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INDUCED COLOR CHARGES,
EFFECTIVE 𝛾𝛾𝐺 VERTEX IN QGP.
APPLICATIONS TO HEAVY-ION COLLISIONS

We calculate the induced color charges 𝑄3
ind, 𝑄

8
ind and the effective vertex 𝛾−𝛾-gluon generated

in a quark-gluon plasma with the 𝐴0 condensate because of the color 𝐶-parity violation at this
background. To imitate the case of heavy-ion collisions, we consider the model of the plasma
confined in the narrow infinite plate and derive the classical gluon potentials 𝜑3 and 𝜑8 produced
by these charges. Two applications – the scattering of photons on a plasma and the conversion
of gluon fields in two photons radiated from the plasma – are discussed.
K e yw o r d s: quark-gluon plasma, heavy-ion collision, Polyakov’s loop, effective vertex.

1. Introduction

Investigations of the deconfinement phase transition
(DPT) and the quark-gluon plasma (QGP) are in the
center of modern high energy physics. These phenom-
ena happen at high temperature due to the asymp-
totic freedom of strong interactions. The researches
are carried out either in experiments on hadron colli-
sions or in quantum field theory. The order parame-
ter for DPT is Polyakov’s loop (PL), which is zero at
low temperatures and nonzero at high temperatures
𝑇 > 𝑇𝑑, where 𝑇𝑑 ∼ 160–180 MeV [1] is the phase
transition temperature. The standard information on
DPT is adduced, in particular, in [2].

The PL is defined as [3]:

𝑃𝐿 =

∫︁
𝐶

𝑑𝑥4 𝐴0(𝑥4,x). (1)

Here, 𝐴0(𝑥4,x) is the zero component of the gauge
field potential, the integration contour is going along
the fourth direction and back to an initial point in
the lattice Euclidean space-time. The PL was intro-
duced in pure gluodynamics. It violates the center of
the color group symmetry 𝑍(3) that results in the
nonconservation of the color charges 𝑄3 and 𝑄8.

The QGP state consists of quarks and gluons lib-
erated from hadrons. Polyakov’s loop is not a solu-
tion to the local Yang–Mills equations. The local or-
der parameter for DPT is the 𝐴0 condensate, which
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is a constant at 𝑇 > 𝑇𝑑. It can be calculated, in par-
ticular, from a two-loop effective potential. More de-
tails on different calculations carried out in analytic
quantum field theory can be seen in [4]. Taking these
results into consideration, we have to consider QGP
as a state at the 𝐴0 background, which breaks the
color 𝐶-parity symmetry. So, new type phenomena
may happen.

In the SU(2) gluodynamics, the gluon spectra at
𝐴0 were calculated and investigated in Ref. [5, 6]. In
particular, the induced color charge 𝑄3

ind was also
computed. It was shown that the state with a con-
densate is free of infrared instabilities existing in a
gluon plasma in the empty space. Thus, the ground
state with 𝐴0 is a good approximation to the plasma
after DPT.

In Ref. [7], the induced charges 𝑄3
ind, 𝑄

8
ind gener-

ated by quark loops in QCD were calculated. In what
follows, we consider the QCD case, but the precise
values of the induced charges will not be specified.

The paper is organized as follows. In Sect. 2, the
color induced charges 𝑄3

ind and 𝑄8
ind generated by

tadpole quark loops with one gluon lines, which are
nonzero due to Furry’s theorem violation, are calcu-
lated. In Sect. 3, we consider a simple model of the
plasma confined in a plate narrow in one dimension
and infinite in two other dimensions with the 𝐴0 con-
densate and induced charges. We compute the classi-
cal gluon potentials 𝜑3 and 𝜑8 generated by the in-
duced charges 𝑄3

ind and 𝑄8
ind. In Sect. 4, the effective

𝛾𝛾𝐺 vertex generated in the plasma is calculated in
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the high-temperature approximation. In Sect. 5, the
processes of photon scattering on these potentials and
the conversion of gluons in two photons are consid-
ered as the application. These new phenomena have
to happen due to the three-linear effective vertices.

