption prop-
erties of the target nucleus. In this case, the absorp-
tion of incident particles should be considered as their
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elimination from the elastic channel to various inelas-
tic ones.

Accurate data for the elastic scattering of protons
on %°Ca and other nuclei are available in the bom-
barding energy interval from 200 to 800 MeV. Most
of these data have been analyzed in terms of the stan-
dard optical model employing the real and imaginary
parts of the potential in the Woods—Saxon form (see,
e.g., [7-15]). Alternatively, the relativistic and non-
relativistic impulse approximations, as well as Dirac
phenomenology for the description of such processes
are used (see, e.g., [16-29]).

In such energy interval, the hadron-nucleus scatter-
ing amplitudes can also be considered in the Born ap-
proximation (BA) with the optical potential including
the spin-orbit part which is, by analogy with the shell
model, usually chosen in the Thomas form.

However, it turns out that the scattering amplitude
calculated in the 1st BA with the Hermitian potential
is real [30]. As a result, the polarization of the nucle-
ons from nuclei is equal to zero in this approach. The-
refore, when calculating the hadron-nucleus polariza-
tion observables, at least the 2nd BA should be used.

In the present work, we will obtain some analyt-
ical expressions for the amplitudes and polarization
observables for the elastic scattering of protons on
40Ca nuclei in the 1st and 2nd BA and make compar-
ison between theoretical predictions and experimental
data in the energy interval from 200 to 800 MeV.

In Sect. 2, we describe the theoretical formal-
ism. Section 3 presents the results of calculations, and
the comparison and discussion of the results are given
in Sect. 4.

2. Theoretical Formalism
2.1. Scattering amplitudes and observables

The amplitude for the nucleon scattering on a zero-
spin nucleus is a spin operator with the general struc-
ture

F(k,K) = F.(k,K) + Fy(k, k') (on), (1)

where F, ¢(k,k’) are the central and spin-orbital am-
plitudes, o is the spin operator of the incident nu-
cleon, n = (k x k’)/|k x k’|, and k, k" are the initial
and final nucleon wave vectors.

The complete determination of the collision ma-
trix F(k, k') for the elastic proton scattering on zero-
spin nuclei can be achieved by choosing a suitable
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set of independent observables. Usually, for this pur-
pose, three independent observable as functions of
the scattering angle are used [31]. A commonly used
set of such observables includes the differential cross-
section o(q) =do/dQ and polarization (analyzing
power) P(q), as well as one of the additional inde-
pendent polarization observables, namely, the spin-
rotation function Q(g). Unfortunately, due to an arbi-
trary scattering phase, the calculation of such observ-
ables does not allow one to determine unambiguously
the amplitudes Fj(k, k’). Therefore, the measurement
and analysis of four suitably chosen observables are
required [21].

The relations between such observables and the
amplitudes F,(q) and Fy(q) in (1) are

a(q) = Fe(@)* + [ Fo(@)%, (2)
P(q)o(q) = 2Re (Fe(q) F§ (9)), ®3)
Q(a)o(q) = 2Im (Fe(q) FS (q)), (4)
S(@)o(q) = |Fe(@)* = |Fs(9)[*, ()
cos flg) = ———) ©

VQ%(q) + S%(q)

where q =k — k', |q| = 2ksin(0/2).

Note that, with regard for the available experimen-
tal data, we use the spin-rotation angle B(q) as a
fourth independent observable. This quantity can be
interpreted [31] as the angle, by which the projection
of the proton spin on the scattering plane rotates dur-
ing the scattering.

In the Born approximation (BA), the scattering
amplitudes F;(k,k’) (i = ¢,s) are calculated under
the assumption that the scattering field may be con-
sidered as a perturbation. In this assumption, the am-
plitude of the scattering of a particle in the nucleus
can be presented as a series

Fi(k7 k/) = i f(n) (k7 kl)’ (7)
n=1

where n is the perturbation power.
Retaining only the first two terms for the ampli-
tudes f((k, k') in (7), we have

m
2mh?
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@ (k,K) =

/ Td3 / 7zkr><
v’ |)U(r)e™, (9)

where m = myms/(mq + ms) is the reduced mass of
the colliding particles, and Green’s function is deter-
mined by

UGy (| r

m eik|r7r"

- 2rh? v —r/|"

(10)

2.2. Optical potential

The optical potential U(r) with the spin-orbit part
taken into account is

U(r) = Ui (r) + Us(r)(ol). (11)

