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THIRD-ORDER CORRELATION
FUNCTIONS FOR A COULOMB PAIR

Third-order correlation functions for two particles with the electrostatic interaction have been
obtained for the first time using the direct algebraic method. The main relations for the cor-
relation functions that do not depend on the explicit form of the interaction potential between
particles, as well as the relations that appear for four specific forms of the interaction operator,

are considered.
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1. Introduction

In this paper, the consideration of the exact theory of
a Coulomb pair, the fundamentals of which were pub-
lished in work [1], is continued. Recall that this the-
ory is based on a modification of the direct algebraic
method (DAM), which was proposed in work [2]| for
the determination of correlation functions. The corre-
lation between two particles that form a Coulomb pair
is a purely quantum-mechanical effect, which cannot
be satisfactorily described with the help of the per-
turbation theory methods.

Among other methods, the method of Green’s func-
tions has to be mentioned, which was widely used
before the appearance of the DAM. In essence, the
DAM was developed in order to overcome the short-
comings of the Green’s function method [2]. The main
shortcoming consists in that the equations for Green’s
functions of lower orders include unknown Green’s
functions of higher orders. Attempts to avoid this
difficulty are reduced to replacing unknown Green’s
functions of higher orders by approximate expres-
sions. As a result, the potentially precise method is
transformed into an approximate one.

It is worth to mention an alternative semiphe-
nomenological method on the basis of the Landau
concept of a Fermi liquid, which was developed, in
particular, by the Ukrainian school [3-6]. It can also
describe the effects of particle pairing and correla-
tion. The Bogolyubov transformations [7] and vari-
ous models such as the Hubbard model [8] and others
(see, e.g., [9]) are also widely used. However, the task
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of composing a detailed bibliography concerning the
application of various methods and models for de-
scribing the correlation effects goes beyond the scope
of this article.

The remarks above were made only to emphasize
the challenging character that the development of the
direct algebraic method has with respect to the prob-
lem of finding the correlation functions. This method
is a subject of the presented consideration. The re-
sults that have already been obtained in the second-
order approximation [1] make it possible to continue
further the development of the exact theory describ-
ing the Coulomb pair.

In this work, the attention is focused on finding
the correlation functions of the third order and the
corresponding relations that arise in the third-order
approximation. Recall that, in the case of a system
consisting of two different particles with the electro-
static interaction between them, the DAM method is
based on the expansion of the particle operators in
the two-operator basis. In addition, the fact is used
that the product of two operators is not changed at
their permutation. This invariance makes it possible
to generate various relations for correlation functions.

The structure of the work is as follows. First, the
equations of motion of the third order for the cre-
ation and annihilation operators are considered. Then
the basic relations for third-order correlation func-
tions that do not depend on the explicit form of the
particle interaction potential are analyzed. Finally,
four possible forms of the interaction operator and
the corresponding relations for the correlation func-
tions that arise at that are considered. This paper
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contains results obtained for the first time using the
DAM method in the third order.

2. Equations for Operators

Recall once more that, in this work, a modification of
the direct algebraic method for finding the correlation
functions, which was proposed in work [2], is consid-
ered. For this purpose, the equations of motion for the
creation and annihilation operators are used. Then a
system consisting of two different particles that inter-
act electrostatically will be considered. The Hamil-
tonian of this system in the secondary quantization
representation [10] has the form

H = H, + Hy + Hy», (1)
where
Hi = Zgipa;;aip

P

is the Hamiltonian of a free particle of the i-th kind,
and

_ + o+
Hiy = E : Upip’zpzm%p'l Aopy, A2p, A1p,
Py +Py=p1+D)

is the interaction Hamiltonian. Here, €, is the kinetic
energy, a;; are the creation operators, a;;, the annihi-
lation operators, the subscripts p = (s., p) denote the
spin projection s, and the momentum p = (p, py, pz)
of the particles, and Uy p; 1,,p, is the potential of inter-
action energy in the momentum representation. The
both particles are assumed to be fermions, for which

the following anticommutation rules are satisfied:

+ +
ipiq + iqly, = Opg, (2)
piq + Qigay, = 0, (3)
+ot 4 gtat —
ai,a;, +ajal, =0. (4)

where 4,4 is the Kronecker delta. The fact that the
creation and annihilation operators for particles of
different kinds commute with each other will be used
below.

