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THIRD-ORDER CORRELATION
FUNCTIONS FOR A COULOMB PAIR

Third-order correlation functions for two particles with the electrostatic interaction have been
obtained for the first time using the direct algebraic method. The main relations for the cor-
relation functions that do not depend on the explicit form of the interaction potential between
particles, as well as the relations that appear for four specific forms of the interaction operator,
are considered.
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1. Introduction
In this paper, the consideration of the exact theory of
a Coulomb pair, the fundamentals of which were pub-
lished in work [1], is continued. Recall that this the-
ory is based on a modification of the direct algebraic
method (DAM), which was proposed in work [2] for
the determination of correlation functions. The corre-
lation between two particles that form a Coulomb pair
is a purely quantum-mechanical effect, which cannot
be satisfactorily described with the help of the per-
turbation theory methods.

Among other methods, the method of Green’s func-
tions has to be mentioned, which was widely used
before the appearance of the DAM. In essence, the
DAM was developed in order to overcome the short-
comings of the Green’s function method [2]. The main
shortcoming consists in that the equations for Green’s
functions of lower orders include unknown Green’s
functions of higher orders. Attempts to avoid this
difficulty are reduced to replacing unknown Green’s
functions of higher orders by approximate expres-
sions. As a result, the potentially precise method is
transformed into an approximate one.

It is worth to mention an alternative semiphe-
nomenological method on the basis of the Landau
concept of a Fermi liquid, which was developed, in
particular, by the Ukrainian school [3–6]. It can also
describe the effects of particle pairing and correla-
tion. The Bogolyubov transformations [7] and vari-
ous models such as the Hubbard model [8] and others
(see, e.g., [9]) are also widely used. However, the task
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of composing a detailed bibliography concerning the
application of various methods and models for de-
scribing the correlation effects goes beyond the scope
of this article.

The remarks above were made only to emphasize
the challenging character that the development of the
direct algebraic method has with respect to the prob-
lem of finding the correlation functions. This method
is a subject of the presented consideration. The re-
sults that have already been obtained in the second-
order approximation [1] make it possible to continue
further the development of the exact theory describ-
ing the Coulomb pair.

In this work, the attention is focused on finding
the correlation functions of the third order and the
corresponding relations that arise in the third-order
approximation. Recall that, in the case of a system
consisting of two different particles with the electro-
static interaction between them, the DAM method is
based on the expansion of the particle operators in
the two-operator basis. In addition, the fact is used
that the product of two operators is not changed at
their permutation. This invariance makes it possible
to generate various relations for correlation functions.

The structure of the work is as follows. First, the
equations of motion of the third order for the cre-
ation and annihilation operators are considered. Then
the basic relations for third-order correlation func-
tions that do not depend on the explicit form of the
particle interaction potential are analyzed. Finally,
four possible forms of the interaction operator and
the corresponding relations for the correlation func-
tions that arise at that are considered. This paper
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contains results obtained for the first time using the
DAM method in the third order.

2. Equations for Operators

Recall once more that, in this work, a modification of
the direct algebraic method for finding the correlation
functions, which was proposed in work [2], is consid-
ered. For this purpose, the equations of motion for the
creation and annihilation operators are used. Then a
system consisting of two different particles that inter-
act electrostatically will be considered. The Hamil-
tonian of this system in the secondary quantization
representation [10] has the form

𝐻 = 𝐻1 +𝐻2 +𝐻12, (1)

where

𝐻𝑖 =
∑︁
𝑝

𝜀𝑖𝑝𝑎
+
𝑖𝑝𝑎𝑖𝑝

is the Hamiltonian of a free particle of the 𝑖-th kind,
and
𝐻12 =

∑︁
𝑝
1
+𝑝

2
=𝑝′

1+𝑝′
2

𝑈𝑝′
1𝑝

′
2𝑝2𝑝1

𝑎+1𝑝′
1
𝑎+2𝑝′

2
𝑎2𝑝

2
𝑎1𝑝

1

is the interaction Hamiltonian. Here, 𝜀𝑖𝑝 is the kinetic
energy, 𝑎+𝑖𝑝 are the creation operators, 𝑎𝑖𝑝 the annihi-
lation operators, the subscripts 𝑝 = (𝑠𝑧,p) denote the
spin projection 𝑠𝑧 and the momentum p = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
of the particles, and 𝑈𝑝′

1𝑝
′
2𝑝2𝑝1

is the potential of inter-
action energy in the momentum representation. The
both particles are assumed to be fermions, for which
the following anticommutation rules are satisfied:

𝑎+𝑖𝑝𝑎𝑖𝑞 + 𝑎𝑖𝑞𝑎
+
𝑖𝑝 = 𝛿𝑝𝑞, (2)

𝑎𝑖𝑝𝑎𝑖𝑞 + 𝑎𝑖𝑞𝑎𝑖𝑝 = 0, (3)

𝑎+𝑖𝑝𝑎
+
𝑖𝑞 + 𝑎+𝑖𝑞𝑎

+
𝑖𝑝 = 0. (4)

where 𝛿𝑝𝑞 is the Kronecker delta. The fact that the
creation and annihilation operators for particles of
different kinds commute with each other will be used
below.

From the Hamiltonian, we obtain the following
equations of motion, which form the basis of the
method:

[𝑎𝑗𝑞, 𝐻] = 𝐾
(𝑗)
11𝑞𝑎𝑗𝑞 +𝐾

(𝑗)
12𝑞𝑏𝑗𝑞, (5)

[𝑏𝑗𝑞, 𝐻] = 𝐾
(𝑗)
22𝑞𝑏𝑗𝑞, (6)

[︀
𝑎+𝑗𝑞, 𝐻

]︀
= −𝐾

(𝑗)
11𝑞𝑎

+
𝑗𝑞 −𝐾

(𝑗)
12𝑞𝑏

+
𝑗𝑞, (7)[︀

𝑏+𝑗𝑞, 𝐻
]︀
= −𝐾

(𝑗)
22𝑞𝑏

+
𝑗𝑞. (8)

Here, the square brackets [..., ...] mean commutators,

𝑏𝑗𝑞 =
1

𝐾
(𝑗)
12𝑞

∑︁
𝑝1+𝑝2=𝑝′

1+𝑝′
2

𝑈𝑝′
1𝑝

′
2𝑝2

𝑝
1
(𝛿2𝑗𝛿𝑝′

2𝑞
𝑎+1𝑝′

1
+

+ 𝛿1𝑗𝛿𝑝′
1𝑞
𝑎+2𝑝′

2
)𝑎2𝑝2

𝑎1𝑝1
, (9)

𝑏+
𝑗𝑞

=
1

𝐾
(𝑗)
12𝑞

∑︁
𝑝1+𝑝2=𝑝′

1+𝑝′
2

𝑈𝑝′
1𝑝

′
2𝑝2

𝑝
1

+

1𝑝′
1

𝑎+2𝑝′
2
×

× (𝑎2𝑝
2
𝛿1𝑗𝛿𝑝

1
𝑞 + 𝑎1𝑝

1
𝛿2𝑗𝛿𝑝

2
𝑞), (10)

𝐾
(𝑗)
11𝑞 = 𝜀𝑗𝑞, 𝐾

(𝑗)
12𝑞 = 1, and 𝐾

(𝑗)
22𝑞 = 𝐾

(𝑗)
11𝑞 ±𝐾, where

𝐾 ̸= 0 is an unknown constant, which is to be found
[1]. The key point of the direct algebraic method is
the expansion of operators in the two-operator ba-
sis, which is analogous to the expansion of vectors. In
our case, the equations for the annihilation operators
are expanded in the (𝑎𝑖𝑝, 𝑏𝑗𝑞) basis, and the Hermi-
tian conjugate equations for the creation operators
are expanded in the (𝑎+𝑖𝑝, 𝑏

+
𝑗𝑞) basis. Below, it is as-

sumed that 𝑗 ̸= 𝑖 in all equations and relations.
Using the operator identity

[𝐴𝐵,𝐻] = [𝐴,𝐻]𝐵 +𝐴 [𝐵,𝐻], (11)

the following useful equations of motion of the third
order for the anticommutators [..., ...]+ of two opera-
tors are obtained:[︁
[𝑎+𝑖𝑝, 𝑎𝑖𝑞]+𝑎𝑗 , 𝐻

]︁
= (𝜀𝑖𝑞 − 𝜀𝑖𝑝 + 𝜀𝑗)[𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+𝑎𝑗 +