2. Induced Color
Charges and Quark Propagator

In what follows, we consider the case of 𝐴3
0 back-

ground field and present the color field potential in
the form 𝑄𝑎

𝜇 → 𝐴0𝛿
𝑎3𝛿𝜇4 +𝑄𝑎

𝜇, where 𝑄𝑎
𝜇 is a quan-

tum field. The calculation of 𝑄8
ind is similar (see [7]),

and the final results will be adduced only.
The explicit expression is given by the form

𝑄𝑎
𝜇𝑄

3
ind𝛿𝜇4𝛿𝑎3 = 𝑄3

4𝑄
3
ind, where

𝑄3
ind =

𝑔

𝛽

∑︁
𝑝4

∫︁
𝑑3𝑝

(2𝜋)3
Tr

[︃
𝛾4

𝜆3
𝑖𝑗

2
𝐺𝑖𝑗(𝑝4,p, 𝐴0)

]︃
. (2)

Here, 𝜆3 is the Gell-Mann matrix, and 𝛽 = 1/𝑇 is the
inverse temperature. The expressions for the propa-
gators are

𝐺11 =
𝛾4(𝑝4 −𝐴0) + p𝛾 +𝑚

(𝑝4 −𝐴0)2 + p2 +𝑚2
,

𝐺22 =
𝛾4(𝑝4 +𝐴0) + p𝛾 +𝑚

(𝑝4 +𝐴0)2 + p2 +𝑚2
.

(3)

For brevity, we denoted 𝐴0 = 𝑔𝐴0/2 entering
the interaction Lagrangian. Accounting for the trace
Tr[(𝛾4)2] = −4, the diagonal values of 𝜆3, and
Tr[𝛾4𝛾] = 0, we get

𝑄3
ind =

4𝑔

𝛽

∑︁
𝑝4

∫︁
𝑑3𝑝

(2𝜋)3
𝑝4 +𝐴0

(𝑝4 +𝐴0)2 + p2 +𝑚2
. (4)

The sum over 𝑝4 = 𝜋(2𝑛+1)
2𝛽 can be calculated, by

using the formula

1

𝛽

∑︁
𝑝4

𝑓(𝑝4) = − 1

4𝜋𝑖

∫︁
𝐶

tan

[︂
𝛽𝜔

2

]︂
𝑓(𝜔), (5)

where the contour 𝐶 encloses clockwise the real axis
in the complex plane 𝜔.

The calculations (after transformation to the spher-
ical coordinates and angular integrations) give

𝑄3
ind =

𝑔 sin(𝐴0𝛽)

𝜋2

∞∫︁
0

𝑝2𝑑𝑝
1

cos(𝐴0𝛽) + cosh(𝜖𝑝𝛽)
, (6)

where 𝜖2𝑝 = 𝑝2 +𝑚2.

Considering the high-temperature limit 𝛽 → ∞, we
obtain

𝑄3
ind = 𝑔𝐴0

[︂
4

3
𝛽−2 − 2𝑚2

3𝜋2
𝛽 +𝑂(𝛽3)

]︂
. (7)

Hence, we see that the first term is independent of
the mass and dominant at high temperatures.

Now, for completeness, we calculate the tempera-
ture sum in Eq. (4).

The integrand in Eq. (4) has the form

𝑓(𝑝4) =
𝑝4 +𝐴0

(𝑝4 − 𝑝
(1)
4 )(𝑝4 − 𝑝

(2)
4 )

, (8)

where 𝑝
(1)
4 = −𝐴0 + 𝑖𝜖𝑝, 𝑝

(2)
4 = −𝐴0 − 𝑖𝜖𝑝. The sum

in Eq. (5) after computing the simple residues equals

𝑆1 =
1

𝛽

∑︁
𝑝4

𝑓(𝑝4) = −1

2

[︃
𝑖𝜖𝑝

𝑝
(1)
4 − 𝑝

(2)
4

tan

(︂
𝛽

2
𝑝
(1)
4

)︂
+

+
−𝑖𝜖𝑝

𝑝
(2)
4 − 𝑝

(1)
4

tan

(︂
𝛽

2
𝑝
(2)
4

)︂]︃
. (9)

Substituting the corresponding parameters and ful-
filling elementary transformations, we find