From the Hamiltonian, we obtain the following
equations of motion, which form the basis of the
method:

[ajq» H] = ng;ajq + ng;quv (5)
[biq, H) = K3 bjq, (6)
478

+ _ @)+ () p+
a7y H] = =Kilgaj, = Kiggb,, (7)
+ _ (4) p+
[bjtﬁH] - 2équq' (®)
Here, the square brackets [...,...] mean commutators,

1
bia =~ > Ut pypy, (02001, +

12q p, +p,=p}+05
i +
+ 51.7517/1‘10’2]9'2)0’21720’11717 9)
bt = 71 E
Jaq K(j)
12q p, +p,=p}+p5

X (a2p,01j0p, ¢ + a1p, 02j0p,4),

at

X
2p},

Up’lp’gpzpl 1+p/1
(10)
K =¢jq K, =1, and K§)) = K{}) £ K, where
K # 0 is an unknown constant, which is to be found
[1]. The key point of the direct algebraic method is
the expansion of operators in the two-operator ba-
sis, which is analogous to the expansion of vectors. In
our case, the equations for the annihilation operators
are expanded in the (a;p,bjq) basis, and the Hermi-
tian conjugate equations for the creation operators
are expanded in the (a;;wqu) basis. Below, it is as-
sumed that j # 4 in all equations and relations.

Using the operator identity
[AB. H) = [A, H] B+ A[B, H), (1)

the following useful equations of motion of the third
order for the anticommutators |...,...]; of two opera-
tors are obtained:

[aiys aiql  aj, H| = (eiq — €ip + ) sy, aiql ,aj +

(12)

+ lag, bigl , aj + lad,, aig  bj — (b, aiq, aj,

[b;;, aiq]_i_aj, H_

+ (b3, big], aj + [b, i)

= (gig — Ké;)p + 5j)[b;;, aiq]+aj +

by (13)

= (Kioy — eip +)lag, big) , a5 +

(14)

_[a;;, biq]+aj7 H—

+ [a;‘;’ biq]+bj - [b;ﬂ biq}_,_aj?

= ( éé) —Eipt 5iq)[a;;»aiq}+bj +

_[G,jp, aiq]+bj7 H—

+ [CLZ), biq]+bj - [b;;,aiq]_i_bj, (15)
lay aiq]  af  H | = (eiq — €ip — €5)laiy, aig]  af +
+ [aj;), biq]+a;L — [aj;), aiq]+b;L — [bj;), aiq]+a;r, (16)
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[[b;;, aiq]+aj, H] = (&4q — K2(i2)p ;)b

ip)
[bw,b al a;r — [bjp,aiqhbj,

aiq] +a;_ +

(17)

[[ajp, biqhajv H} = (Kg;)q —&ip — Ej)[a;]rm biqha;r -
— [agh, bzq]+b;r (8 bigl, af, (18)

0ty aig) b H] = (eig — 2ip — K8 laf i) b +

L ip? 4750
+ [ah, big) b — [b;;,aiq]erj, (19)
& [azy» il , H} = (eiq — €ip + €5)a5lady, aig] | +
+ aj[a?;_ﬁb } +b [ zp7alq]+ aj[b;;7aiq]+’ (20)
a;lby,, aigl , H| = (eiq — K9, +ej)a;[bh, @ig] | +
T b bl + by lbie i) (21)
|43 [a:zrw bzq]_p H_ = (K2(Z2)q — &ip T &), [a;‘;, biqh +
+ bilag,, bigl . — ajlbiy, bigl , (22)
bilaiy, aiql , H| = (K3 — i+ )5 lai, aig], +
+ b [ zp’b ]Jr - bj[bj;)ﬂa’iq]+7 (23)
|l aial , H| = (10 = 2ip — £)0f [0 i), +
+ a;r [a:;, biq]+ — b;r [a:;ﬂaiq]_i_ — aj+ [b;,aiq]+, (24)
(b aial , H | = (i — K, — e)a] (b, i), +
+ af b bigl, — b7 (b, aid). (25)
L big) | H | = (i, = eip = £)a] [, bigl, -
- b;r[ 'Lp7b ] - [bj]_ﬂb ]+ (26)
b 0 aigl | H| = (eig = eip — K5I laih, aig] +
+ b [ag; big) —bj[b;;,aiqL. (27)

This is not a complete set of equations of motion for
the third-order operators, but only those of them,
which will be used below. The obtained equations
make it possible to derive equations for the third-
order operators themselves. The corresponding de-
tailed calculations are presented in Appendix.
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3. Basic Relations

For any operator A, the following operators can be
introduced:

(28)
(29)

where p is the statistical operator of the system. Then
the following expansions can be used:

Aip = Aip — Gibipa (30)
bip = bip, (31)
Eip = Qip + Gibip; (32)
bap = bip, (33)
@y = ai, + Gib, (34)
by = bw, (35)
a,, = aj, — Gib}, (36)
_+

by = b;;, (37)

where G; are unknown constants. These expansions
play a substantial role while applying the method of
work [1].

