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A FIFTH-ORDER NONLINEAR
SCHRODINGER EQUATION FOR WAVES
ON THE SURFACE OF FINITE-DEPTH FLUID

We derive a high-order nonlinear Schrodinger equation with fifth-order nonlinearity for the
envelope of waves on the surface of a finite-depth irrotational, inviscid, and incompressible
fluid over the flat bottom. This equation includes the fourth-order dispersion, cubic-quintic
nonlinearity, and cubic nonlinear dispersion effects. The coefficients of this equation are given
as functions of one dimensionless parameter kh, where k is the carrier wave number, and h
is the undisturbed fluid depth. These coefficients stay bounded in the infinite-depth limit.

Keywords: nonlinear Schréodinger equation, fifth-order nonlinearity, finite-depth fluid.

1. Introduction

A group of experimentalists in the field of ship struc-
tural design and analysis has recently demonstrated
in Ref. [1] that, for the depths h being of the same or-
der of magnitude as the wavelength A (in their exper-
iment 7 = $1 ), see Table 1 in [1]), the fourth-order
nonlinear Schrédinger equation (NLSE4, the first two
rows in Eq. (63)) derived by the present author in
2003 [2] (and then reproduced and extended to the
next, i.e. fifth order, in 2005 [3]) provides an adequate
model for the deterministic prediction of water waves
whose amplitude and steepness are higher than those
that can be described by the classical cubic nonlinear
Schrodinger equation (NLSE3) derived for the wave
envelope in Ref. [4].

The same experiments demonstrated that the
fourth-order model becomes insufficient to describe
the zone of the highest and steepest oscillations inside
the envelope (it is the envelope of such oscillations
that is described by NLSE). This work is called upon
to add the next (fifth) order to the fourth-order model
derived in Ref. [2]. The coefficients at the fifth-order
terms were found by Slunyaev in Ref. [3]. However,
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three fifth-order coefficients turned out to be diver-
gent as functions of the water depth h (multiplied
by the wave number k£ = 27/A) at large kh (with two
other coefficients staying bounded). We see the origin
of this divergency lies in the fact of abandoning the
approach proposed in Ref. [5] for using the freedom of
defining the homogeneous part of the velocity poten-
tial for the sake of selecting an integration constant
in the equation for the velocity potential to secure
its boundedness. Such a freedom was used in a differ-
ent way in Ref. [3] for the elegant record of additional
contributions of the fundamental harmonic to the am-
plitude in the consecutive approximations. In this pa-
per, we follow our previous work [2] (where we derived
NLSE4) and use the approach proposed by Chu and
Mei [5] to avoid any divergency. The consecutive con-
tributions to the amplitude A of the first harmonic are
then reconstructed by the iterative renormalization
procedure yielding an equation for the renormalized
total amplitude A.

Deriving the coefficients at high-order terms in the
next orders of smallness beyond the classical cubic
NLSE in terms of physical parameters is of impor-
tance for the nonlinear waves of various nature in line
with the technical progress toward larger amplitudes,
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smaller sizes, and compacted data. Indeed, the need
for the compaction of data transmitted by solitons
leads to a stronger dispersion of pulses and, as a con-
sequence, requires the use of larger pulse amplitudes
to compensate for this stronger dispersion. As a re-
sult, the evolution equation for such shorter pulses
should include higher derivatives and high-order non-
linear and nonlinear dispersion terms. In the case
of fiber optics, such high-order equations were de-
rived by Kodama-Hasegawa [6] (fourth-order NLSE)
and by Zakharov—Kuznetsov [7] (fifth-order NLSE).
High-order nonlinear Schrédinger equations describ-
ing the envelope of slowly modulated wave trains gov-
erned by the nonlinear Klein—-Gordon equation were
derived by different methods in [8-10].

The papers describing various aspects related to
NLSE4 and NLSES5 include, in particular, Refs. [11-
14] published in PRE and review [15] (see also the
list of references therein). In this regard, we should
also mention the pioneer work of Dysthe [16], who
was the first to derive NLSE4 for water waves in the
deep water limit. His ideas were further developed by
Debsarma [17] and other authors cited therein.

Analyzing the analytical dependence of the NLSE4
and NLSE5 coefficients on the medium parameters
can yield the critical values of these parameters at
which the nonlinearity is compensated for the disper-
sion due to the effect of high-order terms [18] that
are not present in the classical NLSE3. The soliton
described by Potasek and Tabor in Ref. [19] (NLSE4
soliton) is one of such examples. In the case of surface
waves, the existence of such a soliton for a particu-
lar water depth kh was predicted in Ref. [20] with the
use of the NLSE4 coefficients derived in Refs. [2,3]. A
possibility for the existence of a Potasek—Tabor soli-
ton in metamaterials was studied in [21]. Deriving
the analytical form of high-order NLSE coefficients as
functions of the medium parameters based on physi-
cal equations would allow the new solutions for soli-
tons, breathers, lumps, freak waves [22], etc. that
satisfy all the underlying approximations such as
the smallness of amplitudes, weak dispersion, narrow
spectrum, multiple oscillations inside the pulse to be
separated from the solutions that attract attention
only from the mathematical point of view.