𝑆1 =
1

2

sin(𝐴0𝛽)

cos(𝐴0𝛽) + cosh(𝜖𝑝𝛽)
. (10)

By substituting 𝑆1 in Eq. (4), we obtain Eq. (6).
Performing similar calculations for 𝑄8

ind, we get [7]

𝑄8
ind = 𝑔𝐴8

0

[︃
16

3
√
3
𝛽−2 − 8𝑚2

3
√
3𝜋2

𝛽 +𝑂(𝛽3)

]︃
. (11)

Here, 𝐴8
0 is the background field generated in the

plasma. For our problem, it is a given number.
Now, we calculate the quark propagator account-

ing for the induced charge by means of Schwinger–
Dyson’s equation. In the Euclidean space-time, it
reads

𝑆−1(𝑝) = −
(︂
𝛾4

(︂
𝑝4 −

𝜆3

2
𝑔𝐴0

)︂
+ 𝛾p

)︂
+𝑚− Σ(𝑝),

(12)

where Σ(𝑝) is a quark mass operator. In our prob-
lem, to consider the presence of the induced charge,
we separate the part of radiation corrections Σ(tp.)

equaling to the sum of the tadpole diagrams with one
gluon line 𝐺3

4, which relates the quark bubble to a
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quark line. In Eq. (12), we also substitute the 𝐴0 ex-
pression explicitly. In the rest frame of the plasma,
where the actual calculations are carried out, the ve-
locity vector is 𝑢𝜇 = (𝑢4 = 1, u = 0).

Next, we have to consider the gluon field propaga-
tor 𝐺3

44(𝑘). For that, we use the generalized Green’s
function of neutral gluons. It reads (in the Lorentz–
Feynman gauge) [5, 6]

(𝐺3
44)

−1 = 𝑘2 −Π44(𝑘4,k), (13)

where Π44(𝑘
2) is the 4−4 component of a polarization

tensor. For 𝑘4 = 0, k → 0, it defines Debye’s temper-
ature mass having the order 𝑚2

𝐷 ∼ 𝑔2𝑇 2. This mass
is responsible for the screening of the Coulomb color
fields.

The component of interest 𝐺3
44 taken at zero mo-

menta reads [5, 6]

𝐺3
44(𝑝 = 0) =

1

𝑚2
𝐷

. (14)

Using the vertex of interactions in Eq. (12) and
Eqs. (6), (14), we obtain

Σ(tp.) = −𝜆3

2
𝛾4 𝑔𝑄

3
ind

𝑚2
𝐷

. (15)

Substituting this result in Eq. (12), we conclude
that the resummation of tadpole insertions results in
the replacement 𝑔𝐴0 → 𝑔𝐴0 + 𝑔

𝑄3
ind

𝑚2
𝐷

in the initial
propagator.

3. Potentials of Classical Color Fields

The presence of the induced color charges in the
plasma leads to the generation of classical gluon po-
tentials. To describe this phenomenon, we introduce
a simple model motivated by heavy-ion collisions. In
this case, the plasma is created for a short period
of time in a finite space volume which has a much
smaller size in the direction of collisions compared to
the transversal ones.

We consider the QGP confined in the plate of the
size 𝐿 in the 𝑧-axis direction and infinite in the 𝑥-,
𝑦-directions. For this geometry, we calculate the clas-
sical potentials 𝜑3 = 𝐺3

4, 𝜑
8 = 𝐺8

4 by solving the
classical field equations for the gluon fields 𝐺3

4, 𝐺8
4

generated by the induced charges 𝑄3
ind, 𝑄

8
ind. In do-

ing so, we account for the results of Refs. [5,6], where

the gluon modes at the 𝐴0 background were calcu-
lated. For our problem, we are interested in the lon-
gitudinal modes of the fields 𝐺3

4, 𝐺
8
4 that have tem-

perature masses ∼ 𝑔2𝑇 2.
The classical potential 𝜑3 is calculated from the

equation[︂
𝜕2

𝜕𝑥2
𝜇

−𝑚2
𝐷

]︂
𝜑3 = −𝑄3

ind. (16)