Let us introduce the following notation for the
mean value of an arbitrary operator A:
(4) = Sp(pA), (38)
where Sp stands for the operator trace. By applying
the formula
Sp(AB) = Sp(BA) (39)
for two arbitrary operators A and B, the following
identities for the product of three operators can be
found:
(ABC) = (BCA) = (CAB). (40)
Since the statistical operator p of the system is
self-conjugate, Eqgs. (38) and (39) immediately bring
about the relations

<af*‘> =

+
ip >

(41)
479

(aip)" = (aip),
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where the bar means the complex conjugation op-
eration. Relation (40) for the correlation functions
can be used to find the correlation functions them-
selves. In particular, from

(aipbigh;) =

(bigbjaip) + Gi{bigbjbip) = (bjaipbiq) +

+ Gi(bjbipbiq) = (aipbigh;) + Gi(bipbigh;), (42)
we obtain
<bipbiqu> =0 (43)

In the same way, we can verify that the mean value of

the product of three operators b and/or b taken in

any combination equals zero. This is a direct conse-

quence of the triangle form of the expansion matrices.
Then we find

(@ipaigby) = (aigbjaip) + Gi{aigh;bip) =
= (aipaigh;) + Gi(bipaigh;) + Gi{aipbiqby), (44)
G; <bipaiqu> + G; <aipbiqu> =0 (45)

Using the relations

(aipbigaj) = (aipbiga;) + Gi(bipbiga;) + Gj(aipbigh;),
(46)
Gi(bipbiga;) + Gj(aipbigb;) = 0, (47)

(bipaigaj) = (bipaiga;) + Gi(bipbigas) + G j(bipaigh;),
(48)

Gi<bipbiqaj> + Gj<bipaiqu> =0, (49)

we obtain

(bipaighj) = (aipbighs) = (bipbigaz) = 0. (50)

Analogously, one can verify that the mean value of
the product of two operators b or b* and either of
the operators a or a*, with all three being taken in
an arbitrary combination, also equals zero. From the
relations

—(aipaiqaz) = (aigajaip) = (aipaiqa;) — Gi(bipaiga),
51
we obtain (51)
AipQiqQs;
(bipaigaz) = 2%717& = (a;bipaiq) = (aiqa;bip).
(52)
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Analogously,
(@ipbigaz) = (bigajaip) = (ajaipbiq) =
(a;aipaiq) (aipaiqa;)
) =2 53
2 Zusy) 53
<bipaiqa;r> <a bipQiq) = <azqa bip) = <aipbiqa;r> =
{aipaial)
= _<a;raipbiq> = _<biqa;raip> = %‘ (54)
K3
Finally, we obtain
(aipaigh;) = {aighjaip) = (bjaipaiq) =
= <aipaiqu+> <aqu aip) = <b ipliq) = 0. (55)

In the same way, we arrive at the following rela-
tions:

<b+ > <+b+ i> < +b+> <b+ >_

iq®j @ ipiq%j @ipViq ipPiqQj
<a+a+ai>
< zp ;ij> < ;Zb;_ +> <b+ zp zq> _< zp I]b>
= <aiquai > <bjazpazq> 0, (57)
(aiqaicﬁ') <a+alqa )+ G (bf igQ; ), (58)
<ai>§ - 2<aj'ai aﬁ-:>
<b P aiqa; > j /7P & p 9T <Jib;;a/zq>:
(alqa b ) (ajiaiqb;w:(aqujp f) (b;;aj Aig),
(59)
<a7,pa] aiq> - <a;|:a’“1azp> Gi<b2qa;’1_ja;‘:>7 (60)
(a)d 2(a} aiqai)
<bzqa£;af> L G, e = (a j[bzqazp> =
_< 'Lp ;tb > <a’_] a’j;)b >:<a’ bzqa > <b1qa’;ta’ p>
(61)
Finally, we find
(aaighT) = (aigbTal) = (bFaf aig) =
<a1qa1pbji> < zpbj a“l> <b a’lqa’;;;> 0. (62)

Now, by averaging Eq. (153) from Appendix, we ob-
tain

(Kg;)p + KZ(g)q — €ip — €iq)((@j)0pq — 2<a;;a,qaj)) =0.
(63)
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Since K2(i2)p + Ké;)q # €ip + €iq, We have