Extending the results of Ref. [2] to the fifth order
(NLSES5) poses a real challenge from the technical
point of view. It was done in Refs. [23, 24| for a spe-
cific depth, where the cubic nonlinear term vanishes
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(kh = 1.36). For a wider range of depths, NLSE5 was
then derived in Ref. [3]. However, some of the coeffi-
cients of this equation turned out to be divergent in
the infinite-depth limit. Other versions of high-order
evolution equations for finite depths were also derived
in Refs. [25-31].

In this work, we derive a NLSE5 for the envelope of
surface waves on a finite-depth fluid. The coefficients
of this equation stay bounded in the infinite-depth
limit.

This paper is organized as follows. The fundamen-
tal equations governing the wave evolution on the
surface of a finite-depth irrotational, inviscid, and in-
compressible fluid over the flat bottom are given in
Sect. II. Section III describes the method of multiple
scales that is used to derive a NLSE for the wave enve-
lope. Section IV presents the solutions to the Laplace
equation and the boundary condition at the bot-
tom. Section V gives a short overview of the NLSE3
and NLSE4 models. NLSE5 is derived in Sect. VI, and
the transition to the full amplitude of the fundamen-
tal harmonic is performed is Sect. VII. Conclusions
are drawn in Sect. VIII.

2. Problem Formulation

We consider the motion of an ideal incompressible
irrotational homogeneous fluid in the xy plane. The
coordinate x is aligned with the direction of motion,
and the coordinate y is directed along the vertical up-
ward. The fluid is assumed to be bounded by a solid
flat bottom at the depth y = —h and by a rapidly os-
cillating free surface n(z, t) from the top, ¢ being the
temporal variable. Our primary task is to derive an
evolution equation for the amplitude A of the first-
harmonic envelope of this oscillating surface.

Fluid’s velocity potential ¢(z,y,t) satisfies the
Laplace equation

Ozz + Pyy =0, —o0 < x < o0,

The boundary conditions at the free surface n(x, t)
are the kinematic condition implying that the fluid
particles moving along the surface cannot leave it,
namely

Y= 77(3;7 t)’ (2)

and the dynamical condition implying that, in the
Cauchy—Bernoulli integral, the fluid pressure is con-

Nt — Py + Nutpe =0,
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stant on the entire surface and is equal to the atmo-
spheric pressure, namely,

1

2
where ¢ is the acceleration due to the gravity. The
vertical component of the particle velocity at the bot-
tom is equal to zero:

oy =0, y=—h, (4)

the velocity potential being a bounded function.

3. Method of Multiple Scales

We use the method of multiple scales according to
the approach elaborated for higher approximations
in Refs. [2]. The variations of ¢ and 7 in time ¢ are
characterized by a superposition of the fast oscilla-
tions corresponding to time tg and the slow oscilla-
tions described in terms of the time 7 consisting of
the slow time t;, very slow time to, extra slow time
t3, and exceedingly slow time t4. Then we have

9_0 .9
ot oty | “or 5
o 0 0 0 0

— = e+ e’

8’7' atl 8t2 8t3 8t4

The spatial variations along the z axis are charac-
terized by an ordinary coordinate zy and by a long
coordinate x1:

0 0 0
%_87{,604_687‘%1. (6)

The velocity potential and the surface displacement
(profile) are supposed to be small-value functions of
the order ¢, so that, taking the terms of orders up to
€® into account, we could write

= 5@(1) + 52(,0(2) + 63@(3) + 54(,0(4) + 6530(5), (7)
n=en® + 2@ 4 2y 4 tp® 4 5y, (8)
Then we substitute expressions (5)—(8) in (1) and
boundary conditions (2) and (3), wherein the func-
tions ¢z, @y, and ¢, are expanded in Taylor series in

powers of i at y = 0, and collect the terms with the
like powers of .
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4. Laplace Equation (1)
and the Boundary Condition
at the Bottom

4.1. Multiple-scale expansions

Since the Laplace equation (1) and the boundary con-
dition (4) at the bottom are linear equations, the
multiple-scale formalism can be set forth for them
without referring to nonlinear boundary conditions
(2) and (3). Substituting (6) in (1), we have

P
oxd

% D% 200
— = —2¢ —et—.
oy? 020011 0x?

9)

The velocity potential ¢ is assumed to be weakly
nonlinear, so that it could be written as expansion
(7) in powers of a small parameter €. For the five
consecutive orders of ¢, we have

el o) = (pél) + (apgl)eie +c.c.), (10a)
2. (2) _ (2 (2) .16 (2) 210

e o) =i + (17 + o5 e* +cc.),  (10b)

3. 80(3) _ SDE)?’) + ((p§3)eie + cpgS)ezieJr

+ <p§3)e3i9 + c.c.)7 (10¢)

4 4) 4 4 i

et (p(4) = <pé ) + (Lpg )it —&-Lpé )o2if +

4 SOgl)eaie + %(14)6419 + C'C')’ (10d)

€% o) = o + (17" + 05 +

+ ¢g5)e3i0 + 804(15)64i9 + (pgf))eSiG + c.c.), (10e)

where

0= k‘l‘o - wto, (11)

and c.c. stands for the complex conjugate term. Here,
all the components of ¢ on the left-hand side depend
on xg and x1, and the factors at the exponents on the
right-hand side depend only on 21 and 7, with the ex-
ponential functions depending only on zy and tg. The
following equation (9) is written for each harmonic,
and its solution is written in terms of undetermined
amplitudes (which are then found from the kinematic
boundary condition). Below, we show the way as to
how it can be done for the zeroth and first harmonics.
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4.2. Solution for the zeroth harmonic

The zeroth harmonic ¢q represents a part of ¢ (terms
in the first column of (10)) that does not exhibit rapid
oscillations:

(3) 4 (4)

1 2 5
0o = el + 208 + 308 + el + %07, (12)

It does not depend on g, so that Eq. (9) could be
written as

Ppo
0y?