Making Fourier’s transformation to the momentum
𝑘-space, we derive the spectrum of modes – 𝑘24 =
= 𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 + 𝑚2

𝐷, where 𝑘2𝑧 = ( 2𝜋𝐿 )2𝑙2 and 𝑙 =
= 0,±1,±2, ... . The discreteness of 𝑘𝑧 is due to the
periodic boundary condition for the plane: 𝜑3(𝑧) =
= 𝜑3(𝑧 + 𝐿). The general solution to Eq. (16) is

𝜑3(𝑥4,x) = 𝑑+ 𝑎 𝑒−𝑖(𝑘4𝑥4−kx) + 𝑏 𝑒𝑖(𝑘4𝑥4−kx). (17)

In the case of zero induced charge, 𝑑 = 0, and we have
two well-known plasmon modes. In the case of 𝑄3

ind ̸=
= 0, the values 𝑎, 𝑏, 𝑑 calculated from the confinement
boundary condition

𝜑3

(︂
𝑧 = −𝐿

2

)︂
= 𝜑3

(︂
𝑧 =

𝐿

2

)︂
= 0 (18)

result in the expression

𝜑3(𝑧)
𝑄3

ind

𝑚2
𝐷

[︃
1− cos(𝑘𝑧𝑧)

cos(𝑘𝑧𝐿/2)

]︃
. (19)

The generated potential depends on the 𝑧-variable
only. There are no dynamical plasmon states at all.
The same result follows for the potential 𝜑8(𝑧). This
is the main observation. In the presence of the in-
duced charges, the static classical color potentials
have to be realized in the plasma.

For applications, it is also necessary to get the
Fourier transform 𝜑3(𝑘) of potential (19). Fulfilling
that for the interval of 𝑧[−𝐿

2 ,
𝐿
2 ], we obtain

𝜑3(𝑘) =
𝑄3

ind𝐿

𝑚2
𝐷

sin(𝑘𝐿/2)

(𝑘𝐿/2)

𝑘2𝑧
𝑘2𝑧 − 𝑘2

, (20)

where the values of 𝑘𝑧 are given by Eq. (16).
The energy for a mode with momentum 𝑘𝑧 is pos-

itive and equals

𝐸𝑙 =
(𝑄3

ind)
2

𝑚4
𝐷

𝑘2𝑧
2
𝐿 =

(𝑄3
ind)

2

𝑚4
𝐷

2𝜋2

𝐿
𝑙2. (21)
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The total energy is given by the sum over 𝑙 of energies
(21). Similar results hold for the potential 𝜑8.

Thus, in the presence of the induced charges, the
static gluon potentials with positive energy should
be generated. This is a consequence of condition
Eq. (18). Obviously, such a situation is independent
of the specific form of the bag, where the plasma is
confined. In general, we have to expect that the color
static potentials 𝜑3, 𝜑8 should be present in the QGP
that results in a new type of processes.

4. Effective 𝛾𝛾𝐺 vertices in QGP

Other interesting objects, which have to be gener-
ated in QGP with the 𝐴0 condensate, are the effec-
tive three-line vertices 𝛾𝛾𝐺3, 𝛾𝛾𝐺8. They also should
exist due to Furry’s theorem violation and relate the
colored and white states. These vertices, in particu-
lar, lead to observable processes such as the inelas-
tic scattering of photons, splitting (or conversion) of
gluon 𝜑3, 𝜑8 potentials in two photons.

In this and next sections, we calculate the vertex
𝛾𝛾𝐺3 and investigate the mentioned processes.

Let us consider the vertex Γ𝜈
𝜇𝜆 corresponding to

the diagram depicted in the plot. The second diagram
is obtained by changing the direction of the quark
line. We set that all the momenta are ingoing, the
first photon is 𝛾1(𝑘

1
𝜇), the second photon is 𝛾2(𝑘

3
𝜆), a

color 𝑎 = 3 gluon – 𝑄3(𝑘2𝜈), and 𝑘1 + 𝑘2 + 𝑘3 = 0.
𝑘1,2,3 are the momenta of external fields.