+ [𝑎+𝑖𝑝, 𝑏𝑖𝑞]+𝑎𝑗 + [𝑎+𝑖𝑝, 𝑎𝑖𝑞]+𝑏𝑗 − [𝑏+𝑖𝑝, 𝑎𝑖𝑞]+𝑎𝑗 , (12)[︁
[𝑏+𝑖𝑝, 𝑎𝑖𝑞]+𝑎𝑗 , 𝐻

]︁
= (𝜀𝑖𝑞 −𝐾

(𝑖)
22𝑝 + 𝜀𝑗)[𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+𝑎𝑗 +

+ [𝑏+𝑖𝑝, 𝑏𝑖𝑞]+𝑎𝑗 + [𝑏+𝑖𝑝, 𝑎𝑖𝑞]+𝑏𝑗 , (13)[︁
[𝑎+𝑖𝑝, 𝑏𝑖𝑞]+𝑎𝑗 , 𝐻

]︁
= (𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 + 𝜀𝑗)[𝑎

+
𝑖𝑝, 𝑏𝑖𝑞]+𝑎𝑗 +

+ [𝑎+𝑖𝑝, 𝑏𝑖𝑞]+𝑏𝑗 − [𝑏+𝑖𝑝, 𝑏𝑖𝑞]+𝑎𝑗 , (14)[︁
[𝑎+𝑖𝑝, 𝑎𝑖𝑞]+𝑏𝑗 , 𝐻

]︁
= (𝐾

(𝑗)
22 − 𝜀𝑖𝑝 + 𝜀𝑖𝑞)[𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+𝑏𝑗 +

+ [𝑎+𝑖𝑝, 𝑏𝑖𝑞]+𝑏𝑗 − [𝑏+𝑖𝑝, 𝑎𝑖𝑞]+𝑏𝑗 , (15)[︁
[𝑎+𝑖𝑝, 𝑎𝑖𝑞]+𝑎

+
𝑗 , 𝐻

]︁
= (𝜀𝑖𝑞 − 𝜀𝑖𝑝 − 𝜀𝑗)[𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+𝑎

+
𝑗 +

+ [𝑎+𝑖𝑝, 𝑏𝑖𝑞]+𝑎
+
𝑗 − [𝑎+𝑖𝑝, 𝑎𝑖𝑞]+𝑏

+
𝑗 − [𝑏+𝑖𝑝, 𝑎𝑖𝑞]+𝑎

+
𝑗 , (16)
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[︁
[𝑏+𝑖𝑝, 𝑎𝑖𝑞]+𝑎

+
𝑗 , 𝐻

]︁
= (𝜀𝑖𝑞 −𝐾

(𝑖)
22𝑝 − 𝜀𝑗)[𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+𝑎

+
𝑗 +

+ [𝑏+𝑖𝑝, 𝑏𝑖𝑞]+𝑎
+
𝑗 − [𝑏+𝑖𝑝, 𝑎𝑖𝑞]+𝑏

+
𝑗 , (17)[︁

[𝑎+𝑖𝑝, 𝑏𝑖𝑞]+𝑎
+
𝑗 , 𝐻

]︁
= (𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 − 𝜀𝑗)[𝑎

+
𝑖𝑝, 𝑏𝑖𝑞]+𝑎

+
𝑗 −

− [𝑎+𝑖𝑝, 𝑏𝑖𝑞]+𝑏
+
𝑗 − [𝑏+𝑖𝑝, 𝑏𝑖𝑞]+𝑎

+
𝑗 , (18)[︁

[𝑎+𝑖𝑝, 𝑎𝑖𝑞]+𝑏
+
𝑗 , 𝐻

]︁
= (𝜀𝑖𝑞 − 𝜀𝑖𝑝 −𝐾

(𝑗)
22 )[𝑎+𝑖𝑝, 𝑎𝑖𝑞]+𝑏

+
𝑗 +

+ [𝑎+𝑖𝑝, 𝑏𝑖𝑞]+𝑏
+
𝑗 − [𝑏+𝑖𝑝, 𝑎𝑖𝑞]+𝑏

+
𝑗 , (19)[︁

𝑎𝑗 [𝑎
+
𝑖𝑝, 𝑎𝑖𝑞]+, 𝐻

]︁
= (𝜀𝑖𝑞 − 𝜀𝑖𝑝 + 𝜀𝑗)𝑎𝑗 [𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+ +

+ 𝑎𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞]+ + 𝑏𝑗 [𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+ − 𝑎𝑗 [𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+, (20)[︁

𝑎𝑗 [𝑏
+
𝑖𝑝, 𝑎𝑖𝑞]+, 𝐻

]︁
= (𝜀𝑖𝑞 −𝐾

(𝑖)
22𝑝 + 𝜀𝑗)𝑎𝑗 [𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+ +

+ 𝑎𝑗 [𝑏
+
𝑖𝑝, 𝑏𝑖𝑞]+ + 𝑏𝑗 [𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+, (21)[︁

𝑎𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞]+, 𝐻

]︁
= (𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 + 𝜀𝑗)𝑎𝑗 [𝑎

+
𝑖𝑝, 𝑏𝑖𝑞]+ +

+ 𝑏𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞]+ − 𝑎𝑗 [𝑏

+
𝑖𝑝, 𝑏𝑖𝑞]+, (22)[︁

𝑏𝑗 [𝑎
+
𝑖𝑝, 𝑎𝑖𝑞]+, 𝐻

]︁
= (𝐾

(𝑗)
22 − 𝜀𝑖𝑝 + 𝜀𝑖𝑞)𝑏𝑗 [𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+ +

+ 𝑏𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞]+ − 𝑏𝑗 [𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+, (23)[︁

𝑎+𝑗 [𝑎
+
𝑖𝑝, 𝑎𝑖𝑞]+, 𝐻

]︁
= (𝜀𝑖𝑞 − 𝜀𝑖𝑝 − 𝜀𝑗)𝑎

+
𝑗 [𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+ +

+ 𝑎+𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞]+ − 𝑏+𝑗 [𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+ − 𝑎+𝑗 [𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+, (24)[︁

𝑎+𝑗 [𝑏
+
𝑖𝑝, 𝑎𝑖𝑞]+, 𝐻

]︁
= (𝜀𝑖𝑞 −𝐾

(𝑖)
22𝑝 − 𝜀𝑗)𝑎

+
𝑗 [𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+ +

+ 𝑎+𝑗 [𝑏
+
𝑖𝑝, 𝑏𝑖𝑞]+ − 𝑏+𝑗 [𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+, (25)[︁

𝑎+𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞]+, 𝐻

]︁
= (𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 − 𝜀𝑗)𝑎

+
𝑗 [𝑎

+
𝑖𝑝, 𝑏𝑖𝑞]+ −

− 𝑏+𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞]+ − 𝑎+𝑗 [𝑏

+
𝑖𝑝, 𝑏𝑖𝑞]+ (26)[︁

𝑏+𝑗 [𝑎
+
𝑖𝑝, 𝑎𝑖𝑞]+, 𝐻

]︁
= (𝜀𝑖𝑞 − 𝜀𝑖𝑝 −𝐾

(𝑗)
22 )𝑏+𝑗 [𝑎

+
𝑖𝑝, 𝑎𝑖𝑞]+ +

+ 𝑏+𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞]+ − 𝑏+𝑗 [𝑏

+
𝑖𝑝, 𝑎𝑖𝑞]+. (27)

This is not a complete set of equations of motion for
the third-order operators, but only those of them,
which will be used below. The obtained equations
make it possible to derive equations for the third-
order operators themselves. The corresponding de-
tailed calculations are presented in Appendix.

3. Basic Relations

For any operator 𝐴, the following operators can be
introduced:

⌣

𝐴 = 𝜌−1𝐴𝜌, (28)
⌢

𝐴 = 𝜌𝐴𝜌−1, (29)

where 𝜌 is the statistical operator of the system. Then
the following expansions can be used:

⌣
𝑎𝑖𝑝 = 𝑎𝑖𝑝 −𝐺𝑖𝑏𝑖𝑝, (30)
⌣

𝑏 𝑖𝑝 = 𝑏𝑖𝑝, (31)
⌢
𝑎𝑖𝑝 = 𝑎𝑖𝑝 +𝐺𝑖𝑏𝑖𝑝, (32)
⌢

𝑏 𝑖𝑝 = 𝑏𝑖𝑝, (33)

⌣
𝑎
+

𝑖𝑝 = 𝑎+𝑖𝑝 +𝐺𝑖𝑏
+
𝑖𝑝, (34)

⌣

𝑏
+

𝑖𝑝 = 𝑏+𝑖𝑝, (35)

⌢
𝑎
+

𝑖𝑝 = 𝑎+𝑖𝑝 −𝐺𝑖𝑏
+
𝑖𝑝, (36)

⌢

𝑏
+

𝑖𝑝 = 𝑏+𝑖𝑝, (37)

where 𝐺𝑖 are unknown constants. These expansions
play a substantial role while applying the method of
work [1].