In this formula, the radial parts of such potential
were chosen in the form

Ui(r) = =Vo{gu(r) +icgu(r)}, (12)

Uar) = g LI [0 D0, 1y

Here, ¢ = Wy /Vh, ss = W/ V5, values V;, W, de-
note the strengths of the real, imaginary, and spin-
orbit parts of the potential U(r), respectively, the di-
mensionless parameter v = AR/R determines a rela-
tive change of the radius of the real part of the optical
potential U(r) due to the allowance for the spin-orbit
interaction, and A2 = (h/m,c)? = 2 fm? is the pion
Compton wavelength factor traditionally used in sim-
ilar calculations.

In (12) and (13), the values g;(r) are chosen in
the Woods—Saxon form with regard for the differences
between the parameters of the real, imaginary, and
spin-orbit parts

gi(r) =1/{l +exp (r — R;)/d;)},

When determining the form of the spin-orbit
part of potential (11), the following arguments were
used. Usually, the spin-orbit part of the potential
U(r) in the optical model is assumed to be real, and
its radial shape is proportional to the density gradi-
ent. In this approach, the functional dependence of
the potential Us(r) is close to the step function. But,
for the parallel (+) and antiparallel (—) vectors 1 and
o, this functional dependence has different radii and
depths [32, 33].

Jj=vw,s. (14)
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Therefore, representing the spin-orbit part of the
potential U(r) as
Us(r) = Us(r=R), Ua(r)® = Ua(r—RFJR), v < 1,
(15)
and expanding the functions Us(r)(*) into series, we
have

Us (1)) — Up(r) ) ~ _,deUz(T)

dr

(16)

which allows us to get the functional dependence (13).

Note that, in this approach, we do not consider the
Coulomb interaction, because the contribution of this
interaction is not very significant at the energy con-
sidered, whereas the theoretical calculations become
noticeably complicated.

3. Calculations and Analysis
3.1. 1st Born approximation

Performing the integration in (8) and taking relations
(11)—(14) into account, we get the scattering ampli-
tude fM(k, k) in the 1st BA as follows:

f(l)(k’ k/) = fC(Q) + fs(Q)(o-n)v (17)

£0) =~ 252 (RAQ) + isRuAu(@)), (19

fs(q) = 2277;;3 V( 146 )A2k? sin 6 x

x {(1 —7)As(q) +vB(q)}- (19)

Here, the amplitudes A,(q) and B(q) read

A0) = -A,0). Bla) = B0, (20)

Aj(q) = Fa,(9)jo(qR;), B(q) = qR.Fy,(q)j1(qRs).
(21)

In these formulae, j,(z) are the spherical Bessel
functions, and the damping factor Fy,(q) has the form

T qd;

Fy;(q) = sinh (7 qd;)’ (22)

Jj=uv,w.

Using relations (2)—(6), we can calculate the com-
plete set of observables for the elastic scattering of
protons on 4°Ca nuclei in the energy interval from
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Fig. 1. Differential cross-section o(0) =do/dQ) (mb/sr), po-
larization P(#), spin-rotation function Q(6), and spin-rotation
angle 8(0) for the 200, 320, and 360 MeV proton elastic scat-
terings on 4°Ca nuclei. The experimental data are taken from
[10-12,21]. The description of the curves is given in the text

Table 1. Parameters of the optical potential
obtained in the first Born approximation. Set 1

E, | Vo, | Wo, | dv, |Rv;|dw, |Rw,| Vs, | Ws, | ds, |Rs,|
MeV|{MeV [MeV | fm | fm | fm | fm [MeV [MeV | fm | fm

200 |11.39] 4.55 0.53|4.96(0.30|3.95| 1.22 |-0.80(0.82|4.94| 0.29
320 (16.51] 9.35 [0.55|4.46|0.43|3.90|-1.10|-1.44/|0.70|3.47(-0.30
360 [17.98|12.82(0.55(4.45|0.46|3.89|-0.09|-1.32|0.67|3.45|-0.28
500 [20.75(14.03]0.56(4.50(0.46|3.89|-0.09|-1.30(0.66|3.43|-0.28
650 [27.38|15.92(0.57(4.42|0.46|3.91|-0.05|-0.84(0.65|3.42|-0.28
800 [37.72|19.31]0.58(4.31|0.49(4.03|-0.02|-0.57|0.61|3.39|-0.27

200 to 800 MeV. The results of such calculations in
the 1st BA are given in Figs. 1 and 2.