We consider the contributions coming from the
traces of four 𝛾-matrices, which are proportional to
the quark mass and dominant for small photon mo-
menta 𝑘1, 𝑘3 ≪ 𝑚. The analytic expression (common
factor is 𝑒2𝑔𝑚) is

Γ𝜈
𝜇𝜆(𝑘

1, 𝑘3) = Γ
𝜈,(1)
𝜇𝜆 (𝑘1, 𝑘3) + Γ

𝜈,(2)
𝜇𝜆 (𝑘1, 𝑘3), (22)

where

Γ
𝜈,(1)
𝜇𝜆 (𝑘1, 𝑘3) =

=
1

𝛽

∑︁
𝑝4

∫︁
𝑑3𝑝

(2𝜋)3
𝑁1

𝐷(𝑃 )𝐷(𝑃 − 𝑘1)𝐷(𝑃 + 𝑘3)
. (23)

Here, the summation is over 𝑝4 = 2𝜋
𝛽 (𝑙 + 1/2), 𝑙 = 0,

±1,±2, ..., the integration is over three-dimensional
momentum space 𝑝, 𝑁1 denotes the numerator com-
ing from the first diagram, 𝑃 = (𝑃4 = 𝑝4 − 𝐴0,p),
𝐷(𝑃 ) = (𝑝4 − 𝐴0)

2 + p2 + 𝑚2 = 𝑃 2
4 + 𝜖2𝑝, and 𝜖2𝑝 =

= p2 +𝑚2 is the squared energy of a free quark. The
functions 𝐷(𝑃 −𝑘1), 𝐷(𝑃 +𝑘3) assume a correspond-
ing shift in the momentum. The numerator 𝑁1 is

(𝑁1)𝜇𝜈𝜆 = 𝛿𝜇𝜈(𝑃 − 𝑘2)𝜆 +

+ 𝛿𝜆𝜈(𝑃 − 𝑘2)𝜇 + 𝛿𝜇𝜆(𝑃 − 𝑞)𝜈 , (24)

where 𝑞 = 𝑘3 − 𝑘1 is the photon momentum trans-
ferred.

The expression for the second term in (22) comes
from the second diagram and can be obtained from
(23), (24) by the substitutions 𝑘1 → −𝑘1, 𝑘2 → −𝑘2,
𝑞 → −𝑞. We denote the second numerator by 𝑁2. In
what follows, we carry out actual calculations for the
first term in (22) and adduce the results for the second
one.

Now, we consider the fact that, in the high tem-
perature limit, the large values of the integration mo-
mentum 𝑝 give the leading contribution. Therefore,
we can present the functions

𝐷(𝑃 ), 𝐷(𝑃 − 𝑘1), 𝐷(𝑃 + 𝑘3)

in the form:

𝐷(𝑃 ) = 𝑃 2
4 + 𝜖2𝑝 = 𝑃 2,

𝐷(𝑃 − 𝑘1) = 𝑃 2
(︁
1− 2𝑃 𝑘1 − 𝑘21

𝑃 2

)︁
,

𝐷(𝑃 + 𝑘3) = 𝑃 2
(︁
1 +

2𝑃 𝑘3 + 𝑘23
𝑃 2

)︁ (25)

with 𝑘21 = (𝑘14)
2 + k2

1, 𝑘
2
3 = (𝑘34)

2 + k2
3. At high tem-

perature and 𝑃 2 → ∞, the 𝑘-dependent terms are
small. So, we can expand in these parameters. Now,
the integrand in Eq. (23) reads

Intd. =
𝑁1

(𝑃 2)3

[︃
1 +

4∑︁
𝑖=1

𝐴𝑖

]︃
, (26)

where

𝐴1 = −2
(𝑃 𝑞)

𝑃 2
, 𝐴2 = −𝑘23 − 𝑘21

𝑃 2
,
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𝐴3 = −4
(𝑃 𝑘1)(𝑃 𝑘3)

𝑃 2
, 𝐴4 = 4

(𝑃 𝑘1)2 + (𝑃 𝑘3)2

𝑃 2
,

(27)
and the vector 𝑞𝜇 = (𝑞4,q).

For the second diagram, we have to substitute 𝑞 →
→ −𝑞, other terms are even and do not change.