32900
.2
=—¢ G (13)

Now, we substitute (12) in (13). Since we introduced
two spatial scales xy and x; for the coordinate z,
we get a sequence of equations generated by each
power of £ (due to €* staying on the right-hand
side of Eq. (13)), in contrast to the single equation
(13) in the formulations proposed by Brinch—Nielsen—
Jonsson [25] (Eq. (2)—(14) therein) and Dysthe [16]
(Eq. (2.11) therein). These equations and their solu-
tions are as follows (up to order O(e®)):

92 (1)
s =0=¢l’ =1y, (14a)
92 (2)
8“;3 =0= @) =0y, (14b)
5290(()3) _ 73290(()1) N
Oy? ox?
1 0%y
= o) = 5 G W O + 1 (140
1
6290(()4) _ _82(,0(()2) _
Oy? Ox?
19V
>0 = =g WO + (14d)
82@(()5) B angS) 5) 1 040, o
Oy? oa? o T oy ox} (y+C)" -
10%v
- 5 8.1323 (y + C)2 + \115. (146)
1

The boundary condition at the bottom implies that
C = h. Note that, for h = oo, condition (4) holds true
automatically, because the coefficients at parabolas in
(14c), (14d), (14e) are equal to zero for the infinite
depth, as shown in Ref. [2] in detail.
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4.3. Solution for the first harmonic

For the first harmonic, we have similarly (omitting
some details):

1, 2 (2, 3 (3 5,,(5)

p1=¢Ep1 FEP FETP +5490§4) +e%p, (15)
with <p§1)7g0(14) being presented in [2] and
ol = ————(H cosh(k(y + h)) +

L7 sinh(kh)

iw 0*A

—— —(—(y+h)* cosh(k(y + h
+4ho(y + h)® sinh(k(y + h)) —
—6h2%(20% — 1)(y + h)? cosh(k(y + h)) +
+4h%0 (60> — 5)(y + h) sinh(k(y + h)))), (16)
where we introduced the notation
o = tanh(kh). (17)

The unknown function A(z1,7) should be found from
the boundary conditions at the free surface. The ar-
bitrary function H of the homogeneous solution is
found from the condition of boundedness of the ve-
locity potential at the infinite depth (as in Ref. [5])
and the calibration <p(12)|y:0 = 0,7 =1, 5. Then we
have 24
iw
= 54k ot h*(240* — 280% +5).

For the infinite depth, we get

iw 0*A
li (5) — iw 4 k
koo P10 T 24k 927 Y exp(ky).

ie. S"§5) is bounded. Note that when the boundedness
conditions are not met at lower orders of €, the right-
hand side of the kinematic condition in the next order
of € may become divergent, by producing unbounded
coeflicients in the evolution equation at higher order.

4.4. Solutions for higher harmonics

The solutions to Eq. (9) with the boundary condition
(4) at the bottom for higher harmonics up to the or-
der O(%) are found in the same way [2]. We do not
present them here for brevity.

With the solutions to the Laplace equation found
in the first five orders of e, we proceed to the dy-
namical and kinematic boundary conditions at the
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free surface. The corresponding equations in each or-
der of € will generate evolution equations for the un-
known function A(z1,7) and the induced mean flow
described by the functions ¥y (21, 7), ¥o(21,7), .... In
the first three orders of ¢, these equations generate
a NLSE3 for the amplitude A, which was first de-
rived in Ref. [4]. The fourth-order equations generate
a NLSE4, which was derived in Ref. [2]|. Below, we re-
produce some of those results to preserve the integrity
of our presentation. Then we use the fifth-order equa-
tions to derive a NLSES5.

5. NLSE3 and NLSE4 Approximations

Summarizing the results obtained earlier in Ref. [2],
we calculated four consecutive approximations to
the unknown functions by the method of multiple
scales. The surface displacement was written as a sum
of four terms, namely,

n= 577(1) +5277(2) _1_5377(3) +54n(4)7

with
(1)_77( )_|_( (1) etf 4 c.c.),

&2 77(2) :77( )_,_( (2) 19+77£ )6129+C.C.)7
77(3) _77( )+( (3) 16+77£3)6129—|—

(18)
—&—nég)el 30 4 c.c.),

4 4) i i 4) i
54:77(4):77(()) (() a+7]() 29+77§)€30Jr

+n{Peit? 4 ).

The amplitudes nﬁlm) were all calculated in
terms of the complex first-harmonic amplitude
A(z, t1, ta, t3). The corresponding expressions can
be found in Ref. [2]. In particular, for the first
harmonic, we have [see formulas (20), (22), and (49)
in [2]]:

Lo Ly
Ui 2 ’
1
g2 77§2) = —iaA,,
2
1
g% Y = 3 (B4 +7ATA),

1 _ _
et gl = 5i(XAm +EAAA, +CA%A,),

where the subscripts x and 7 denote the partial
derivatives with respect to these variables and

w’ 1w

a:—;, B__§U’

"
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2
160y
—20 (0 +1)(6* = 3)kh+ 0% (o*

(90" —80% —3)(0* = 1)?k*h? —

y=-
—160% - 3)).