Let us introduce the following notation for the
mean value of an arbitrary operator 𝐴:

⟨𝐴⟩ = Sp(𝜌𝐴), (38)

where Sp stands for the operator trace. By applying
the formula

Sp(𝐴𝐵) = Sp(𝐵𝐴) (39)

for two arbitrary operators 𝐴 and 𝐵, the following
identities for the product of three operators can be
found:

⟨𝐴𝐵𝐶⟩ = ⟨𝐵𝐶
⌢

𝐴⟩ = ⟨
⌣

𝐶𝐴𝐵⟩. (40)

Since the statistical operator 𝜌 of the system is
self-conjugate, Eqs. (38) and (39) immediately bring
about the relations

⟨𝑎+𝑖𝑝⟩ = ⟨𝑎𝑖𝑝⟩+ = ⟨𝑎𝑖𝑝⟩, (41)
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where the bar means the complex conjugation op-
eration. Relation (40) for the correlation functions
can be used to find the correlation functions them-
selves. In particular, from

⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩ = ⟨𝑏𝑖𝑞𝑏𝑗𝑎𝑖𝑝⟩+𝐺𝑖⟨𝑏𝑖𝑞𝑏𝑗𝑏𝑖𝑝⟩ = ⟨𝑏𝑗𝑎𝑖𝑝𝑏𝑖𝑞⟩+
+ 𝐺𝑖⟨𝑏𝑗𝑏𝑖𝑝𝑏𝑖𝑞⟩ = ⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩+𝐺𝑖⟨𝑏𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩, (42)

we obtain

⟨𝑏𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩ = 0. (43)

In the same way, we can verify that the mean value of
the product of three operators 𝑏 and/or 𝑏+ taken in
any combination equals zero. This is a direct conse-
quence of the triangle form of the expansion matrices.

Then we find

⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑏𝑗⟩ = ⟨𝑎𝑖𝑞𝑏𝑗𝑎𝑖𝑝⟩+𝐺𝑖⟨𝑎𝑖𝑞𝑏𝑗𝑏𝑖𝑝⟩ =
= ⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑏𝑗⟩+𝐺𝑖⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑏𝑗⟩+𝐺𝑖⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩, (44)

𝐺𝑖⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑏𝑗⟩+𝐺𝑖⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩ = 0. (45)

Using the relations

⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑎𝑗⟩ = ⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑎𝑗⟩+𝐺𝑖⟨𝑏𝑖𝑝𝑏𝑖𝑞𝑎𝑗⟩+𝐺𝑗⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩,
(46)

𝐺𝑖⟨𝑏𝑖𝑝𝑏𝑖𝑞𝑎𝑗⟩+𝐺𝑗⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩ = 0, (47)

⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩ = ⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩+𝐺𝑖⟨𝑏𝑖𝑝𝑏𝑖𝑞𝑎𝑗⟩+𝐺𝑗⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑏𝑗⟩,
(48)

𝐺𝑖⟨𝑏𝑖𝑝𝑏𝑖𝑞𝑎𝑗⟩+𝐺𝑗⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑏𝑗⟩ = 0, (49)

we obtain

⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑏𝑗⟩ = ⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑏𝑗⟩ = ⟨𝑏𝑖𝑝𝑏𝑖𝑞𝑎𝑗⟩ = 0. (50)

Analogously, one can verify that the mean value of
the product of two operators 𝑏 or 𝑏+ and either of
the operators 𝑎 or 𝑎+, with all three being taken in
an arbitrary combination, also equals zero. From the
relations

−⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩ = ⟨𝑎𝑖𝑞𝑎𝑗𝑎𝑖𝑝⟩ = ⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩ −𝐺𝑖⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩,
(51)

we obtain

⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩ = 2
⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩

𝐺𝑖
= ⟨𝑎𝑗𝑏𝑖𝑝𝑎𝑖𝑞⟩ = ⟨𝑎𝑖𝑞𝑎𝑗𝑏𝑖𝑝⟩.

(52)

Analogously,

⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑎𝑗⟩ = ⟨𝑏𝑖𝑞𝑎𝑗𝑎𝑖𝑝⟩ = ⟨𝑎𝑗𝑎𝑖𝑝𝑏𝑖𝑞⟩ =

= −2
⟨𝑎𝑗𝑎𝑖𝑝𝑎𝑖𝑞⟩

𝐺𝑖
= −2

⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩
𝐺𝑖

, (53)

⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑎+𝑗 ⟩ = ⟨𝑎+𝑗 𝑏𝑖𝑝𝑎𝑖𝑞⟩=⟨𝑎𝑖𝑞𝑎+𝑗 𝑏𝑖𝑝⟩=−⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑎+𝑗 ⟩ =

= −⟨𝑎+𝑗 𝑎𝑖𝑝𝑏𝑖𝑞⟩ = −⟨𝑏𝑖𝑞𝑎+𝑗 𝑎𝑖𝑝⟩ = 2
⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑎+𝑗 ⟩

𝐺𝑖
. (54)

Finally, we obtain

⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑏𝑗⟩ = ⟨𝑎𝑖𝑞𝑏𝑗𝑎𝑖𝑝⟩ = ⟨𝑏𝑗𝑎𝑖𝑝𝑎𝑖𝑞⟩ =
= ⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑏+𝑗 ⟩ = ⟨𝑎𝑖𝑞𝑏+𝑗 𝑎𝑖𝑝⟩ = ⟨𝑏+𝑗 𝑎𝑖𝑝𝑎𝑖𝑞⟩ = 0. (55)

In the same way, we arrive at the following rela-
tions:

⟨𝑏+𝑖𝑞𝑎
±
𝑗 𝑎

+
𝑖𝑝⟩=⟨𝑎+𝑖𝑝𝑏

+
𝑖𝑞𝑎

±
𝑗 ⟩=⟨𝑎±𝑗 𝑎

+
𝑖𝑝𝑏

+
𝑖𝑞⟩=−⟨𝑏+𝑖𝑝𝑎

+
𝑖𝑞𝑎

±
𝑗 ⟩ =

= −⟨𝑎+𝑖𝑞𝑎
±
𝑗 𝑏

+
𝑖𝑝⟩ = −⟨𝑎±𝑗 𝑏

+
𝑖𝑝𝑎

+
𝑖𝑞⟩ = 2

⟨𝑎+𝑖𝑝𝑎
+
𝑖𝑞𝑎

±
𝑗 ⟩

𝐺𝑖
, (56)

⟨𝑎+𝑖𝑝𝑎
+
𝑖𝑞𝑏

+
𝑗 ⟩ = ⟨𝑎+𝑖𝑞𝑏

+
𝑗 𝑎

+
𝑖𝑝⟩ = ⟨𝑏+𝑗 𝑎

+
𝑖𝑝𝑎

+
𝑖𝑞⟩ = ⟨𝑎+𝑖𝑝𝑎

+
𝑖𝑞𝑏𝑗⟩ =

= ⟨𝑎+𝑖𝑞𝑏𝑗𝑎
+
𝑖𝑝⟩ = ⟨𝑏𝑗𝑎+𝑖𝑝𝑎

+
𝑖𝑞⟩ = 0, (57)

⟨𝑎𝑖𝑞𝑎±𝑗 𝑎
+
𝑖𝑝⟩ = ⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑎

±
𝑗 ⟩+𝐺𝑖⟨𝑏+𝑖𝑝𝑎𝑖𝑞𝑎

±
𝑗 ⟩, (58)

⟨𝑏+𝑖𝑝𝑎𝑖𝑞𝑎
±
𝑗 ⟩ =

⟨𝑎±𝑗 ⟩𝛿𝑝𝑞 − 2⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑎
±
𝑗 ⟩

𝐺𝑖
= ⟨𝑎±𝑗 𝑏

+
𝑖𝑝𝑎𝑖𝑞⟩ =

= ⟨𝑎𝑖𝑞𝑎±𝑗 𝑏
+
𝑖𝑝⟩ = ⟨𝑎±𝑗 𝑎𝑖𝑞𝑏

+
𝑖𝑝⟩=⟨𝑎𝑖𝑞𝑏+𝑖𝑝𝑎

±
𝑗 ⟩=⟨𝑏+𝑖𝑝𝑎

±
𝑗 𝑎𝑖𝑞⟩,

(59)

⟨𝑎+𝑖𝑝𝑎
±
𝑗 𝑎𝑖𝑞⟩ = ⟨𝑎±𝑗 𝑎𝑖𝑞𝑎

+
𝑖𝑝⟩ −𝐺𝑖⟨𝑏𝑖𝑞𝑎+𝑖𝑝𝑎

±
𝑗 ⟩, (60)