(a3, 0000) = {a5) 22 (64)
On the same footing,
(ajaiaiq) = (aigata;) = (ajaigay,) =
= (aft0iq) = {asgaaiy) = {ay) 22, (65)
(ajpazqaj> (alqa:;aj> (a;ra;alq> (a;razqa;)
= (it aig) = {agarf o) = (@) 20 (66)

Performing analogous calculations, we can obtain
expressions for the correlation functions of operators
for the particles of the same kind in the case where

q#p:

<a¢+paiqbip> = <bipa¢+paiq> :<aiqbipa;;> :_<a:;bipaiq> =

=~ {bpgay) = ~asgashg) = Lo (67)
i

<b;§)aiqaip> = <azpbzpazq> <alqa1pb;> <b;;aipaiq> =
(aiq)

= *<aiqbi-;aip> <a1paqu;§n> = Gq ) (68)

<b1p zqalp> = <alpbzpazq> < zqaZPb+>: <b alpa >

(azg)

< quzpa’lp> <alpaquzp> Gq ’ (69)

<a1pa’qu > = < +bl17azp> < lpazpa’zq>: <a’;;a’;;7blp> =
+ o+ <a;‘z>

<a’ blpazq> <b1pa’7,qa’zp> G. ’ (70)

(a;awblq> = <awa+b )= <aipbiqa;;> = <a;§)biqaip> =

= <biqa:;aip> = <biqaipa;;> =0, (71)

<a;§;aiqbiq> = <bzqaj;_;azq> = <aiqbiqaj> <azqa b1q>

= (bl-qal-qa'.") = <CL4 biqaiq> = 0 (72)

(a ’;;lblpalq> <b pQiqip > <azqa b+> (a; aqu+> =

= <bipaipa’iq> = <aiqb‘ a’p> = O (73)

<a’:;)a1pb;;> <a2pazj;)bzq> <a1pb:;] ng;> < zpb:;alp> =

= <biqa’ipaip> = <b alpa’ > 0 (74)

<b;‘;aiqaiq> = <aiqaiqb;‘;> = <aiqbipaiq> =0, (75)

<blqa;az+p> {a} az, ;;b )= (a} blqa y=0. (76)

The relations obtained from formulas (67)-(76) by
replacing in them ¢ for p and vice versa will also be
valid.
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4. Relations for Central
Distribution Moments

It is useful to study the structure of correlations for
central distribution moments, because the presence
of a correlation for fluctuations testifies to a phase
transition in the system [11]. The relations for the
central distribution moments can be easily obtained
by preforming a shift of the operators, namely,

Aip = <aip> + Qp, (77)
a:; <a1p> + a (78)

The main relations for the operators « are as follows:

([, aj]) = (o ag]) = ([, @ ]) = 0, (79)
(levip, aiq]+> = —2(aip)(aiq), (80)
([odhys cvigl ) = 8pg — 2{aip)(aiq), (81)
(lad, o], ) = —2{aip){aiq), (82)
<[O‘?[a QiplQtiq) = <[O‘?[a a’;]aiﬁ =
= (iplaj, aig]) = (a[a], aigl) =0, (83)
<[aipaaiq]+a;t> = <a3i[0‘ip70‘iq]+> =
= *2<aip><04iqa?:> - 2<aiq><0‘ip043i>, (84)
<[az—';’ aiq]+a;t> = <a]i|:05:;705iq]+> =
= —2(aip) (igar)) — 2aig) (00 ), (85)
ok, 0k, o) = (alodal],) =
= —2aip) (007 = 2aig) (aha7), (86)
(ig0) = (o) = 220 — Tag i), (57)
<alqa:;a;t> (ajpaiqaj[) =

_@@‘iqaf) <a/1q><a;;)a;t>' (88)

5. Main Variants

We have already noted [1] that every particle can pos-
sess only two different states: states with identical
momenta and different spin projections or, vice versa,
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states with different momenta. Therefore, let us con-
sider four main variants. Recall that the particles in-
teracting electrostatically by means of the Coulomb
potential

_ Q1Qe

b =
(r) dmegr

(89)
are dealt with. Here, @)1 and Q)5 are the charges of the
particles that are located at the distance r from each
other, and ¢ is the absolute dielectric permittivity of
the vacuum.

The first variant corresponds to the following op-
erator wave functions of the particles:

iPjTy
ek
Wj(r;) = W(aj+ +a;-), (90)
efipﬁj-rj
\Ilj(rj) = (a;'+ + a;), (91)

VvV

where p;.r; denotes the scalar product of the momen-
tum vector p; and the radius vector r; of a particle
of the j-th kind; a;jr and a;; are the creation and
annihilation, respectively, operators for the particle
with the spin projection +%h, whereas al_ and a;—
are the same operators for the particle with the spin
projection —%h; h is Planck’s constant, and the par-
ticle operator wave functions are normalized by the
volume V. In the first variant, the interaction Hamil-
tonian takes the form

Hip = I(af +ai_)(az; +a3_)(azs+az-)(ai1++ai-).