In each approximation except for the first one, we
found the evolution equation for A in terms of the
corresponding slow time, with the first approximation
yielding the linear dispersion relation:

el w? = gko, (20)

e Ay, + WA, =0, (21)
1 _

3 iy, + 3 W' Agy + wk?qs A A% =0, (22)

545 At - =

3 6 w///Az:vm +Wk(¢I41 ZAAIJF(MQ A2 Zm) = Oa

(23)

where w’, w”, and w”’ are the derivatives of the linear
dispersion relation with respect to k.

In the linear approximation O(g!), the envelope A
of rapid oscillations is constant with respect to the
fast time tg.

In the O(£?) approximation, the envelope slowly
evolves with the group speed

0w 1—o0?
V=50 = 2k(1+ - kh).

In the O(e?®) approximation (NLSE3, see [4]), the
envelope can have the property of a soliton and prop-
agate pertaining its shape (when the dispersion de-
scribed by the term £ w” A, is compensated for the
nonlinearity introduced by the term g3 A A2). In the
fourth approximation (NLSE4), this compensation
mechanism and soliton’s shape can be different as
compared to NLSE3 due to other nonlinear disper-
sive terms.

The coefficient g3 was found in Ref. [4], and the
coefficients q41, quo are expressed in terms of the di-
mensionless parameter kh:

(24)

~ ~ ~ M
Gs1 = Q41 — 6, Q41 = Ga1 — - 40, (25)

Qa2 = Qu2 +0, Quz = Quo + gq:;o, (26)

,u4cr< W%) = (0~ 1)2kh—o(0?-5),

2w
(27)
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v = SL(VE-gh) = (0 +1) bh—o)(o1 kh-0),

(28)
and the correction
(0% — 1)p w"k?

8ov w

)= (29)
was found in Ref. [3].

Equations (22) and (23) are written in the form
with the excluded components of the zero harmonic
VU, and ¥sy. These components were found from the
kinematic boundary condition and are expressed in
terms of the amplitude A as

oV, wku

—=—TAA

0z 200 (30)
AN 4iwo 0A _ 0A

—= = A— —A— 31
0x1 v 40 ( 0x1 6$1> (31)

Since the product AA evolves with a group speed as
the amplitude A, according to Eq. (21) and its com-
plex conjugate, we used an ansatz implying that the
zeroth harmonic amplitudes ¥, and W, evolve with
the group speed

L TR) TR) PR

g - e o - an

Figure 3 in Sect. VII demonstrates that the differ-
ence between the coefficients §4; and ¢41, as well as
between the coefficients §4o and g¢42, is not signifi-
cant (see also a discussion in Ref. [18]). By this rea-
son, the contribution J was not taken into account
in Ref. [2]. It is absolutely insignificant for the depth
kh = 4.1 at which the experiment of Ref. [1] was
performed. Nevertheless, this contribution was fairly
taken into account in Ref. [3], and we include it into
our consideration here to avoid any misunderstand-
ing.

(32)

6. NLSE5
6.1. Dynamical boundary condition

The dynamical boundary condition of order O () has
the following form:
2
5 w
el + o =3 D @0 4 (2)?) -

2
3 2 1 2
o+l + ol <n<1>> -

2 1
(s@éy)to + wéy)tl) n

46

2(

) _ 1)

1 1

n®

1 1 2 3 4
—@l @ — o) P B S

4 3 2 1 2
((pg(/tz + So(yt)l "“Pg(/t)z + ‘P;tl) 77(1) (%Sti + S";t)l) B —

3 2 1 1 2
— (@D 4+ 0% 4 @ — 5 P () @ —

2 1 3
6(%0757]74150 + (p,s/y)ytlxn(l)) -

P[0 4 oD 6) 4 @) 4 @)
1 3
Py Lo ) 4 1 Lo o) -
_ ((pgm + o)) [ + o) 1 + oDy 4
2
+5 b, ™) | = [0l n® + (o2, +
+ ol )n® + (050, + )0 + efln™ n® +

+ 5(905,3,)w0+<p§§}w I+l 43+ 6@5,%,)_1,“77(”3} -
— (2 + B0 + o) [0, 0P + (o2, +

+ i) + ol + % iy M)+ 02] (33)

We substitute the expansion

n® — Uéo) ( (Dgib 77(2) 210 |

Jr77;3)6319 + 77(4) 430 4 77(5) 5i0 QC) (34)

and the expressions for (1), (1) 1) ) 5B HE)
7™, @ found in the previous iterations in Eq. (33)
and account for expression (10e) for () consisting

(5) 3055) given by Eq. (16),

of ¢,
; : 6y (6) (5)
and yet undetermined functions ¢s5 ", ¢35, ¢, ", and

given by Eq. (14e),

gpéS). By equating the nonexponential term and the
coefficients at the like powers of exponential functions

(5) ®)

to zero, we find the expressions for 1y~ and 1,

terms of A, Uy, ¥y, U3 and for n, ), néS), n§15), and

(5) 1n terms of yet undetermined amplitudes gb( )

¢3 , 4 , and ¢5 related to the velocity potential.

