Prompt photons are photons produced in the hard scattering of partons. According to the factorization theorem, the inclusive cross-section for the production of a prompt photon in collisions of h_A and h_B hadrons can be written as follows:

$$d\sigma_{AB} = \sum_{a,b=q,g} \int dx_adx_b f_a^A(x_a, Q^2) f_b^B(x_b, Q^2) \times$$

$$\times d\sigma_{a\rightarrow\gamma X}(x_a, x_b, Q^2).$$

(1)

The function f_a^A is the parton density for h_A (h_B) hadron, x_a (x_b) is the fraction of the momentum of h_A (h_B) hadron carried by parton a (b), and Q^2 is the square of the 4-momentum transferred in the hard scattering process. $\sigma_{a\rightarrow\gamma X}(x_a, x_b, Q^2)$ represents the cross-section for the hard scattering of partons a and b [1].

The prompt-photon production in hadron collisions is the most direct way to access the gluon structure of hadrons. There are two main hard processes for the production of prompt photons: 1) gluon Compton scattering, $qg(\bar{q}) \rightarrow \gamma q(\bar{q})$, which prevails, and 2) quark-antiquark annihilation, $q\bar{q} \rightarrow \gamma g$.

Unpolarized measurements of the differential cross-section of the prompt-photon production in proton-proton (proton-antiproton) collisions have already been performed by the fixed-target and collider experiments.

Keywords: polarized structure of a nucleon, prompt photons, gluons, SPD.
A. Rymbekova

Fig. 1. Measured cross-sections of the prompt-photon production divided by those predicted by theory as a function of x_T^T [2].

Fig. 2. Theoretical predictions for A_N^γ at $\sqrt{s} = 30$ GeV and $p_T = 4$ GeV/c for (left) positive [4] and (right) negative [5] values of x_F.

Fig. 3. A compilation of gluon polarization measurements from the open charm and high-p_T hadron production [8].

× $[\Delta Nq_i(x_b, k_Tb)]$ is the gluon [quark] Sivers function, $d\sigma/dt$ represents the corresponding gluon Compton scattering cross-section. Figure 2 shows theoretical predictions for A_N^γ at $\sqrt{s} = 30$ GeV and $p_T = 4$ GeV/c for positive [4] (left) and negative [5] (right) values of x_F. The study of the prompt-photon production at the large transverse momentum with longitudinally polarized proton beams could provide the access to the gluon polarization Δg via the measurement of the longitudinal double spin asymmetry A_{LL}^γ [6]. Assuming the dominance of the gluon Compton scattering process, the asymmetry A_{LL}^γ can be presented as [7]

$$A_{LL} \approx \frac{\Delta g(x_a)}{g(x_a)} \left[\sum_q e_q^2 [\Delta q(x_b) + \Delta \bar{q}(x_b)] \right] \times \hat{a}_{LL}(gq \to \gamma q) + (a \leftrightarrow b).$$

The second factor in the equation coincides to the lowest order with the spin asymmetry A_{p1} well known from polarized DIS, the partonic asymmetry \hat{a}_{LL} is calculable in perturbative QCD. Previous results for the gluon polarization show that the gluon polarization is consistent with zero: $|\Delta g/g| < \pm 0.2$ [8], while the A_{p1} asymmetry is about 0.2 for $x \geq 0.1$ [9].

Thus, under the given experimental conditions, it is possible to gain access to the gluon Sivers function, as well as to the gluon polarization (helicity).

3. The SPD Detector at NICA

The study of the gluon structure through the prompt-photon production is planned at the SPD experiment at the new accelerator complex NICA (Nuclotron-based Ion Collider fAcility) which is currently under construction at the Joint Institute for Nuclear Research (Dubna, Russia).

The possibility to have high-luminosity collisions (up to 10^{32} cm$^{-2}$s$^{-1}$ at $\sqrt{s_{pp}} = 27$ GeV) of polarized protons and deuterons at the NICA collider allows studying spin- and polarization-dependent effects in hadron collisions.

The current design of the SPD setup foresees three modules: two end-caps and a barrel section. Each part has an individual magnetic system: solenoidal for the end-caps and toroidal for the barrel part of the setup. Main detector systems are the following: Range System (RS) (for muon identification), Electromagnetic calorimeter (ECal), PID/Time-of-Flight system, Main Tracker (TR), and Vertex Detector (VD).

Photons should be detected by the lead-scintillator electromagnetic calorimeter (“shashlyk”-type), which is placed inside the Range System and consists of three parts: the barrel one and two end-caps. Each

part has a depth of about 12.5 X_0, which is sufficient to fully contain the highly energetic electromagnetic showers considered in this analysis. The energy resolution is planned to be about $5%/\sqrt{E[\text{GeV}]}$. The acceptance of the calorimeter in polar angle is between 2° and 178°.

4. Prompt Photons at SPD

The object-oriented C++ toolkit SPDroot based on the FairRoot framework [10] was used for the Monte-Carlo simulation of the detector response. The SPD setup description is based on the ROOT geometry while the transportation of secondary particles through a material of the setup, and the simulation of the detector response is provided by the GEANT4 code. The standard multipurpose generators like PYTHIA6, PYTHIA8, FRITIOF could be used for the simulation of primary interactions.