Further, we concentrate on the scattering of pho-
tons on the potential 𝑄3

4 in the medium rest frame
and set the thermostat velocity 𝑢𝜈 = (1,0), 𝜈 = 4.
The corresponding terms in the numerators are

𝑁1 → 𝛿𝜇𝜆(𝑃 + 𝑞)4, 𝑁2 → 𝛿𝜇𝜆(𝑃 − 𝑞)4. (28)

In this case, 𝑃4 = 𝑝4 −𝐴0 and 𝑃 2 = (𝑝4 −𝐴0)
2 + 𝜖2𝑝.

We have to calculate, in general, the series of two
types corresponding to these numerators:

𝑆
(𝑛)
1 =

1

𝛽

∑︁
𝑝4

𝑝4 −𝐴0

(𝑃 2)𝑛
, 𝑆

(𝑛)
2 =

1

𝛽

∑︁
𝑝4

𝑞4

(𝑃 2)𝑛
, (29)

𝑛 = 3, 4, 5.

These functions can be calculated from the 𝑆
(1)
1

and 𝑆
(1)
2 , by computing a number of derivatives with

respect to 𝜖2𝑝. The latter series result in simple expres-
sions. First is the one calculated already for the tad-
pole diagram Eq. (10). But now, we have to change
the sign 𝐴0 → −𝐴0. The function 𝑆

(1)
2 is

𝑆
(1)
2 =

1

𝛽

∑︁
𝑝4

𝑞4

𝑃 2
= − 𝑞4

2𝜖𝑝

sinh(𝜖𝑝𝛽)

cos(𝐴0𝛽) + cosh(𝜖𝑝𝛽)
. (30)

Let us adduce the expressions for 𝐴𝑖 obtained after
some simplifying algebraic transformations:

𝐴1 = −2
(𝑝4 −𝐴0)𝑞4

𝑃 2
, (31)

𝐴3 = − 4

𝑃 2

[︃(︃
1−

𝜖2𝑝

𝑃 2

)︃
𝑘14𝑘

3
4 +

(pk1)(pk3)

𝑃 2

]︃
, (32)

𝐴4 =
4

𝑃 2

[︃(︃
1−

𝜖2𝑝

𝑃 2

)︃
((𝑘14)

2 + (𝑘34)
2)+

+
(pk1)

2 + (pk3)
2

𝑃 2

]︃
. (33)

Finally, the resulting amplitude consists of the terms

𝑀1 = 2𝛿𝜇𝜆
𝑝4 −𝐴0

(𝑃 2)3
(1 +𝐴1 +𝐴3 +𝐴4) (34)

and

𝑀2 = −4𝛿𝜇𝜆
(𝑝4 −𝐴0)𝑞

2
4

(𝑃 2)4
. (35)

Thus, all the contributions of the 𝑆
(𝑛)
2 series are

cancelled in the total. Now, we turn to the 𝑑3𝑝
integration.

We present calculation of high temperature asymp-
totic considering the first term in Eq. (34) which is
calculated as the second derivative of 𝑆(1)

1 over 𝜖2𝑝 and
equals to

𝑆3 = −𝐴0𝛽
sech(𝛽𝜖𝑝/2)

4

64𝑝3
(−2𝛽𝜖𝑝 +

+𝛽𝜖𝑝cosh(𝛽𝜖𝑝) + sinh(𝛽𝜖𝑝)). (36)

Performing integration in the spherical coordinates
and taking the leading order approximation, 𝜖𝑝𝛽 =
= 𝑝𝛽, we get

𝐼3 =

∞∫︁
−∞

𝑑3𝑝𝑆3 = −𝐴0𝜋𝛽 (0.3348). (37)

In such a way all the other integrations in Eqs. (34),
(35) can be carried out.