⟨𝑏𝑖𝑞𝑎+𝑖𝑝𝑎
±
𝑗 ⟩ =

⟨𝑎±𝑗 ⟩𝛿𝑝𝑞 − 2⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑎
±
𝑗 ⟩

𝐺𝑖
= ⟨𝑎±𝑗 𝑏𝑖𝑞𝑎

+
𝑖𝑝⟩ =

= ⟨𝑎+𝑖𝑝𝑎
±
𝑗 𝑏𝑖𝑞⟩ = ⟨𝑎±𝑗 𝑎

+
𝑖𝑝𝑏𝑖𝑞⟩=⟨𝑎+𝑖𝑝𝑏𝑖𝑞𝑎

±
𝑗 ⟩=⟨𝑏𝑖𝑞𝑎±𝑗 𝑎

+
𝑖𝑝⟩.
(61)

Finally, we find

⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑏
±
𝑗 ⟩ = ⟨𝑎𝑖𝑞𝑏±𝑗 𝑎

+
𝑖𝑝⟩ = ⟨𝑏±𝑗 𝑎

+
𝑖𝑝𝑎𝑖𝑞⟩ =

= ⟨𝑎𝑖𝑞𝑎+𝑖𝑝𝑏
±
𝑗 ⟩ = ⟨𝑎+𝑖𝑝𝑏

±
𝑗 𝑎𝑖𝑞⟩ = ⟨𝑏±𝑗 𝑎𝑖𝑞𝑎

+
𝑖𝑝⟩ = 0. (62)

Now, by averaging Eq. (153) from Appendix, we ob-
tain

(𝐾
(𝑖)
22𝑝 +𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 − 𝜀𝑖𝑞)(⟨𝑎𝑗⟩𝛿𝑝𝑞 − 2⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩) = 0.

(63)
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Since 𝐾
(𝑖)
22𝑝 +𝐾

(𝑖)
22𝑞 ̸= 𝜀𝑖𝑝 + 𝜀𝑖𝑞, we have

⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑎𝑗⟩ = ⟨𝑎𝑗⟩
𝛿𝑝𝑞
2

. (64)

On the same footing,

⟨𝑎𝑗𝑎+𝑖𝑝𝑎𝑖𝑞⟩ = ⟨𝑎𝑖𝑞𝑎+𝑖𝑝𝑎𝑗⟩ = ⟨𝑎𝑗𝑎𝑖𝑞𝑎+𝑖𝑝⟩ =

= ⟨𝑎+𝑖𝑝𝑎𝑗𝑎𝑖𝑞⟩ = ⟨𝑎𝑖𝑞𝑎𝑗𝑎+𝑖𝑝⟩ = ⟨𝑎𝑗⟩
𝛿𝑝𝑞
2

, (65)

⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑎
+
𝑗 ⟩ = ⟨𝑎𝑖𝑞𝑎+𝑖𝑝𝑎

+
𝑗 ⟩=⟨𝑎+𝑗 𝑎

+
𝑖𝑝𝑎𝑖𝑞⟩=⟨𝑎+𝑗 𝑎𝑖𝑞𝑎

+
𝑖𝑝⟩ =

= ⟨𝑎+𝑖𝑝𝑎
+
𝑗 𝑎𝑖𝑞⟩ = ⟨𝑎𝑖𝑞𝑎+𝑗 𝑎

+
𝑖𝑝⟩ = ⟨𝑎+𝑗 ⟩

𝛿𝑝𝑞
2

. (66)

Performing analogous calculations, we can obtain
expressions for the correlation functions of operators
for the particles of the same kind in the case where
𝑞 ̸= 𝑝:

⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑏𝑖𝑝⟩ = ⟨𝑏𝑖𝑝𝑎+𝑖𝑝𝑎𝑖𝑞⟩=⟨𝑎𝑖𝑞𝑏𝑖𝑝𝑎+𝑖𝑝⟩=−⟨𝑎+𝑖𝑝𝑏𝑖𝑝𝑎𝑖𝑞⟩ =

= −⟨𝑏𝑖𝑝𝑎𝑖𝑞𝑎+𝑖𝑝⟩ = −⟨𝑎𝑖𝑞𝑎+𝑖𝑝𝑏𝑖𝑝⟩ =
⟨𝑎𝑖𝑞⟩
𝐺𝑖

, (67)

⟨𝑏+𝑖𝑝𝑎𝑖𝑞𝑎𝑖𝑝⟩ = ⟨𝑎𝑖𝑝𝑏+𝑖𝑝𝑎𝑖𝑞⟩=⟨𝑎𝑖𝑞𝑎𝑖𝑝𝑏+𝑖𝑝⟩=−⟨𝑏+𝑖𝑝𝑎𝑖𝑝𝑎𝑖𝑞⟩ =

= −⟨𝑎𝑖𝑞𝑏+𝑖𝑝𝑎𝑖𝑝⟩ = −⟨𝑎𝑖𝑝𝑎𝑖𝑞𝑏+𝑖𝑝⟩ =
⟨𝑎𝑖𝑞⟩
𝐺𝑖

, (68)

⟨𝑏+𝑖𝑝𝑎
+
𝑖𝑞𝑎𝑖𝑝⟩ = ⟨𝑎𝑖𝑝𝑏+𝑖𝑝𝑎

+
𝑖𝑞⟩=⟨𝑎+𝑖𝑞𝑎𝑖𝑝𝑏

+
𝑖𝑝⟩=−⟨𝑏+𝑖𝑝𝑎𝑖𝑝𝑎

+
𝑖𝑞⟩ =

= −⟨𝑎+𝑖𝑞𝑏
+
𝑖𝑝𝑎𝑖𝑝⟩ = −⟨𝑎𝑖𝑝𝑎+𝑖𝑞𝑏

+
𝑖𝑝⟩ =

⟨𝑎+𝑖𝑞⟩
𝐺𝑖

, (69)

⟨𝑎+𝑖𝑝𝑎
+
𝑖𝑞𝑏𝑖𝑝⟩ = ⟨𝑎+𝑖𝑞𝑏𝑖𝑝𝑎

+
𝑖𝑝⟩=⟨𝑏𝑖𝑝𝑎+𝑖𝑝𝑎

+
𝑖𝑞⟩=−⟨𝑎+𝑖𝑞𝑎

+
𝑖𝑝𝑏𝑖𝑝⟩ =

= −⟨𝑎+𝑖𝑝𝑏𝑖𝑝𝑎
+
𝑖𝑞⟩ = −⟨𝑏𝑖𝑝𝑎+𝑖𝑞𝑎

+
𝑖𝑝⟩ =

⟨𝑎+𝑖𝑞⟩
𝐺𝑖

, (70)

⟨𝑎+𝑖𝑝𝑎𝑖𝑝𝑏𝑖𝑞⟩ = ⟨𝑎𝑖𝑝𝑎+𝑖𝑝𝑏𝑖𝑞⟩ = ⟨𝑎𝑖𝑝𝑏𝑖𝑞𝑎+𝑖𝑝⟩ = ⟨𝑎+𝑖𝑝𝑏𝑖𝑞𝑎𝑖𝑝⟩ =

= ⟨𝑏𝑖𝑞𝑎+𝑖𝑝𝑎𝑖𝑝⟩ = ⟨𝑏𝑖𝑞𝑎𝑖𝑝𝑎+𝑖𝑝⟩ = 0, (71)

⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑏𝑖𝑞⟩ = ⟨𝑏𝑖𝑞𝑎+𝑖𝑝𝑎𝑖𝑞⟩ = ⟨𝑎𝑖𝑞𝑏𝑖𝑞𝑎+𝑖𝑝⟩ = ⟨𝑎𝑖𝑞𝑎+𝑖𝑝𝑏𝑖𝑞⟩ =

= ⟨𝑏𝑖𝑞𝑎𝑖𝑞𝑎+𝑖𝑝⟩ = ⟨𝑎+𝑖𝑝𝑏𝑖𝑞𝑎𝑖𝑞⟩ = 0, (72)

⟨𝑎+𝑖𝑝𝑏
+
𝑖𝑝𝑎𝑖𝑞⟩ = ⟨𝑏+𝑖𝑝𝑎𝑖𝑞𝑎

+
𝑖𝑝⟩ = ⟨𝑎𝑖𝑞𝑎+𝑖𝑝𝑏

+
𝑖𝑝⟩ = ⟨𝑎+𝑖𝑝𝑎𝑖𝑞𝑏

+
𝑖𝑝⟩ =

= ⟨𝑏+𝑖𝑝𝑎
+
𝑖𝑝𝑎𝑖𝑞⟩ = ⟨𝑎𝑖𝑞𝑏+𝑖𝑝𝑎

+
𝑖𝑝⟩ = 0, (73)