The differential equations for A and W3, as well as
the algebraic expressions for qng), §5), 515), and qng)
are found from the kinematic boundary condition for
the zeroth, first, second, third, fourth, and fifth har-

monics, respectively.
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6.2. Kinematic boundary condition

The kinematic boundary condition of order O(e®) has
the following form:

1
5
My — o) = 5 P20 1+ (?)?) +

1 4 1 2
+5 PB (V)2 4 @ M @ D )

(3)

1 1
=iy 5 Py )20 + 0, )+

1

+ (o8, + o) 1P+ o8, + o8 +

Zoy

1 2
@by 100 + 5 (Pl + Pp) 1)+ o) +

1 3
8+ 2ol )] = (1) + ) o) -

= (12 + 9 [0, 1 + (62, + o) +
® o 02, @
+<px0 + §(pwoyy (77 ) + 9011 ) -
=2 + 1@) [0 + o, 0 + oD + olna+

+ ol D 4 o) @ 4 @) @) (35)

6.2.1. Zeroth harmonic

When being set equal to zero, the nonexponential
term of the kinematic boundary condition results in
the evolution equation for the W3 amplitude of the
zeroth harmonic:

ko 82\:[/3 82\:[/3 2 (a) 0 -
———="+h kgt ——(AA)?

w? ot2 * ox? Wk 50 axl( S+

w0 (040

12 50 9, ( ox? * ox? +

w 0 0 (0A 04N _

k2 950 81‘1 (8.2?1 61‘1 =0 <36)

The explicit expressions for the coefficients of this
equation are given in Appendix A.
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6.2.2. First harmonic

When being set equal to zero, the exp(if) term of the
kinematic boundary condition results in the evolution
equation for the amplitude A with respect to time t4:

aA w//// 3414 _
i - 4wk g5 ABA%
oty 24 ox? 1
_0? 9% A 0A DA
Q5o AA — Grz A2 —— gsa A — ——
+w(gs2 022 +w(ss3 027 + w(@s4a B, O, +
_(0AV v
+wgssA 87 —]{?A%'F
6I1 81}1

k2 (0'2 - 1) 8\1/3 8‘1’1 8\1’2
A =0. 37
+ 2w <8t1 * 8t3 + 8t2) ( )
The explicit expressions for the coefficients of this
equation are given in Appendix A. Our further task

. . : 8\113 8\111 6\1’2 1
is to express the derivatives 5t Bra and 52 In
terms of A.

(I) Derivative %\ff. Following the general approach
introduced by Chu and Mei in Ref. [5], the amplitude
W3 of the homogeneous solution is found from the

boundedness condition for <p(()3) at kh — oco. In view

of Eq. (14¢) for the function (péS), this boundedness
condition implies that

W O(AA) b

\I]f =
3 4 (91‘1

(38)

Then the asymptotic behavior of 4,053) at the infinite
depth is evaluated as follows:

powdad) 1) 9)

kilLanoo Yo 2 8331
which turns out to be finite.

To find the derivative %\f?’, we need to use the
similar ansatz as in formulas (32) for the derivatives
%‘fll and %‘ff, where the functions ¥, and ¥y were
assumed to evolve with the group speed of linear
waves. Since there is condition (38) imposed on the
function Y3, any additional assumptions should com-
ply with this condition. Thus, we need to introduce

an additional matching correction A in the ansatz for
W5 .

8t1 :

Vg oVs3

3=y, 2 4 A 4

8151 Vg 8:1:1 + ( 0>
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ds1 Qs

_1t
Fig. 1. Coefficients ¢s51 and §s5 as compared to gs1 and §s5

1,,
Gs2
Gs2
1 1.5 2,5 3 3.5 khy
o ‘ ‘ : ‘ ‘
4s3
Us3
_lf
As,
qs,
_ol

Fig. 2. Coeflicients §s2, ¢53, and §s4 as compared to §s2, G53,
and G54

To find the correction A, we first differentiate (40)

with respect to t; and use the anzatz gT —Vy g;‘l ,
so that
0%, 0?05 0A
=V? — 2V, —. 41
o3 9 Ox? 70z, (41)

By substituting (41) in (36) and integrating over z1,
we get

14 8\113 9 (a) T\ 92
———— =wk AA
4ok Oz, whgso (AA)"+
27 2
w ooy 0% A i 0% A
k2 450 ( z? + 31‘% +
48

(0 0A DA 20k

—V,A
k2 5083: or, | w2 9T

(42)

where v is given by relation (28). On the other hand,
by differentiating (38) with respect to ¢1, we obtain

another expression for %33:

Vg w 0%A 0A 0A 0%A
—=——A— A—— ) kh. (43
0x1 4k ( ax% (9:171 3x1 + 5‘z1 (43)

Comparing (42) and (43), we finally find a relation
for A:

27 VA = —quk?(AA)? -
w2
o 24 9PA\
—(g50 +C)k: (A&Clz + A8x12
©) 4 gy 04 04
(G50 +2¢ )k2 Oxy Oz’ (44)
vkh

where ¢ = 7¢*. Since the correction A is nonzero, the

component W3 evolves with a speed that is slightly

different from the group speed V,, in contrast to the

components ¥; and ¥s. Then, substituting expres-

sion (40) for %‘f?’, expression (43) for g%, and A
1 L1

given by formula (44) in Eq. (37), we finally get:

] OA //// 84A 62A
137154_ 21 9! - + wkGs A3A? + Wi AA —— o2 -5 +
0%A 0A DA 0A
G5z A2 ——= j A —
+ w(s3 22 + w@sa G + w(ss (3961)
8\112 oVs
— 1 A — ] =0 45
where
Gs1 = 551+(U2 - 1) ! qu)»
4ok,
K 2 (b)
d52 = G52 + 16 kh +(0” — )405‘/9 (g50 + ),
(46)

b
(qéo) + C)’

1
= —k;h -1
ds3 = qs3 + 160 +(0 )40EVg

w

1 ¢
G54 = Qsa + *kh +(U — 1)47((]§,0) + 2c),

8 v,

w
ds5 = Gss,

and p is given by relation (27).

Figures 1 and 2 show the coefficients §51, §s2, 53,
G54, and §s5 calculated by formulas (46) as compared
to the coeflicients 51, G52, @53, G54, and §s5. It can be
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seen that, owing to the second terms in formulas (46),
the coeflicients @52, 53, and 54 that are divergent at
large kh were transformed into the bounded coeffi-
cients 52, 53, and §s4. At the same time, since the
coefficients ¢s51 and ¢s5 do not contain the terms pro-
portional to kh in expressions (46), the coeflicients
(51 and @55 are also bounded. The boundedness of the
coeflicients 52, 53, and @54 at large kh is the MAIN
distinction and advantage of the present work. This
progress was achieved by accounting for the bound-
edness conditions for ¢ at kh — oo in the orders O(¢)
through O(g*) (as was earlier proposed in Refs. [2,5]).

(IT) Derivatives 22 and 3‘1’1 . The derivative of the

dta
amplitude ¥, with respect to time t3 is expressed as

o _ 0 [
8153 o 8t3 8.%1

(47)

" (30) and g—t‘i given by
Eq. (23). Then we have ‘
0?A
ox?

2
oy _ wky (w 0 AA .
Ots 200\ 6 0z?

— Luoh(@n + 542)(/1&)2).

0A 0A
8&61 31'1

(48)

The derivative of the amplitude ¥y with respect to
time %o is expressed as

A2} 0 oA 2%

—=— | —=d 49
8t2 8t2 8%1 1) ( )
with a‘pf given by expression (31) and 8‘4 given by
Eq. (22). Then we have

oy  dwo W (OA DA  9*A_ 924
CACI I i et A ) I
8t2 14 2 6:01 8x1 6%1 (9(131

— qzwk? (A/_l)2>. (50)

Substituting (48) and (50) in (45), we get the final
equation for A with respect to time #4:

_8A ////a4A

= ktgs  ABA2
Y0t 24 9at UM +

A %A
5+ wiss A —— o2 +

1 2
A + wkq55A <8A) = 0,
81‘1
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0?
AA—=
+ w@s2 02

0
+wq54A (51)

where
~ 2 20 _
¢51 = Gs1 + (07 — 1)7(]40613 +
2 H
-1
+(o )8
k2
G52 = Gs2 + (0% — 1) Q40w o

(Ga1 + Ga2),

9 ‘LL OJW k3
_ ke P
(o )O'V 24 w’ ,
k
453 = sz + (0% — 1)— q40w”;— (52)
9 /14 w/// k,?)
_ ke P
(o )01/ 24 w’

k2
G54 = G54 — 2(0° — 1) Q40w — +

g55 = qs5.

It can be seen from the above formulas that the terms
with derivatives %t L and 8‘1’2 introduce small nonzero
corrections to the coefﬁ(:lents Q51 G52, 453, and gs4 as
compared to the corresponding coefficients 51, G52,

53, and §s4 (the last coefficients g55 and §s5 coincide).

6.3. Equation in terms
of the integral slow time T

To derive the evolution equation for A in the integral
slow time 7, we sum up Eq. (21) multiplied by i,
Eq. (22) multiplied by &, Eq. (23) multiplied by i&?,
and Eq. (51) multiplied by 3. Then, taking relation
(5 into account), we get the evolution equation in
terms of the integral slow time 7:

"

i(A; +w'Ay) + s(%Am + wk?qs3 A2A>+

"

4 ig? (_L

6 Ayzr +wkqu AAA, + wkqao A2[1z> T

"
+&3 (—ﬂAmm + wktqs1 APA? 4+ wgse AAAL, +
+ w(qs3 A2A$$ + W(qs4 A/_la; Aa: + Ww(qss AA?E) =0. (53)

7. NLSES5 for the Total Amplitude A

It follows from Eq. (19) that the total first-harmonic
amplitude A contains contributions of higher approx-
imations besides the amplitude A introduced in the
first approximation:

A=A+ticaA, +e* (A +7A% A)+
49
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+1e® (X Apax +EAAA, + A% AY). (54)
It is the amplitude A that is an observable in the
experiment, and it is advantageous to derive the evo-
lution equation for A instead of Eq. (53) for A. To
this end, we rewrite relation (54) as follows:

A=A—icaA, —e® (A +7A*A) -

—ie® (X Appe +EAAA, +CA%AL). (55)
Then we use the smallness of € to exclude A from the
right-hand side of (55) and iteratively express A in
terms of A as follows.