Energy deposition in a connected area in the ECal is called a cluster. If, in the course of extrapolation, the track does not rest against a cluster, such a cluster is considered as neutral, and vice versa. The main issue of the future analysis will be the correct identification of prompt-photon clusters.

The study of background contributions and possibilities of their suppression is almost the main task. On the experience of previous experiments, the main background components are:

- decay photons. Most of them (almost 96%) are coming from the decays of π^0 and η mesons;
- fragmentation photons produced in the process of fragmentation of color partons with large transverse momenta;
- photons produced in the other parts of the facility due to the interaction of particles with a material of the setup;
- neutral hadrons like n, K^0, etc. and their antiparticles that are identified in the calorimeter as neutral clusters;
- “charged” clusters in the ECal misidentified as “neutral” ones due to the inefficiency of the track finding and reconstruction algorithms;
- the so-called “double” clusters which are a result of the overlapping of showers produced by different particles in ECal. The special case is the clusters produced by energetic π^0 decays into two photons flying at a very small angle relative to each other.

![Fig. 4. Contributions of each background component for p-p collisions at $\sqrt{s} = 26$ GeV shown together with the prompt-photon production](image)

![Fig. 5. Expected accuracy of A_N and A_{LL} asymmetries with $p_T > 6$ GeV/c as a function of the x_F-variable](image)

The expected contributions of each background component mentioned above as a function of the transverse momentum p_T calculated with the use of the cluster energy and position are shown in Fig. 4 for p-p collisions at $\sqrt{s} = 26$ GeV.

As could be concluded from Fig. 4, the low p_T region is useless for any studies of prompt-photons due to a huge background. The signal-to-background ratio at $p_T = 1$ GeV/c is about 10^{-4}. Only at high values of the transverse momentum, it is possible to separate statistically the signal and the background. A reasonable cut on the transverse momentum of a photon has to be applied in order to maximize the accuracy of the planned measurements.

The background suppression process could be divided into two stages. At first, all photons from the
reconstructed 2γ decays of π^0 and η mesons are rejected. After such rejection, the sample still contains an admixture of photons from 2γ decays. This residual admixture could be statistically subtracted basing on the Monte-Carlo information about properties of the SPD setup. The subtraction procedure can be illustrated by the following equation:

$$\sigma \sim N_{\text{prompt}} = N_{\text{single} \gamma} - N_{\pi^0, \eta} \times k,$$

where $N_{\text{single} \gamma}$ is a number of candidates to be prompt-photons, $N_{\pi^0, \eta}$ is a number of reconstructed 2γ decays of π^0 and η, and k is a factor to be determined from the Monte-Carlo procedure. The typical value of the k factor is 0.76.

To estimate the accuracy of the measurement of asymmetries, the signal and the background Monte-Carlo samples were produced. For the simulation of primary $p-p$ collisions with $\sqrt{s} = 26$ GeV, the PYTHIA6 [11] generator with the standard settings and high production of primary interactions were used. The estimation was performed for 10^7 s (one year) of data taking with an average luminosity 10^{32} s$^{-1}$ cm$^{-2}$. 100% polarization of proton beams was supposed.

Using Eq. (4) and the cut $p_T > 6$ GeV/c which removed most of the background and assuming that the relative accuracy $dk/k = 0.02$ could be achieved, the preliminary results on the expected accuracy of the A_N and A_{LL} asymmetries measurement in the SPD experiment were obtained. The results for four subranges of x_F-variable are shown in comparison with the E704 measurements [12] and the theoretical predictions [4, 5] in Fig. 5. The expected A_N and A_{LL} accuracies are multiplied by a factor of 5 and shown by the error bars in respect to zero values of asymmetries. The uncertainties related to polarization and luminosity measurements are not taken into account.

5. Conclusions

The study of the polarized and non-polarized gluon contents of a nucleon is one of the main physical tasks of the planned SPD experiment at the NICA collider. The prompt-photon production via the gluon Compton scattering is the most promising process for that. The precision measurement of the A_N and A_{LL} spin asymmetries with transversely and longitudinally polarized proton and deuteron beams provides the access to the gluon Sivers and helicity functions, respectively. The preliminary studies of the background conditions show that the accuracy for the asymmetries of about 2% could be achieved in the wide range of x_F.

A. Рымбекова

ДОСЛІДЖЕННЯ ПОЛЯРИЗОВАНОЇ СТРУКТУРИ ПРОТОНА ЗА ДОПОМОГОЮ ФОТОНАРОДЖЕННЯ В ЕКСПЕРИМЕНТІ SPD НА КОЛАЙДЕРІ NICA

Резюме

Фотони, утворені в жорсткому розсіянні партонів, так званих миттєвих фотонів, дають інформацію про внутрішню структуру адронів. Колайдер NICA зможе забезпечити нові дані про народження миттєвих фотонів в неполяризованих та поляризованих процесах фотонародження, що, в свою чергу, дасть інформацію про спінові функції розподілу глюонів. В даній статті представлено фізiku поляризації із миттєвими фотонами і можливості детектора SPD в таких експериментах.