We have obtained two alternative sets of the op-
tical potential parameters both for the 1st BA (see
Tables 1 and 2) and the 2nd BA (see Tables 3 and
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Fig. 2. The same as in Fig. 1, but for the 500, 650, and 800
MeV proton energies. The experimental data are taken from
[16-21]

Table 2. Parameters of the optical potential
obtained in the first Born approximation. Set 2

E, | Vo,| Wo, |dv,|Rv,|dw,|Rw;| Vs, | Ws, | ds, | Rs,| v
MeV|MeV| MeV | fm | fm | fm | fm [ MeV |MeV | fm | fm

320 [9.70|-10.75|0.39(4.07]0.51{4.63|-1.44|-0.72]0.82|3.25|-0.29
360 [2.50|-24.63|0.38|3.51{0.55|4.45|-1.13| 0.85 |0.64(3.91|-0.03
500 [2.49|-36.27(0.37|3.37]0.55|4.36|-0.63| 0.66 [0.65|3.90|-0.33
650 [2.29|-37.71]0.37|3.25/0.55|4.24|-0.28| 0.45 |0.66|3.90|-0.39
800 [1.92|-41.01{0.31(3.11{0.51{4.22|-0.19| 0.32 |0.68|4.12|-0.43

4 below). The results are presented in all Figures by
solid (for Set 1) and dashed (for Set 2) curves, respec-
tively. As is seen from Figs. 1 and 2, the theoretical
calculations performed in the 1st BA are in reason-
able agreement with the available experimental data.

Unfortunately, the approach using 1st BA is not en-
tirely correct. This statement can be verified by cal-
culating the observables in (2)—(5).

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 5
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Fig. 3. The same as in Fig. 1, but for 2nd BA

Using relations (17)—(22) and assuming, for sim-
plicity, R, = R, = Rs = R,d, = d, = ds = d
in (18) and (19), the analytical expressions for such
observables in the 1st BA can be presented as

ot = (220 0,00, (23)
a1(q) = (1+¢%) A%(q) +

+Ask*sin® 0 {(1 — ) A(q) +vB(q)}, (24)
P(q)o1(q) = ¢2X2k*sin 0 A(q) x

x{(1=7) Alq) +vB(q)}, (25)
Q(q)a1(q) = —2X\7k” sin0A(q) x

x{(1 =) Aq) +vB(a)}, (26)
S(g)o1(q) = (1 +¢%) A%(q) -

— Apk*sin® 6 {(1 =) A(q) +vB(9)}*. (27)
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Fig. 4. The same as in Fig. 2, but for 2nd BA

As can be seen from the above formulae, the polar-
ization calculated in the 1st BA with the Hermitian
potential (¢ = 0) is equal to zero. Therefore, when
calculating the polarization observables for the scat-
tering of particles on nuclei with the use of BA, at
least the 2nd BA should be applied.

3.2. 2nd Born approrimation

In the 2nd BA, the amplitude f®(k, k) is deter-
mined by Eq. (9). When calculating the integral in
(9), we used the approximation d/R < 1, as well as
the expansion of the potentials U;(r) (i = 1,2) in
series up to the first significant terms

ur’ dU (u)

/ ~
Ulu+r)) = Uw) + S-S0,

(28)
where [u+ 1| ~u+ur'/u, u=r-—r'.

This expansion can be justified by the fact that
Green’s function G(()Jr)(\ r —r’ |) in (10) has a maxi-
mum at |r| ~ |r|’.
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Fig. 5. Comparison of the observables obtained within the
2nd and 1st BA for the 200, 320, and 360 MeV proton elastic
scatterings on 4°Ca nuclei. The experimental data are taken
from [10-12,21]. For the description of the curves, see the text

Performing the integration in (9) and taking rela-
tions (11)—(14) and (28) into account, we obtain the
scattering amplitude £ (k,k'):

f(z)(Q) = fee(q) + fss(@) + 2fes(q)(om), (29)

Vi df.
Feela) = gyt {700 1200+ a7 0 L2, 0
FO(k) = FO (k) +icF k), j=1,2, (31)
FO(k) =1+ 2ikR, — 2+ Fy (2k), (32)

FP (k) = 1+ By, (2k) —2j0 (kRy) €™, 1 = v, w,

(33)
Foel) = AmV, 2( 4 d
= kRscos? 0 ( 2 “(1+ i§5)> {kdk’ - dk’k/} X
< g {1 - DA+ 1B} (L -1 )
. _ /
x jo (K'Ry) e — keos6 =k COSS y % X
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x {(1=)As(q) +vB(q)} x

X

d d 1 )
11— i T / szs_l 4
dRS( YR, dRS) R (4 1) (34)

where the amplitudes f. s(¢) are determined by Egs.
(18) and (19).