(92)
The corresponding interaction constant I equals
1 3Q1Q2
I=— dridro®(ri—ry) = 93
2V2/ ridea®(eir) = e R (93)

where R is the radius of a sphere with the volume V.
Hereafter, the integrals are calculated by changing to
the spherical coordinate frame, and the integration is
carried out within a sphere with radius R. Then the
following expressions for the operators are obtained:

bis = bi— = I(az, +az_)(az4+az—)(a1++ai-), (94)
bay = by = I(ay, +ai_)(azs+az-)(ar+a1-), (95)
b, =bi_ =1I(a] +ai_)(aj, +a3_)(azr+az-), (96)
by, = by_ = I(afy+ai_)(az, +az_)(ar++ar-). (97)
482

From the triangle form of expansion matrices, it fol-
lows that the mean values of all those operators equal
zero [1]. From whence, with regard for Egs. (64) and
(66), we obtain the following relations for the mean
values of the creation and annihilation operators in
the first variant:

(a1-) = —(a1y), (98)
(ag-) = —(azy), (99)
(a_) = —(af}), (100)
(a3_) = —{ad}). (101)

In the second variant, let us consider the following
operator wave functions of the particles:

1 iP1°r] iqi-ry
Uilr) = e g+ ), (102
1 —ipj ) —iqy Ty
Uf(r)=—=(en af, +e 7 afy) (103)
\/‘7 P1 q1/?
eipzﬁ-rz
Uy (rz) = —=(az+ +az-), (104)
VV
efiphz‘w
U3 (rs) = (a3} +a3_). (105)

VV
So, in this variant, the first particle has two different
states with the different momenta p; and q;. For the
interaction operator, we obtain
Hy = I{afy, (a3, + a3_)(azy + az-)aip, +
+ aig, (azy + a3_)(azs + az-)aiq, } +
+ Lafy, (azy +a3_)(az4 + az-)aiq, +

+ IQaii_ql (a';r+ + a;—)(a}‘r + aQ—)a’lplv (106)

where the interaction constant [ is given by formula
(93), whereas the interaction constants I; and I

equal
1

ilag=p1)ry
Il = Tw/ drldr2<b(r1—r2)e R =
27 .
= 602%‘%{1 —cos(A1R) Hsin(A1R) —
— Ai1Rcos(A1R)}, (107)
b = = [ [ drides®(rr—ro)e = Z 1 (108)
9 = 2V2 riaro riy—roje = 11.
Here,
A = M (109)

h
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Then we obtain

bia, = (az; +a3_)(azt +az-)(Iarg, + Liarp,),

( ), (110)
blp1 (a3, +a3_)(agy +as-)(Iaip, + laig,), (111)
= ( ), (112)

), (113)

big, = (Taly, +haiy, ) (a3, +a3_)(azs +az-), (112
bi_pl (Ialpl+Ilalq1)(a;r++a;_—)(a2++a2 ) 113

bop =bo = {I(a—l"_pla’lpl + aii_qlalfh) +
+ I (a—li_pl a1q, + a—li_ql alpl)}(a2+ +as— )
b2++ = b2+ = (a2+ + ‘12 ){I(alplalm + a1q1a1q1

+ Il(a‘fpl a1q, + a‘lql alpl)}'

and

~ —

From Egs. (114) and (115) in view of Eqs. (64
(66), we have

(ag-) = —(az4),

(a3_) = —{af).

On the other hand, from Egs. (110) and (111) in view
of Eq. (64), we obtain

(116)
(117)

Ia1q,) + I1{a1p,) = 0, (118)

Ia1p,) + Th{a1q,) = 0. (119)

From whence, it follows that

(1—cos(A1 R) AL R cos(Ar R)—sin(Ar R)} = (AlﬁR)S.
(120)

The solution of this equation reads

AR = C = 1.3680427635, (121)

which corresponds to the condition

L =-1, (122)

so that

(a1q,) = {a1p,)- (123)

The following relation can be derived analogously:

(afq,) = {ap,)-

The third variant can be obtained from the sec-
ond one by permutating the subscripts indicating the
particle kinds and substituting A; by

(124)

Ay = |Q2;P2|.

ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 6

(125)

For the fourth variant, the operator wave functions
are taken in the form

ip1-ry iq1-ry

Uy(ry) = %(6 Foa1p, +€ F g ), (126)
W) = (e e, e el (20
Wy (rs) = %(e oy + €T 2 g, ), (128)
\Ilg'(rg) = 1 (e%a;‘p2 + eiiqgrz ag'qz). (129)

Then, for the interaction operator, we obtain

H12 - I(aii_pla;—pg a2p2 alpl + aii_ql a;—qQG‘QQQ alfh +
+ ai"][,la;"q2 (2q,01p, + ai*'ql ag'm a2p, alql) +

+1I (ai"_pl a;’_pg (2p, G1q; + ai’_pl a;_qg A2q, a’lch) +
+ 1o (afql aérpg A2p, A1p, T+ a;rql a’2+q2 a2<ma1p1) +
+ 13(a1+p1a§rp2 (2q,Q1p, + aIqu a2‘+p2 A2q,01q, ) +
+ Li(af,, a3, asp, a1p, + afy a3y, a2p,014,) +
+ Isaf,, a3y, a0p, 014, + l6aly, a3y, 02q,01p, +
+ I7al+q1 ajqzagp,zalpl + Igafplaérm A2q,O1q; - (130)

Here, the interaction constants I , I;, and I, are given
by expressions (93), (107), and (108), respectively,
whereas the other interaction constants equal

1 i(ag—p3) Ty
Ig = 27‘/2 // drldr2<I>(r1—r2)e h =

_ 2m@1Qs .

YN {1 — cos(AzR)}{sin(AzR) —
— AgRcos(AzR)}, (131)
A drdro® HRREE 1 (132
4= TVQ riars (1‘1*1'2)6 = 13, ( )

;(@1-p1) r1+(p2 qaz)-r2
I5 2V2 // dI‘ldI'Q(I) r17r2) =

_ 21(Q1Q2 ——{1 —cos(A1R)} x

60A%|A1 — A2|3V2
[sin(|A; — Al B) — |A; — Ao x
Rcos(|]A; — Az R)}.

X

X

(133)
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Here, we denoted

A= - i (134)

Is = Jv2 dridro®(ri—ra) x

BRI RS L., (135)

Ir= 2V2/ dr1d1‘2¢)(1‘1—1‘2)6i(prq”.rlz(prqz).rz =
21 Q2

= 1 —cos(A1R)} x
€0A%|A1+A2|3V2{ —

x {sin(|A1 + As| R) — |A1 + Ao x

x Rcos(|A1 4+ Az| R)}, (136)
8 2V2 //drldr2<1> 1—1'2)
% e (q1 P1)- r1+(<12 pP2)-ro _ 17. (137)

From the Hamiltonian, we find

big, = (a;p2a2pz + a;qzang)(falql + Iaaip,) +
+ a§p2a2q2(13a1q1 + Iga1p,) +
+ a3q,a2p, (Isa1q, + Ira1p,), (138)
bip, = ((13'1,2(12p2 + a;q2a2q2)(la1pl + Liaig, )+
+ a;'magq2 (Isa1p, + Isaiq,) +
+ a3y, a2p, (I101p, + I5a1q, ), (139)
bag, = (an1a1P1 + aqualql)(I@qz + Lyazp,) +
+ af,, a1q, (I1a2q, + I5a2p,) +
+ afqlalpl(lgang + Iza2p,), (140)
bop, = (a1+p1a1p1 + afq1a1q1)(‘[a2p2 + Iza2q,) +
+ afplalql (Ihagp, + Isasq,) +

)

+ afy, a1p, (T2a2p, + Isazq, ), (141)

by, = afy, + haiy )(ag,, aop, + a3q,02q,) +

+ (Isafy, + Isal,,)as,, a2q, +

(I4af'q1 + I5afp1)a3'q2 A2p, (142)
bip, = (Lafy, + I2ajg, )(a3p,a2p, + a3q,a2q,) +
+ (Igafpl + Iﬁafql)a;m a2q, +

(I4afp1 + I7a1+ql)a§rq2 A2ps s (143)

byq, = (Tasg, + Izazp,)(aly, arp, + afg, aiq,) +

(Ila;qz + Iga;m)afplalql +

+ (Igaé"q2 + Iﬁaé"m)afqlalpl, (144)
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+ + + + +
b2p2 (Ia2p2 + I4a2q2)(a1pla1p1 + alqlalql) +

+ + oy
(Il A2p, + I5a2q2 )a1p1 a1q; +

+ (Iza3,, + I7a3'q2)afqla1pl. (145)
As was done above, we obtain
5
{1—cos(A;R)}{A;Rcos(A;R)—sin(A;R)} = (AZGR) ,
(146)
AR =A1R = C =1.3680427635. (147)