Iteration 0 (order O(g?)):

A0 = 4. (56)
Iteration 1 (order O(gl)):
AW = A —icaA,. (57)

Substituting the expression (56) for A in terms of A
from the previous iteration in the right-hand side of
Eq. (57), we get

AN = A —ica A,. (58)
Iteration 2 (order O(?)):
A® = A—iea A, — 2 (B Amn + v A% A). (59)

Substituting the expression (57) for A in terms of A
from the previous iteration in the right-hand side of
Eq. (59), we get

APV =A—ica(A-icad,)e—c2 (B (A—ica Ay)pe +
+y(A—icaA,)? (A+icady)).

Keeping only the terms of order up to O(g?), we ob-
tain

A? = A—icad, —eX((a? 4+ B)Aws +7v. A% A). (60)

Iteration 3 (order O(e?®) (similarly to the previous
iteration):

A® = A—icad, — (02 + B)Ae +7A% A) +
tied(dya—OAAA, — CAA, +
+(@® +2a8 — x)Avaa)-

50

(61)

Relation (61) gives the final expression for A in terms
of the total amplitude A, accurate to the fourth order
of smallness with respect to €. Then we calculate the
derivative of A with respect to time 7:

A=A tica Agr+e? (B Apur+7(24AAA +A% AL)) +
+ie® (X Appor +E(Ar AA + AA LA+ AAA )+
L C(2AA, A, + A A,)). (62)
The derivative of A with respect to 7 is given by
Eq. (53), and the derivatives of A and A, with re-
spect to x are obtained by differentiating Eq. (61)

and Eq. (53) as many times as necessary. In doing so,
Eq. (62) can be rewritten as
"

(A + W Ay,) + ¢ (gAml + wk2Q3A2ﬁ> +

+ ig? <_W6Am1m1m1 +wk (Q41AAA11 +Q42A2Azl)> +

w//// _
+ 53 (_24"411111111 + OJ]C4Q51ASA2 +

+ 63 + M(Q52AAA$1$1 + Q53A2ALE1LE1 +
+&% + QsuAA, A, + Q55AA§1)> = (63)

The coefficients of this equation are expressed as fol-
lows:

Q3 =¢3, Qu =qu, Q2=qu+2ags, (64a)
Q@51 =qs51 — 27q3, (52 = gs2, (64b)
Q53 = gs3 — W'y — 20°q3 — 20 ag, (64c)
Q54 = qss — 20"y + 2(a® + 28)q3 — 20 qu1, (64d)
Q55 = 55 — W'y + (0 +28) gs. (64e)

Thus, we have obtained Eq. (63) for the total am-
plitude A with the contributions of the first approxi-
mation (coefficient ), second approximation (coeffi-
cients 8 and ), and third approximation (coeflicients
X; &, and ¢). It can be seen that the coefficients x, &,
and ¢ do not manifest themselves in the NLSE5 ap-
proximation.

Figure 3 demonstrates the coefficients @41, Q42 cal-
culated by formulas (64) as compared to the coef-
ficients g41, q42, coeflicients ¢41, and 442, and coef-
ficients G41 and g4o. These are the results of Ref. [2]
supplemented with the small corrections ¢ introduced
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1.5¢ 3/2

Fig. 3. Coefficients Ga1, Ga1, qa1, Qa1, Ga2, da2, a2, and Qa2
as functions of kh

-0.4571

-0.5¢ 1n

-0.5571

i 1.5 2 235 3 3.5 a4

Fig. 4. Coefficients ¢51, 51, 51, and @51 as functions of kh

in Ref. 3] for the coefficients g4 and §42, with the co-
efficients g4 and g4o used instead of g4 and g4o. The
curves demonstrating the coefficients §41 and g9
along with ¢g41 and q4o in Fig. 3 stay close to one
another for the depth kh = 4.1 at which the ex-
periment of Ref. [1] was performed. This experiment
proved NLSE4 to be an adequate model for the de-
terministic prediction of water waves. The authors of
Ref. [1] used the expressions for g4 and g4 to make a
comparison between the theory and the experiment.
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kh

P \Q i 354

Fig. 5. Coefficients G52, §s52, gs52, and Q52 as functions of kh

o 1 15

Fig. 6. Coeflicients §s3, §53, g53, and Q53 as functions of kh

Figures 4-8 demonstrate the coefficients Q51, @52,
@53, @54, and Q55 calculated by formulas (64) as
compared to the coefficients ¢s1, gs2, ¢53, gs54, and
gs5 of Eq. (51), coefficients gs1, Gs2, 53, 54, and gss
of Eq. (45), and coefficients (151, 652, 6537 654, and q~55
of Eq. (37). The dotted curves demonstrate the cor-
responding plots of the coefficients @,,,, according to
Ref. [3].