⟨𝑎+𝑖𝑝𝑎𝑖𝑝𝑏
+
𝑖𝑞⟩ = ⟨𝑎𝑖𝑝𝑎+𝑖𝑝𝑏

+
𝑖𝑞⟩ = ⟨𝑎𝑖𝑝𝑏+𝑖𝑞𝑎

+
𝑖𝑝⟩ = ⟨𝑎+𝑖𝑝𝑏

+
𝑖𝑞𝑎𝑖𝑝⟩ =

= ⟨𝑏+𝑖𝑞𝑎
+
𝑖𝑝𝑎𝑖𝑝⟩ = ⟨𝑏+𝑖𝑞𝑎𝑖𝑝𝑎

+
𝑖𝑝⟩ = 0, (74)

⟨𝑏+𝑖𝑝𝑎𝑖𝑞𝑎𝑖𝑞⟩ = ⟨𝑎𝑖𝑞𝑎𝑖𝑞𝑏+𝑖𝑝⟩ = ⟨𝑎𝑖𝑞𝑏+𝑖𝑝𝑎𝑖𝑞⟩ = 0, (75)

⟨𝑏𝑖𝑞𝑎+𝑖𝑝𝑎
+
𝑖𝑝⟩ = ⟨𝑎+𝑖𝑝𝑎

+
𝑖𝑝𝑏𝑖𝑞⟩ = ⟨𝑎+𝑖𝑝𝑏𝑖𝑞𝑎

+
𝑖𝑝⟩ = 0. (76)

The relations obtained from formulas (67)–(76) by
replacing in them 𝑞 for 𝑝 and vice versa will also be
valid.

4. Relations for Central
Distribution Moments

It is useful to study the structure of correlations for
central distribution moments, because the presence
of a correlation for fluctuations testifies to a phase
transition in the system [11]. The relations for the
central distribution moments can be easily obtained
by preforming a shift of the operators, namely,

𝑎𝑖𝑝 = ⟨𝑎𝑖𝑝⟩+ 𝛼𝑖𝑝, (77)

𝑎+𝑖𝑝 = ⟨𝑎𝑖𝑝⟩+ 𝛼+
𝑖𝑝. (78)

The main relations for the operators 𝛼 are as follows:

⟨[𝛼𝑖, 𝛼𝑗 ]⟩ = ⟨[𝛼+
𝑖 , 𝛼𝑗 ]⟩ = ⟨[𝛼+

𝑖 , 𝛼
+
𝑗 ]⟩ = 0, (79)

⟨[𝛼𝑖𝑝, 𝛼𝑖𝑞]+⟩ = −2⟨𝑎𝑖𝑝⟩⟨𝑎𝑖𝑞⟩, (80)

⟨[𝛼+
𝑖𝑝, 𝛼𝑖𝑞]+⟩ = 𝛿𝑝𝑞 − 2⟨𝑎𝑖𝑝⟩⟨𝑎𝑖𝑞⟩, (81)

⟨[𝛼+
𝑖𝑝, 𝛼

+
𝑖𝑞]+⟩ = −2⟨𝑎𝑖𝑝⟩⟨𝑎𝑖𝑞⟩, (82)

⟨[𝛼±
𝑗 , 𝛼𝑖𝑝]𝛼𝑖𝑞⟩ = ⟨[𝛼±

𝑗 , 𝛼
+
𝑖𝑝]𝛼𝑖𝑞⟩ =

= ⟨𝛼𝑖𝑝[𝛼
±
𝑗 , 𝛼𝑖𝑞]⟩ = ⟨𝛼+

𝑖𝑝[𝛼
±
𝑗 , 𝛼𝑖𝑞]⟩ = 0, (83)

⟨[𝛼𝑖𝑝, 𝛼𝑖𝑞]+𝛼
±
𝑗 ⟩ = ⟨𝛼±

𝑗 [𝛼𝑖𝑝, 𝛼𝑖𝑞]+⟩ =
= −2⟨𝑎𝑖𝑝⟩⟨𝛼𝑖𝑞𝛼

±
𝑗 ⟩ − 2⟨𝑎𝑖𝑞⟩⟨𝛼𝑖𝑝𝛼

±
𝑗 ⟩, (84)

⟨[𝛼+
𝑖𝑝, 𝛼𝑖𝑞]+𝛼

±
𝑗 ⟩ = ⟨𝛼±

𝑗 [𝛼
+
𝑖𝑝, 𝛼𝑖𝑞]+⟩ =

= −2⟨𝑎𝑖𝑝⟩⟨𝛼𝑖𝑞𝛼
±
𝑗 ⟩ − 2⟨𝑎𝑖𝑞⟩⟨𝛼+

𝑖𝑝𝛼
±
𝑗 ⟩, (85)

⟨[𝛼+
𝑖𝑝, 𝛼

+
𝑖𝑞]+𝛼

±
𝑗 ⟩ = ⟨𝛼±

𝑗 [𝛼
+
𝑖𝑝, 𝛼

+
𝑖𝑞]+⟩ =

= −2⟨𝑎𝑖𝑝⟩⟨𝛼+
𝑖𝑞𝛼

±
𝑗 ⟩ − 2⟨𝑎𝑖𝑞⟩⟨𝛼+

𝑖𝑝𝛼
±
𝑗 ⟩, (86)

⟨𝛼𝑖𝑞𝛼
+
𝑖𝑝⟩ = ⟨𝛼+

𝑖𝑝𝛼𝑖𝑞⟩ =
𝛿𝑝𝑞
2

− ⟨𝑎𝑖𝑝⟩⟨𝑎𝑖𝑞⟩, (87)

⟨𝛼𝑖𝑞𝛼
+
𝑖𝑝𝛼

±
𝑗 ⟩ = ⟨𝛼+

𝑖𝑝𝛼𝑖𝑞𝛼
±
𝑗 ⟩ =

= −⟨𝑎𝑖𝑝⟩⟨𝛼𝑖𝑞𝛼
±
𝑗 ⟩ − ⟨𝑎𝑖𝑞⟩⟨𝛼+

𝑖𝑝𝛼
±
𝑗 ⟩. (88)

5. Main Variants

We have already noted [1] that every particle can pos-
sess only two different states: states with identical
momenta and different spin projections or, vice versa,
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states with different momenta. Therefore, let us con-
sider four main variants. Recall that the particles in-
teracting electrostatically by means of the Coulomb
potential

Φ(r) =
𝑄1𝑄2

4𝜋𝜀0𝑟
(89)

are dealt with. Here, 𝑄1 and 𝑄2 are the charges of the
particles that are located at the distance 𝑟 from each
other, and 𝜀0 is the absolute dielectric permittivity of
the vacuum.

The first variant corresponds to the following op-
erator wave functions of the particles:

Ψ𝑗(r𝑗) =
𝑒

𝑖p𝑗 ·r𝑗
~

√
𝑉

(𝑎𝑗+ + 𝑎𝑗−), (90)

Ψ+
𝑗 (r𝑗) =

𝑒
−𝑖p𝑗 ·r𝑗

~
√
𝑉

(𝑎+𝑗+ + 𝑎+𝑗−), (91)

where p𝑗 �r𝑗 denotes the scalar product of the momen-
tum vector p𝑗 and the radius vector r𝑗 of a particle
of the 𝑗-th kind; 𝑎+𝑗+ and 𝑎𝑗+ are the creation and
annihilation, respectively, operators for the particle
with the spin projection + 1

2~, whereas 𝑎+𝑗− and 𝑎𝑗−
are the same operators for the particle with the spin
projection − 1

2~; ~ is Planck’s constant, and the par-
ticle operator wave functions are normalized by the
volume 𝑉 . In the first variant, the interaction Hamil-
tonian takes the form

𝐻12 = 𝐼(𝑎+1++𝑎+1−)(𝑎
+
2++𝑎+2−)(𝑎2++𝑎2−)(𝑎1++𝑎1−).