Note that the form of the amplitude f.s(q) in (29)
is the same as that given in (30)—(33), where the am-
plitude f.(¢) (18) should be replaced by fs(q) (19).

Finally, for the amplitudes Fj(k,k’) (1) in the 2nd
BA, we have

FC(Q) = fc(q)+fcc(q)+fss(Q)7 FS(Q) = fs(q)+2fcs(q)‘

(35)

The results of calculations within such approach
are presented in Figs. 3 and 4, and the parameters of
the optical potential are given in Tables 3 and 4.

As is seen from Figs. 3 and 4, the results of cal-
culations performed in the 2nd BA are in reasonable
agreement with the available experimental data for
both sets of the parameters used.

Table 3. Parameters of the optical potential
obtained in the 2nd Born approximation. Set 1

E, | Vo, | Wo, |dv, |Rv,|dw, |[Bw,| Vs, | Ws, | ds, | Rs,|
MeV|MeV |MeV | fm | fm | fm | fm |MeV |MeV | fm | fm

200 [12.81|13.35]0.51|4.79]0.53|4.46| 1.89 |-1.67|0.72|4.31| 0.13
320 [19.87|16.33]0.52(4.44[0.53|3.79|-0.40|-1.39(0.69|4.39| 0.12
360 [21.57|20.13]0.56|4.33]0.53|4.28|-0.52|-1.13|0.65|3.65|-0.11
500 [29.06|25.75(0.66(4.32]0.49(4.22|-0.50|-1.01|0.61|3.61|-0.14
650 [31.06|35.75(0.72(4.10(0.43|4.21|-0.40|-1.17|0.58|3.60|-0.17
800 |40.34[45.53]0.76|4.34]0.40|4.12|-0.21|-0.70(0.46|3.60|-0.07

Table 4. Parameters of the optical potential
obtained in the 2nd Born approximation. Set 2

E, | Vo, | Wo, |dv, |Rv,|dw:|RBw;| Vs, | Ws, | ds, | Rs,|
MeV|MeV| MeV | fm | fm | fm | fm [MeV [MeV | fm | fm

320 {9.89| -9.62|0.41|4.10|0.54(4.66|-0.89|-0.19|0.60(3.56|-0.15
360 [4.78|-14.64|0.26|3.45|0.58(4.31|-0.80| 0.54 |0.59(3.56|-0.13
500 [4.74|-19.83|0.24/|3.37|0.60{4.29|-0.78| 0.49 |0.58(3.59|-0.17
650 |4.35|-35.68|0.22(3.34/0.60(4.35|-0.58| 0.35 [0.61|3.70|-0.13
800 [4.21|-46.30|0.21|3.20(0.59(4.36|-0.52| 0.35 |0.62(3.81|-0.05

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 5
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4. Discussion

In Figs. 5 and 6, we present the comparison of the re-
sults obtained with the use of the 2nd and 1st BA. In
these figures, the solid and dashed curves were calcu-
lated in the 2nd and 1st BA, respectively, using the
parameters of the optical potential from Tables 1 and
3 (Set 1).

As Figs. 5 and 6 show, the 2nd BA allows us to de-
scribe the available experimental data more precisely
as compared with the 1st BA.

Note that, despite the rather good agreement be-
tween the calculated and measured observables, the
parameters of the optical potential cannot be deter-
mined quite reliably for the energies 200, 360, and 650
MeV due to the lack of a complete set of measured
independent observables.

As was mentioned above, two alternative sets of
the optical potential parameters both for the 1st and
2nd BA (see Tables 1-4) were obtained. Using these
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Fig. 6. The same as in Fig. 5, but for the 500, 650, and 800
MeV proton energies. The experimental data are taken from
[16—21]
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Fig. 7. Energy dependence of the optical potential parameters
in the 2nd BA

sets of parameters, we have calculated the scattering
observables shown in Figs. 1-6.