5. Scattering of Photons on the Potentials

Relations (19), (20) give the calculated expressions
for the potential �̄�3

4 = 𝜑3 in the plasma plate. Here,
we consider the scattering of photons on potential
(20). Let us denote the momenta of ingoing and out-
going photons as 𝑘1𝜇 and 𝑘3𝜆, respectively. The matrix
element of the process is

𝑀 = (2𝜋)4𝛿(𝑘1+𝑘2−𝑘3)
𝑒𝜎1
𝜇√
2𝜔1

𝜑3 Γ4
𝜇𝜆

𝑒𝜎3

𝜆√
2𝜔3

. (38)

Here, 𝑒𝜎1
𝜇, 𝑒

𝜎2
𝜆 are polarization amplitudes of pho-

tons, and 𝜔1, 𝜔3 are the corresponding energies,
Γ4
𝜇𝜆(𝑘

1, 𝑘3) is the effective vertex calculated in the
previous section.

We assume that the beams are not polarized,∑︀
𝜎3

𝑒𝜎1
𝜇 𝑒𝜎1

𝜇′ = = 𝛿𝜇𝜇′ ,
∑︀

𝜎3
𝑒𝜎3

𝜆 𝑒𝜎3

𝜆′ = 𝛿𝜆𝜆′ . Then the
probability

𝑃 = 𝑀𝑀+=(𝜑3(𝑘))2 Γ4
𝜇𝜆Γ

4
𝜇𝜆

𝐶

4𝜔1𝜔3
𝛿(𝑘1 + 𝑘2 − 𝑘3),

(39)

where 𝐶 is some nonrelevant number. In this expres-
sion (accounting for the momentum conservation),
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𝜔3 = [(𝜔1
𝑥)

2 + (𝜔1
𝑦)

2 + (𝜔1
𝑧 + 𝑘2𝑧)

2]1/2. The value of
𝑘2𝑧 is a free parameter of the problem. It indicates the
point, at which the actual scattering happens in the
z-plane. Since this is not known, we have to sum up
the probability over 𝑘2𝑧 , i.e., over 𝑙. In this expres-
sion, all the parameters and functions are known. So,
the scattering on the induced color potentials can be
calculated. Analogous process has to happen for the
classical field 𝜑8(𝑘). This kind of scattering drasti-
cally differs from that for the plasma consisting of
free chaotically moving particles.

Another related process is the conversion of clas-
sical gluon fields 𝜑3(𝑘), 𝜑8(𝑘) in two photons com-
ing out from the QGP due to the effective vertex
Γ𝜈
𝜇𝜆(𝑘

1, 𝑘3). In the rest frame of the plasma, two pho-
tons moving in opposite directions and having spe-
cific energies, which correspond to the energy levels
𝐸𝑙 Eq. (21), have to be observed. The amplitude is
described by Eq. (38) with corresponding changes of
momenta.

6. Conclusions

We have demonstrated that, in QGP with the 𝐴0 con-
densates, the induced color charges 𝑄3

ind, 𝑄
8
ind and

the static classical gluon fields 𝜑3, 𝜑8 have to be
present. This results in specific new phenomena. In
particular, the conversion of gluons in photons hap-
pened due to the effective Γ𝜈

𝜇𝜆 vertex could influence
the exit of direct photons from the plasma.
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В.Скалозуб

IНДУКОВАНI КОЛЬОРОВI ЗАРЯДИ,
ЕФЕКТИВНА 𝛾𝛾𝐺-ВЕРШИНА У КВАРК-ГЛЮОННIЙ
ПЛАЗМI. ЗАСТОСУВАННЯ ДО ЗIТКНЕНЬ
ВАЖКИХ IОНIВ

Р е з ю м е

Ми обчислюємо iндукованi кольоровi заряди 𝑄3
ind, 𝑄

8
ind та

ефективну 𝛾 − 𝛾-глюон вершину, якi генеруються у кварк-
глюоннiй плазмi в присутностi 𝐴0 конденсату внаслiдок по-
рушення кольорової С-парностi в таких умовах. Для iмi-
тацiї зiткнення важких ядер ми розглядаємо модель пла-
зми, що знаходиться всереденi вузької пластини необмеже-
них поперечних розмiрiв. Для таких умов ми отримуємо
потенцiали класичних глюонних полiв 𝜑3, 𝜑8, що виника-
ють у присутностi iндукованих зарядiв. У якостi застосува-
ння розглядаються два процеси – розсiювання фотонiв на
плазмi та конвертацiя класичних глюонiв у два фотони, що
випромiнюються iз плазми.
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