(92)
The corresponding interaction constant 𝐼 equals

𝐼 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2) =

3𝑄1𝑄2

16𝜋𝜀0𝑅
, (93)

where 𝑅 is the radius of a sphere with the volume 𝑉 .
Hereafter, the integrals are calculated by changing to
the spherical coordinate frame, and the integration is
carried out within a sphere with radius 𝑅. Then the
following expressions for the operators are obtained:

𝑏1+ = 𝑏1− = 𝐼(𝑎+2++𝑎+2−)(𝑎2++𝑎2−)(𝑎1++𝑎1−), (94)

𝑏2+ = 𝑏2− = 𝐼(𝑎+1++𝑎+1−)(𝑎2++𝑎2−)(𝑎1++𝑎1−), (95)

𝑏+1+ = 𝑏+1− = 𝐼(𝑎+1++𝑎+1−)(𝑎
+
2++𝑎+2−)(𝑎2++𝑎2−), (96)

𝑏+2+ = 𝑏+2− = 𝐼(𝑎+1++𝑎+1−)(𝑎
+
2++𝑎+2−)(𝑎1++𝑎1−). (97)

From the triangle form of expansion matrices, it fol-
lows that the mean values of all those operators equal
zero [1]. From whence, with regard for Eqs. (64) and
(66), we obtain the following relations for the mean
values of the creation and annihilation operators in
the first variant:

⟨𝑎1−⟩ = −⟨𝑎1+⟩, (98)

⟨𝑎2−⟩ = −⟨𝑎2+⟩, (99)

⟨𝑎+1−⟩ = −⟨𝑎+1+⟩, (100)

⟨𝑎+2−⟩ = −⟨𝑎+2+⟩. (101)

In the second variant, let us consider the following
operator wave functions of the particles:

Ψ1(r1) =
1√
𝑉
(𝑒

𝑖p1·r1
~ 𝑎1p1 + 𝑒

𝑖q1·r1
~ 𝑎1q1), (102)

Ψ+
1 (r1) =

1√
𝑉
(𝑒

−𝑖p1·r1
~ 𝑎+1p1

+ 𝑒
−𝑖q1·r1

~ 𝑎+1q1
), (103)

Ψ2(r2) =
𝑒

𝑖p2·r2
~

√
𝑉

(𝑎2+ + 𝑎2−), (104)

Ψ+
2 (r2) =

𝑒
−𝑖p2·r2

~
√
𝑉

(𝑎+2+ + 𝑎+2−). (105)

So, in this variant, the first particle has two different
states with the different momenta p1 and q1. For the
interaction operator, we obtain

𝐻12 = 𝐼{𝑎+1p1
(𝑎+2+ + 𝑎+2−)(𝑎2+ + 𝑎2−)𝑎1p1 +

+ 𝑎+1q1
(𝑎+2+ + 𝑎+2−)(𝑎2+ + 𝑎2−)𝑎1q1

}+
+ 𝐼1𝑎

+
1p1

(𝑎+2+ + 𝑎+2−)(𝑎2+ + 𝑎2−)𝑎1q1
+

+ 𝐼2𝑎
+
1q1

(𝑎+2+ + 𝑎+2−)(𝑎2+ + 𝑎2−)𝑎1p1 , (106)

where the interaction constant 𝐼 is given by formula
(93), whereas the interaction constants 𝐼1 and 𝐼2
equal

𝐼1 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2)𝑒

𝑖(q1−p1)·r1
~ =

=
2𝜋𝑄1𝑄2

𝜀0Δ5
1𝑉

2
{1− cos(Δ1𝑅)}{sin(Δ1𝑅)−

− Δ1𝑅 cos(Δ1𝑅)}, (107)

𝐼2 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2)𝑒

𝑖(p1−q1)·r1
~ = 𝐼1. (108)

Here,

Δ1 =
|q1 − p1|

~
. (109)
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Then we obtain

𝑏1q1
= (𝑎+2++𝑎+2−)(𝑎2++𝑎2−)(𝐼𝑎1q1

+𝐼1𝑎1p1
), (110)

𝑏1p1
= (𝑎+2++𝑎+2−)(𝑎2++𝑎2−)(𝐼𝑎1p1

+𝐼1𝑎1q1
), (111)

𝑏+1q1
= (𝐼𝑎+1q1

+𝐼1𝑎
+
1p1

)(𝑎+2++𝑎+2−)(𝑎2++𝑎2−), (112)

𝑏+1p1
= (𝐼𝑎+1p1

+𝐼1𝑎
+
1q1

)(𝑎+2++𝑎+2−)(𝑎2++𝑎2−), (113)

𝑏2+ = 𝑏2− = {𝐼(𝑎+1p1
𝑎1p1 + 𝑎+1q1

𝑎1q1)+

+ 𝐼1(𝑎
+
1p1

𝑎1q1
+ 𝑎+1q1

𝑎1p1
)}(𝑎2+ + 𝑎2−), (114)

𝑏+2+ = 𝑏+2− = (𝑎+2+ + 𝑎+2−){𝐼(𝑎
+
1p1

𝑎1p1 + 𝑎+1q1
𝑎1q1)+

+ 𝐼1(𝑎
+
1p1

𝑎1q1
+ 𝑎+1q1

𝑎1p1
)}. (115)

From Eqs. (114) and (115) in view of Eqs. (64) and
(66), we have

⟨𝑎2−⟩ = −⟨𝑎2+⟩, (116)

⟨𝑎+2−⟩ = −⟨𝑎+2+⟩. (117)

On the other hand, from Eqs. (110) and (111) in view
of Eq. (64), we obtain

𝐼⟨𝑎1q1
⟩+ 𝐼1⟨𝑎1p1

⟩ = 0, (118)

𝐼⟨𝑎1p1⟩+ 𝐼1⟨𝑎1q1⟩ = 0. (119)

From whence, it follows that

{1−cos(Δ1𝑅)}{Δ1𝑅 cos(Δ1𝑅)−sin(Δ1𝑅)}= (Δ1𝑅)
5

6
.

(120)
The solution of this equation reads

Δ1𝑅 = 𝐶 = 1.3680427635, (121)

which corresponds to the condition

𝐼1 = −𝐼, (122)

so that

⟨𝑎1q1
⟩ = ⟨𝑎1p1

⟩. (123)

The following relation can be derived analogously:

⟨𝑎+1q1
⟩ = ⟨𝑎+1p1

⟩. (124)

The third variant can be obtained from the sec-
ond one by permutating the subscripts indicating the
particle kinds and substituting Δ1 by

Δ2 =
|q2 − p2|

~
. (125)

For the fourth variant, the operator wave functions
are taken in the form

Ψ1(r1) =
1√
𝑉
(𝑒

𝑖p1·r1
~ 𝑎1p1

+ 𝑒
𝑖q1·r1

~ 𝑎1q1
), (126)

Ψ+
1 (r1) =

1√
𝑉
(𝑒

−𝑖p1·r1
~ 𝑎+1p1

+ 𝑒
−𝑖q1·r1

~ 𝑎+1q1
), (127)

Ψ2(r2) =
1√
𝑉
(𝑒

𝑖p2·r2
~ 𝑎2p2

+ 𝑒
𝑖q2·r2

~ 𝑎2q2
), (128)

Ψ+
2 (r2) =

1√
𝑉
(𝑒

−𝑖p2·r2
~ 𝑎+2p2

+ 𝑒
−𝑖q2·r2

~ 𝑎+2q2
). (129)

Then, for the interaction operator, we obtain

𝐻12 = 𝐼
(︀
𝑎+1p1

𝑎+2p2
𝑎2p2𝑎1p1 + 𝑎+1q1

𝑎+2q2
𝑎2q2𝑎1q1 +

+ 𝑎+1p1
𝑎+2q2

𝑎2q2𝑎1p1 + 𝑎+1q1
𝑎+2p2

𝑎2p2𝑎1q1

)︀
+

+ 𝐼1(𝑎
+
1p1

𝑎+2p2
𝑎2p2

𝑎1q1
+ 𝑎+1p1

𝑎+2q2
𝑎2q2

𝑎1q1
)+

+ 𝐼2(𝑎
+
1q1

𝑎+2p2
𝑎2p2

𝑎1p1
+ 𝑎+1q1

𝑎+2q2
𝑎2q2

𝑎1p1
)+

+ 𝐼3(𝑎
+
1p1

𝑎+2p2
𝑎2q2

𝑎1p1
+ 𝑎+1q1

𝑎+2p2
𝑎2q2

𝑎1q1
)+

+ 𝐼4(𝑎
+
1p1

𝑎+2q2
𝑎2p2𝑎1p1 + 𝑎+1q1

𝑎+2q2
𝑎2p2𝑎1q1)+

+ 𝐼5𝑎
+
1p1

𝑎+2q2
𝑎2p2𝑎1q1 + 𝐼6𝑎

+
1q1

𝑎+2p2
𝑎2q2𝑎1p1 +

+ 𝐼7𝑎
+
1q1

𝑎+2q2
𝑎2p2

𝑎1p1
+ 𝐼8𝑎

+
1p1

𝑎+2p2
𝑎2q2

𝑎1q1
. (130)

Here, the interaction constants 𝐼 , 𝐼1, and 𝐼2 are given
by expressions (93), (107), and (108), respectively,
whereas the other interaction constants equal

𝐼3 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2)𝑒

𝑖(q2−p2)·r2
~ =

=
2𝜋𝑄1𝑄2

𝜀0Δ5
2𝑉

2
{1− cos(Δ2𝑅)}{sin(Δ2𝑅)−

− Δ2𝑅 cos(Δ2𝑅)}, (131)

𝐼4 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2)𝑒

𝑖(p2−q2)·r2
~ = 𝐼3, (132)