As an example, the energy dependence of the pa-
rameters obtained in the 2nd BA (see Table 3) is pre-
sented in Fig. 7.

As is seen from Tables 1-4 and Fig. 7, the energy
dependence of the optical potential parameters is suf-
ficiently smooth. The only exceptions are the param-
eters at the 200 MeV energy. This can be explained
by the transition from the diffraction scattering con-
ditions at higher energies to the scattering with es-
sential refractive effects at lower energies [34].

In addition, we are dealing with the well-known
problem of discrete ambiguities in the values of the
optical potential parameters. This problem was con-
sidered in detail for composite incident particles at
a lower energies (see, e.g., [35, 36]). But, for the
proton-nucleus scattering at intermediate energies,
such problem was not considered yet thoroughly and
requires a further study.
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Note that, for energies up to 180 MeV, the empiri-
cal relations for the energy dependence of the optical
potential parameters have been obtained (see, e.g.,
[7-9]). Obviously, the parameters of the optical po-
tential obtained in the BA approach should not be
the same as those obtaining from the numerical solu-
tion of the Schrédinger equation. At the same time,
the obtained values of such parameters must not dif-
fer significantly from those obtained in other similar
calculations. As Tables 1 and 3 show, for the 200 MeV
energy, the values of such parameters in the BA ap-
proach coincide with those, presented in [7-9].

5. Summary and Conclusions

The investigation of the interaction of intermediate-
energy particles with nuclei attracts a great inter-
est during many decades of the development of nu-
clear physics. This interest is motivated by the possi-
bility of studying the basic properties and structure
of the colliding nuclei and the mechanism of their
interaction.

Various approaches were used to study such pro-
cesses. For example, the multiple proton scattering
on nuclei was considered, by including “elementary”
nucleon—nucleon amplitudes [37], and various micro-
scopic optical potentials were discussed in [38]. In
[34], we introduced the approach based on the a-
cluster model with dispersion, which allowed us to
describe a large amount of the experimental data for
the elastic and inelastic scattering of protons in light
nuclei from ?Be to ?*Mg.

Here, we have used the 2nd BA to study the proton-
nucleus scattering at intermediate energies, because
the scattering amplitude calculated in the 1st BA
with the Hermitian potential is real, and the polariza-
tion of the nucleons from nuclei is equal to zero. The-
refore, when calculating the hadron-nucleus polariza-
tion observables, at least the 2nd BA should be used.

The analytical expressions for the amplitudes and
observables for the elastic scattering of protons on
40Ca nuclei in the 1st and 2nd BA are obtained, and
the comparison between theoretical predictions and
experimental data in the energy interval from 200 to
800 MeV is given.

The results show that the calculations performed in
the 2nd BA give possibility to describe the available
experimental data quite well and more precisely, as
compared with those obtained in the 1st BA.
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0.B. Babax, 10.A. Bepeoicroti, B.Il. Muzatiaoxr

BOPHOBE HABJINKEHHS
JJI5I TIOJIAPUBALIIMHUX CIIOCTEPEXKYBAHUX
ITPU PO3CISHHI ITPOTOHIB AJIPAMU 4°Ca.

Peszmowme

3amnponOHOBAHO PO3BUTOK ONTUYHOI MOZEJ JJIsi ONKUCY aJIPOH-
SIZIEPHOTO po3cistHHs. st onucy noJisipu3aliiiHux xapakTepu-
CTHK IIPY’KHOTO po3cisiaus mporoxis sapamu ‘0Ca B miamasomni
enepriit Bix 200 g0 800 MeB BukopucToByBaJsioch GOpHOBE Ha-
OnmrkenHss. OTpUMaHO aHAJMITUYIHI BUPa3d JJIs aMILIITYJ PO3-
cistams, nudepeHniaIbHUX Mepepi3iB Ta MOIApU3aIifHuX Xa-
PaKTEPUCTUK. BUKOHAHO IMOPIBHAHHS CIIOCTEPEXKYBaHUX Xapa-
KTEPHUCTUK PO3CisIHHS, po3paxoBaHuX y l-my Ta 2-my 60pHOBO-
My HabusimekenHi. JloBesieHo, 110 po3paxoBaHi B IBOMY IiJIXO/Ii
CITOCTEPEXKYBaHI XapaKTEPUCTUKU T00pe y3TOMKYIOTHCS 3 Ha-
SIBHUMU €KCIEPUMEHTAIbHUMU JTAHUMU.
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