One can see that R is a definite characteristic radius,
whose magnitude is reciprocal to the difference be-
tween the vectors of two possible momenta for the
particles. This difference turns out identical in mag-
nitude for both particles. Finally, we obtain

I3=1 =-1, (148)
(Gig:) = (@ip,)s (149)
(af.) = (aih,) (150)

6. Conclusions

As one can see, the DAM is effective for finding
the correlation functions of the third order. Using re-
sults (64) and (66) obtained in the third order, we
also found relations for the mean values of the cre-
ation and annihilation operators for various forms of
the interaction operator. Hence, there is a specific
hybridization of quantities belonging to higher and
lower orders, which makes it possible to determine
quantities that remained uncertain earlier.

On the other hand, we saw how the zeroing of the
mean values of the expansion-basis operators b ob-
tained in the first order brought about a result for
the correlation functions in the third order. At the
same time, the relations obtained for the correlation
functions in the third order and including the same
expansion-basis operators will give rise to the corre-
sponding effect in the fifth order of correlation func-
tions. Thus, there are all grounds to hope for that all
lower-order correlation functions, which are required
to calculate the mean values of physical quantities for
a Coulomb pair, can be determined in turn.

Furthermore, the values obtained for the normal
particle distribution functions in the second order
made it possible to determine the main forms of
the particle interaction operator, which depend on
the combination of possible values for the momenta
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and spin projections of the particles. Note that, in
the last variant, as well as in the previous two, we
did not consider the issue concerning the projections
of particle spins in various possible states with dif-
ferent particle momenta. Those projections can be
both identical and different! Only the states with
identical momenta demand that the spin projections
should be different in order that those states could
be considered as different states of the correspond-
ing particles. This strange conclusion follows from the
fact that the Coulomb interaction does not depend
on the spin. Therefore, this issue has to be studied
further.

Thus, there emerges a clear scheme of calculations
to an arbitrary order. First, we find the equations
of motion for the creation and annihilation opera-
tors. Those equations, with the help of expressions
for the commutators or anticommutators, are used
to obtain equations for the operators themselves in
a definite order. Then, by applying Eq. (40), the re-
lations for the correlation functions and the central
distribution moments that are independent of the in-
teraction operator form are found. These relations are
appended with the relations that follow from the op-
erator equations that were obtained earlier. In addi-
tion, from the lower-order relations obtained for the
correlation functions and including the basis expan-
sion operators b, new relations are found for the cor-
responding correlation functions, which directly in-
clude the operators of particle creation and annihila-
tion. Finally, the corresponding relations that follow
from explicit expressions for the specific interaction
operator forms are considered.

The growth in the order of correlation func-
tions does not change this general calculation proce-
dure. Technically, the calculations become more com-
plicated owing to an increase in the number of cor-
relations which are to be considered and the number
of equations which are to be solved. However, every
order has its own specificity associated with the phys-
ical meaning of the corresponding correlation func-
tions. For instance, the average value of the interac-
tion energy is determined by the correlation functions
of the fourth order.

APPENDIX

Let us consider how the equations of motion for the creation
and annihilation operators can be used to derive the equations
for the third-order operators themselves. For example, taking
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into account that

[0, aiq] , a; = a;0pa, (151)

some important relations can be obtained. In particular, from

Eq. (12), we find

[a;»biqha;‘ = [b;,aiqha]u (152)

Now, calculating the commutator of Eq. (152) with the Hamil-
tonian, we obtain

2[by,. big] , a; = ([af,, big] | — (b3, aiql  )bj +

+ (K, + K$9, — cip — ciq)lady, bia) , aj.- (153)

In the same way, we obtain the equations

[a;’;,aiq]+a;' = (1?‘5,,(17 (154)

[0l bigl o) = [bf,, aig]  a, (155)

Z[bj;)’ biq]+a+ = ([b;';7aiq]+ [ zp’ zq] )b+ +

+ (KS9 + KSy — eip — eig)lad, big) , o, (156)

a; [a’j;)’ aiq]+ = a;0pq, (157)

ajlaf,,bigl = ;b aig] (158)

2a; [b;»bz‘q] = bj([az;ybiqh - [bZ)Miqu) +

+ (Kézz)p + Ké;)q —eip — ig)asla, bigl (159)

a;r[a;;,aiq] = ajzqu, (160)

it _ it

aj [ 1p7b } aj [bipVG‘iq}_'_’ (161)

+ T +

2‘1 [b1p7 L_ = bj ([bip7aiq}+ - [aipvbiq]+) +

+ (Kig, + K33, — eip — €ig)a) lag, big] | (162)

a}laiq, a;] =0, (163)

az; [big, aj] = _az; [aig, bj]7 (164)