𝐼5 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2)𝑒

𝑖
(q1−p1)·r1+(p2−q2)·r2

~ =

=
2𝜋𝑄1𝑄2

𝜀0Δ2
1|Δ1 −Δ2|3𝑉 2

{1− cos(Δ1𝑅)}×

× {sin(|Δ1 −Δ2|𝑅)− |Δ1 −Δ2| ×
× 𝑅 cos(|Δ1 −Δ2|𝑅)}. (133)
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Here, we denoted

Δ𝑖 =
q𝑖 − p𝑖

~
. (134)

𝐼6 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2)×

× 𝑒𝑖
(p1−q1)·r1+(q2−p2)·r2

~ = 𝐼5, (135)

𝐼7 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2)𝑒

𝑖
(p1−q1)·r1+(p2−q2)·r2

~ =

=
2𝜋𝑄1𝑄2

𝜀0Δ2
1|Δ1 +Δ2|3𝑉 2

{1− cos(Δ1𝑅)}×

× {sin(|Δ1 +Δ2|𝑅)− |Δ1 +Δ2| ×
× 𝑅 cos(|Δ1 +Δ2|𝑅)}, (136)

𝐼8 =
1

2𝑉 2

∫︁∫︁
𝑑r1𝑑r2Φ(r1−r2)×

× 𝑒𝑖
(q1−p1)·r1+(q2−p2)·r2

~ = 𝐼7. (137)

From the Hamiltonian, we find

𝑏1q1 = (𝑎+2p2
𝑎2p2 + 𝑎+2q2

𝑎2q2)(𝐼𝑎1q1 + 𝐼2𝑎1p1)+

+ 𝑎+2p2
𝑎2q2

(𝐼3𝑎1q1
+ 𝐼6𝑎1p1

)+

+ 𝑎+2q2
𝑎2p2

(𝐼4𝑎1q1
+ 𝐼7𝑎1p1

), (138)
𝑏1p1 = (𝑎+2p2

𝑎2p2 + 𝑎+2q2
𝑎2q2)(𝐼𝑎1p1 + 𝐼1𝑎1q1)+

+ 𝑎+2p2
𝑎2q2

(𝐼3𝑎1p1
+ 𝐼8𝑎1q1

)+

+ 𝑎+2q2
𝑎2p2

(𝐼4𝑎1p1
+ 𝐼5𝑎1q1

), (139)
𝑏2q2 = (𝑎+1p1

𝑎1p1 + 𝑎+1q1
𝑎1q1)(𝐼𝑎2q2 + 𝐼4𝑎2p2)+

+ 𝑎+1p1
𝑎1q1

(𝐼1𝑎2q2
+ 𝐼5𝑎2p2

)+

+ 𝑎+1q1
𝑎1p1

(𝐼2𝑎2q2
+ 𝐼7𝑎2p2

), (140)
𝑏2p2 = (𝑎+1p1

𝑎1p1 + 𝑎+1q1
𝑎1q1)(𝐼𝑎2p2 + 𝐼3𝑎2q2)+

+ 𝑎+1p1
𝑎1q1

(𝐼1𝑎2p2
+ 𝐼8𝑎2q2

)+

+ 𝑎+1q1
𝑎1p1

(𝐼2𝑎2p2
+ 𝐼6𝑎2q2

), (141)
𝑏+1q1

= (𝐼𝑎+1q1
+ 𝐼1𝑎

+
1p1

)(𝑎+2p2
𝑎2p2 + 𝑎+2q2

𝑎2q2)+

+ (𝐼3𝑎
+
1q1

+ 𝐼8𝑎
+
1p1

)𝑎+2p2
𝑎2q2

+

+ (𝐼4𝑎
+
1q1

+ 𝐼5𝑎
+
1p1

)𝑎+2q2
𝑎2p2

, (142)
𝑏+1p1

= (𝐼𝑎+1p1
+ 𝐼2𝑎

+
1q1

)(𝑎+2p2
𝑎2p2 + 𝑎+2q2

𝑎2q2)+

+ (𝐼3𝑎
+
1p1

+ 𝐼6𝑎
+
1q1

)𝑎+2p2
𝑎2q2

+

+ (𝐼4𝑎
+
1p1

+ 𝐼7𝑎
+
1q1

)𝑎+2q2
𝑎2p2

, (143)
𝑏+2q2

= (𝐼𝑎+2q2
+ 𝐼3𝑎

+
2p2

)(𝑎+1p1
𝑎1p1 + 𝑎+1q1

𝑎1q1)+

+ (𝐼1𝑎
+
2q2

+ 𝐼8𝑎
+
2p2

)𝑎+1p1
𝑎1q1

+

+ (𝐼2𝑎
+
2q2

+ 𝐼6𝑎
+
2p2

)𝑎+1q1
𝑎1p1 , (144)

𝑏+2p2
= (𝐼𝑎+2p2

+ 𝐼4𝑎
+
2q2

)(𝑎+1p1
𝑎1p1 + 𝑎+1q1

𝑎1q1)+

+ (𝐼1𝑎
+
2p2

+ 𝐼5𝑎
+
2q2

)𝑎+1p1
𝑎1q1

+

+ (𝐼2𝑎
+
2p2

+ 𝐼7𝑎
+
2q2

)𝑎+1q1
𝑎1p1

. (145)

As was done above, we obtain

{1−cos(Δ𝑖𝑅)}{Δ𝑖𝑅 cos(Δ𝑖𝑅)−sin(Δ𝑖𝑅)} =
(Δ𝑖𝑅)

5

6
,

(146)

Δ2𝑅 = Δ1𝑅 = 𝐶 = 1.3680427635. (147)

One can see that 𝑅 is a definite characteristic radius,
whose magnitude is reciprocal to the difference be-
tween the vectors of two possible momenta for the
particles. This difference turns out identical in mag-
nitude for both particles. Finally, we obtain

𝐼3 = 𝐼1 = −𝐼, (148)

⟨𝑎𝑖q𝑖
⟩ = ⟨𝑎𝑖p𝑖

⟩, (149)

⟨𝑎+𝑖q𝑖
⟩ = ⟨𝑎+𝑖p𝑖

⟩. (150)

6. Conclusions

As one can see, the DAM is effective for finding
the correlation functions of the third order. Using re-
sults (64) and (66) obtained in the third order, we
also found relations for the mean values of the cre-
ation and annihilation operators for various forms of
the interaction operator. Hence, there is a specific
hybridization of quantities belonging to higher and
lower orders, which makes it possible to determine
quantities that remained uncertain earlier.

On the other hand, we saw how the zeroing of the
mean values of the expansion-basis operators 𝑏 ob-
tained in the first order brought about a result for
the correlation functions in the third order. At the
same time, the relations obtained for the correlation
functions in the third order and including the same
expansion-basis operators will give rise to the corre-
sponding effect in the fifth order of correlation func-
tions. Thus, there are all grounds to hope for that all
lower-order correlation functions, which are required
to calculate the mean values of physical quantities for
a Coulomb pair, can be determined in turn.

Furthermore, the values obtained for the normal
particle distribution functions in the second order
made it possible to determine the main forms of
the particle interaction operator, which depend on
the combination of possible values for the momenta

484 ISSN 2071-0194. Ukr. J. Phys. 2019. Vol. 64, No. 6



Third-order correlation functions for a Coulomb pair

and spin projections of the particles. Note that, in
the last variant, as well as in the previous two, we
did not consider the issue concerning the projections
of particle spins in various possible states with dif-
ferent particle momenta. Those projections can be
both identical and different! Only the states with
identical momenta demand that the spin projections
should be different in order that those states could
be considered as different states of the correspond-
ing particles. This strange conclusion follows from the
fact that the Coulomb interaction does not depend
on the spin. Therefore, this issue has to be studied
further.

Thus, there emerges a clear scheme of calculations
to an arbitrary order. First, we find the equations
of motion for the creation and annihilation opera-
tors. Those equations, with the help of expressions
for the commutators or anticommutators, are used
to obtain equations for the operators themselves in
a definite order. Then, by applying Eq. (40), the re-
lations for the correlation functions and the central
distribution moments that are independent of the in-
teraction operator form are found. These relations are
appended with the relations that follow from the op-
erator equations that were obtained earlier. In addi-
tion, from the lower-order relations obtained for the
correlation functions and including the basis expan-
sion operators 𝑏, new relations are found for the cor-
responding correlation functions, which directly in-
clude the operators of particle creation and annihila-
tion. Finally, the corresponding relations that follow
from explicit expressions for the specific interaction
operator forms are considered.

The growth in the order of correlation func-
tions does not change this general calculation proce-
dure. Technically, the calculations become more com-
plicated owing to an increase in the number of cor-
relations which are to be considered and the number
of equations which are to be solved. However, every
order has its own specificity associated with the phys-
ical meaning of the corresponding correlation func-
tions. For instance, the average value of the interac-
tion energy is determined by the correlation functions
of the fourth order.