2a [big, bj] = b ([aiq, bj] + [big, a5]) +

+ (2 — eiq + K3y — Kip)ai laig by (165)

a}laig,af] =0, (166)

a} [big,af] = af aiq, b1 ], (167)

2a+ [bzq»b;_} = b+([azqvb ] = [big, @ j ])

+ (Kélz)q + Kég) —€jg— € -)zzip[aiq, j'], (168)

[alp,aj]alq =0, (169)

[bip,aj]aiq = [aip,bj]aiq, (170)

2067, bylasa = (a3, by — [, a5 Tbiq +

+ (K, — eip + K —))lad, bjlaig, (171)
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[aiq, aflaf, = 0, (172)
[biq: a} lag, = [aiq, b) lai, (173)
2[biq, b} laj, = ([aig, b ] = [big, af Db, +

+ (K, + K8 — ciq — 5)lbig, af lag, (174)

and so on.

1. V.I. Vaskivskyi. Correlation functions of Coulomb pair.
Ukr. Fiz. Zh. 60, 1156 (2015) (in Ukrainian).

2. ML.F. Sarry. Analytical methods for calculating correlation
functions in quantum statistical physics. Usp. Fiz. Nauk
161, 47 (1991) (in Russian).

3. A.IL. Akhiezer, V.V. Krasilnikov et al. Theory of superfluid
Fermi-liquid. Usp. Fiz. Nauk 163, No. 2, 1 (1993) (in Rus-
sian).

4. A1 Akhiezer, V.V. Krasil‘nikov, S.V. Peletminskii,
A.A. Yatsenko. Research on superfluidity and supercon-
ductivity on the basis of the Fermi liquid concept. Phys.
Rep. 245, 1 (1994).

5. A.L. Akhiezer, A.A. Isaev, S.V. Peletminskii, A.P. Rekalo,
A.A. Yatsenko. On the theory of superfluidity of nuclear
matter on the basis of the Fermi-liquid approach. Zh. Eksp.
Teor. Fiz. 112, 3 (1997) (in Russian).

6. V.R. Shaginyan, M.Ya. Amus’ya, K.G. Popov. Universal
behavior of strongly correlated Fermi systems. Usp. Fiz.
Nauk 177, 585 (2007) (in Russian).

7. V.I. Belyavsky, Yu.V. Kopaev. Superconductivity of re-
pulsing particles. Usp. Fiz. Nauk 176, 457 (2006) (in Rus-
sian).

486

8. V.O. Krasnov. Fermion spectrum of Bose-Fermi-Hubbard
model in the phase with Bose—Einstein condensate. Ukr.
J. Phys. 60, 443 (2015).

9. I. Bariakhtar, A. Nazarenko. A model for dg,_y, super-
conductivity in the strongly correlated fermionic system.
Ukr. J. Phys. 59, 487 (2014).

10. N.N. Bogolubov, N.N. Bogolubov, jr., Introduction to
Quantum Statistical Mechanics (Gordon and Breach,
1992).

11. A.Z. Patashinski, V.L. Pokrovski. Fluctuation Theory of
Phase Transitions (Pergamon Press, 1982).

Received 18.02.15.
Translated from Ukrainian by O.I. Voitenko

B.I. Bacvkiscorkut

KOPEJIALINHI ®YHKIIIT
KYJIOHIBCBHKOI ITAPY TPETHOI'O ITOPAIKY

Pezmowme

B crarTi Briepiie ny6/1iKyoThCsi pe3yJIbTaT JJisi KOPEJISIiHHIX
dYHKIi TPETHOro MOPSIAKY [JIsT BUMAAKY JBOX YaCTHHOK, IO
MiAJIAraloTh €JIEKTPOCTATUYHIMl B3a€MO/il, OTpPUMaHi IPAMHUM
aJirebpalyHUM METOJIOM 3HAXO/I2KEHHS KOPEJIIIHHUX DYHKITIN.
PosryisiHyTi sIK OCHOBHI CIIiBBi{HOIIIEHHSI JIJISI IIUX KOPEJISITiii-
HUX DYHKIIIH, [[[0 HE 3aJIeXKATh BiJ| SBHOTO BUIJISALY ITOTEHIIAJLY
B3a€MO/IIl YaCTUHOK, Tak i 4 Buau popM oreparopa B3ae€MO/Iil
Ta CIIBBIIHOIIEHHS JJIsI KOPEJAIHHNX (DYHKILIA, SKi 1T HIX
BUHUKAIOTb.
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