APPENDIX

Let us consider how the equations of motion for the creation
and annihilation operators can be used to derive the equations
for the third-order operators themselves. For example, taking

into account that

[𝑎+𝑖𝑝, 𝑎𝑖𝑞 ]+
𝑎𝑗 = 𝑎𝑗𝛿𝑝𝑞 , (151)

some important relations can be obtained. In particular, from
Eq. (12), we find

[𝑎+𝑖𝑝, 𝑏𝑖𝑞 ]+
𝑎𝑗 = [𝑏+𝑖𝑝, 𝑎𝑖𝑞 ]+

𝑎𝑗 . (152)

Now, calculating the commutator of Eq. (152) with the Hamil-
tonian, we obtain

2[𝑏+𝑖𝑝, 𝑏𝑖𝑞 ]+
𝑎𝑗 = ([𝑎+𝑖𝑝, 𝑏𝑖𝑞 ]+

− [𝑏+𝑖𝑝, 𝑎𝑖𝑞 ]+
)𝑏𝑗 +

+ (𝐾
(𝑖)
22𝑝 +𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 − 𝜀𝑖𝑞)[𝑎

+
𝑖𝑝, 𝑏𝑖𝑞 ]+

𝑎𝑗 . (153)

In the same way, we obtain the equations

[𝑎+𝑖𝑝, 𝑎𝑖𝑞 ]+
𝑎+𝑗 = 𝑎+𝑗 𝛿𝑝𝑞 , (154)

[𝑎+𝑖𝑝, 𝑏𝑖𝑞 ]+
𝑎+𝑗 = [𝑏+𝑖𝑝, 𝑎𝑖𝑞 ]+

𝑎+𝑗 , (155)

2[𝑏+𝑖𝑝, 𝑏𝑖𝑞 ]+
𝑎+𝑗 = ([𝑏+𝑖𝑝, 𝑎𝑖𝑞 ]+

− [𝑎+𝑖𝑝, 𝑏𝑖𝑞 ]+
)𝑏+𝑗 +

+ (𝐾
(𝑖)
22𝑝 +𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 − 𝜀𝑖𝑞)[𝑎

+
𝑖𝑝, 𝑏𝑖𝑞 ]+

𝑎+𝑗 , (156)

𝑎𝑗 [𝑎
+
𝑖𝑝, 𝑎𝑖𝑞 ]+

= 𝑎𝑗𝛿𝑝𝑞 , (157)

𝑎𝑗 [𝑎
+
𝑖𝑝, 𝑏𝑖𝑞 ]+

= 𝑎𝑗 [𝑏
+
𝑖𝑝, 𝑎𝑖𝑞 ]+

, (158)

2𝑎𝑗 [𝑏
+
𝑖𝑝, 𝑏𝑖𝑞 ]+

= 𝑏𝑗([𝑎
+
𝑖𝑝, 𝑏𝑖𝑞 ]+

− [𝑏+𝑖𝑝, 𝑎𝑖𝑞 ]+
)+

+ (𝐾
(𝑖)
22𝑝 +𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 − 𝜀𝑖𝑞)𝑎𝑗 [𝑎

+
𝑖𝑝, 𝑏𝑖𝑞 ]+

, (159)

𝑎+𝑗 [𝑎+𝑖𝑝, 𝑎𝑖𝑞 ]+
= 𝑎+𝑗 𝛿𝑝𝑞 , (160)

𝑎+𝑗 [𝑎+𝑖𝑝, 𝑏𝑖𝑞 ]+
= 𝑎+𝑗 [𝑏+𝑖𝑝, 𝑎𝑖𝑞 ]+

, (161)

2𝑎+𝑗 [𝑏+𝑖𝑝, 𝑏𝑖𝑞 ]+
= 𝑏+𝑗 ([𝑏+𝑖𝑝, 𝑎𝑖𝑞 ]+

− [𝑎+𝑖𝑝, 𝑏𝑖𝑞 ]+
)+

+ (𝐾
(𝑖)
22𝑝 +𝐾

(𝑖)
22𝑞 − 𝜀𝑖𝑝 − 𝜀𝑖𝑞)𝑎

+
𝑗 [𝑎+𝑖𝑝, 𝑏𝑖𝑞 ]+

, (162)

𝑎+𝑖𝑝[𝑎𝑖𝑞 , 𝑎𝑗 ] = 0, (163)

𝑎+𝑖𝑝[𝑏𝑖𝑞 , 𝑎𝑗 ] = −𝑎+𝑖𝑝[𝑎𝑖𝑞 , 𝑏𝑗 ], (164)

2𝑎+𝑖𝑝[𝑏𝑖𝑞 , 𝑏𝑗 ] = 𝑏+𝑖𝑝([𝑎𝑖𝑞 , 𝑏𝑗 ] + [𝑏𝑖𝑞 , 𝑎𝑗 ])+

+ (𝜀𝑗 − 𝜀𝑖𝑞 +𝐾
(𝑖)
22𝑞 −𝐾𝑗

22)𝑎
+
𝑖𝑝[𝑎𝑖𝑞 , 𝑏𝑗 ], (165)

𝑎+𝑖𝑝[𝑎𝑖𝑞 , 𝑎
+
𝑗 ] = 0, (166)

𝑎+𝑖𝑝[𝑏𝑖𝑞 , 𝑎
+
𝑗 ] = 𝑎+𝑖𝑝[𝑎𝑖𝑞 , 𝑏

+
𝑗 ], (167)

2𝑎+𝑖𝑝[𝑏𝑖𝑞 , 𝑏
+
𝑗 ] = 𝑏+𝑖𝑝([𝑎𝑖𝑞 , 𝑏

+
𝑗 ]− [𝑏𝑖𝑞 , 𝑎

+
𝑗 ])+

+ (𝐾
(𝑖)
22𝑞 +𝐾

(𝑗)
22 − 𝜀𝑖𝑞 − 𝜀𝑗)𝑎

+
𝑖𝑝[𝑎𝑖𝑞 , 𝑏

+
𝑗 ], (168)

[𝑎+𝑖𝑝, 𝑎𝑗 ]𝑎𝑖𝑞 = 0, (169)

[𝑏+𝑖𝑝, 𝑎𝑗 ]𝑎𝑖𝑞 = [𝑎+𝑖𝑝, 𝑏𝑗 ]𝑎𝑖𝑞 , (170)

2[𝑏+𝑖𝑝, 𝑏𝑗 ]𝑎𝑖𝑞 = ([𝑎+𝑖𝑝, 𝑏𝑗 ]− [𝑏+𝑖𝑝, 𝑎𝑗 ])𝑏𝑖𝑞 +

+ (𝐾
(𝑖)
22𝑝 − 𝜀𝑖𝑝 +𝐾

(𝑗)
22 − 𝜀𝑗)[𝑎

+
𝑖𝑝, 𝑏𝑗 ]𝑎𝑖𝑞 , (171)
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[𝑎𝑖𝑞 , 𝑎
+
𝑗 ]𝑎+𝑖𝑝 = 0, (172)

[𝑏𝑖𝑞 , 𝑎
+
𝑗 ]𝑎+𝑖𝑝 = [𝑎𝑖𝑞 , 𝑏

+
𝑗 ]𝑎+𝑖𝑝, (173)

2[𝑏𝑖𝑞 , 𝑏
+
𝑗 ]𝑎+𝑖𝑝 = ([𝑎𝑖𝑞 , 𝑏

+
𝑗 ]− [𝑏𝑖𝑞 , 𝑎

+
𝑗 ])𝑏+𝑖𝑝 +

+ (𝐾
(𝑖)
22𝑞 +𝐾

(𝑗)
22 − 𝜀𝑖𝑞 − 𝜀𝑗)[𝑏𝑖𝑞 , 𝑎

+
𝑗 ]𝑎+𝑖𝑝, (174)

and so on.
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КОРЕЛЯЦIЙНI ФУНКЦIЇ
КУЛОНIВСЬКОЇ ПАРИ ТРЕТЬОГО ПОРЯДКУ

Р е з ю м е

В статтi вперше публiкуються результати для кореляцiйних
функцiй третього порядку для випадку двох частинок, що
пiдлягають електростатичнiй взаємодiї, отриманi прямим
алгебраїчним методом знаходження кореляцiйних функцiй.
Розглянутi як основнi спiввiдношення для цих кореляцiй-
них функцiй, що не залежать вiд явного вигляду потенцiалу
взаємодiї частинок, так i 4 види форм оператора взаємодiї
та спiввiдношення для кореляцiйних функцiй, якi для них
виникають.
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