The limiting values of all the coefficients at
kh — oo are

R P 5oL
g51 = 3’ qg51 = 3’ 51 = g’ 51 = 9’
G~ oo B g 9 ) _g
52 = y 452 = 16’ q52 16’ 52 = 16’

51
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N
-2l

Fig. 7. Coefficients 54, 54, 54, and Q54 as functions of kh

0.4 1 1.5 2 2.5 3735 a4

Fig. 8. Coefficients 55, §s55, g55, and Q55 as functions of kh

- N 3 3 5
I3 = =00, 053 =—7c> @53 = ¢ Q53=—3*27
- —~ 1

Gsa = —00, @54 =—1, gsa=—1, Q54 = 16’

- 13 13 13 19

U5 =15 @55 =15 15 = 15 Q55=3*2-

8. Conclusions

As compared to fiber optics, a peculiarity of deriving
a NLSE for Stokes waves on the surface of a finite-

52

depth fluid is the necessity of accounting for the low-
frequency contribution of the zeroth harmonic to the
motion of the high-frequency first harmonic. Using
the boundedness condition (38) for the ¥3 compo-
nent of the zeroth harmonic allowed us to obtain the
NLSES5 for the total first-harmonic amplitude A of the
envelope of surface profile with non-divergent coeffi-
cients in the infinite-depth limit. To the best of our
knowledge, such a NLSE5 was derived here for the
first time, and this fact represents the main result of
this work.

We thank Dr. 1.S. Gandzha for his valuable contri-
bution to this work, in particular to the formulation
of Section VII.

APPENDIX A
Fifth-order coefficients

49 =
50 7 10240813

x(1=02)"kh" + 0 (66900 — 444 08 — 55465 + 4700 0% —

—1755024+72) (62 —1)% kRS —02(2075 012 —5543 010+ 478 0% +

+19578 6% + 5839 0% — 1161902 — 1080) (02 — 1) kh® +

+03% (62 —1)(2769 0% — 11746 012 4 26107 010 —

— 21956 6% — 2313 0% 4 25726 0% — 24867 02 — 3960) kh* —

—0*(1501 0% — 106 012 + 5487 610 — 57044 0 4 58283 0% —

— 18890 0% + 21033 02 + 6120) kh® — 05 (73012 — 13261010 +

+ 36538 0% + 401465 — 16427 0% — 238502 — 4968) kh? +

+ 0% (375010 — 949268 + 27058 6% — 5292 0 + 812702 —

—2088) kh— o7 (101 0% —2003 65 + 4983 0* 4 3519 02 — 360)],

@ =
15360412

+0(9390% — 1193 0% — 182302 — 99)(c2 — 1)* kRS —

— 302 (77108 —600 6542806 0 +1744 62 +143) (62 —1)2 kRh® +

+ 02 (3255 0194985 0846054 05 —18030 04 + 7411 62 4-2373) kh* —

— 0% (289568 + 7348 0% — 7638 0* — 3884 02 + 3327) kh3 +

+30° (555 0° + 1423 0* — 1823 62 + 485) kh? —

—30%(1930% + 5002 — 99) kh + 307 (3102 — 91)],

@i = 776814 2

lot 74

— 0 (630% —1093 0% — 265902 — 279) (02 — 1)*khS —

—302(250% +5840% —17100* — 67202 —19) (62 — 1)%kR5 +

+ 03 (165010 — 331708 — 4110 6° + 16566 0* — 477502 —

—2481) kh* 4+ 0% (195 0% + 6356 6% — 7662 0% — 4396 02 +

+3459)kh3 — 3 0° (191 0% 4 659 0% — 2403 02 + 145)kh? +

+3 0% (141 0% — 48602 — 535) kh — 307 (3502 — 239)],

" _?)szujﬁ[w —1)(1050% — 51 0% — 502 4 15) kh* —
(oa
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—40(02-1)(150*—202+3) kh®—6 02 (62—1) (302 +1) kh? —
—120% (02 = 1) kh — 150%)],

1
1024W[—(m o'? — 102350 4 2589 0® — 43825° +
g-" UV

+3978 0% — 67502 + 81) (02 — 1)* kh* +

+40(7201* — 807012 + 1054610 + 31 6% — 2580 0 4+ 4023 0* —
— 59402 +81)(0? —1)2 kRS —

—202(248 016 — 15970 + 2081 012 — 2237010 + 5689 0 —
—10431 0% 4 12987 0% — 1863 0% + 243)kh+
+463(104 014 =535 012 4766 010 +735 0® — 1556 05 +3303 04 —
— 59402 481) kh—o? (136 612 —1055 010 43837 0® — 3198 0 +
+2538 0% — 67502 + 81)],

gs1 =

1
o882 [—(20019-119 08440 66 —138 6 +252 62 +9) x
g°V

X (62=1)%kh® 420 (5202 -1750'0 14568 +205 174 0% +
+66902427)(02 —1)% kh® — 02 (62 —1)(2200'* — 481012 —
—40201% 41081 6% — 224 0% — 2143 0* + 2838 02 + 135) kh* +
+402%(600'% — 8502 — 13400 4 530% + 8805 + 7330% —
— 79802 — 45) kh® — 0* (140012 — 149610 — 591 6% + 19465 +
+1146 6% — 2013 02 — 135) kh? +

+20°% (2001 — 43068 — 12405 + 1340% — 31202 — 27) kh —
—0%(4o® -1965 —350% — 6952 —9)],

[-(100% —90% + 402 —9) (62 —1)8 kRS +

gs2 =

@53 = 640012
+20(260% —270% +210% +302 —15)(02 — 1)* kR® —
—02(110019-207068-3205-186 6?1 —118 62 —15) (62 —1)2kh™* +
+40%(30012-105019415 68 +42 6% +28 61 —89 62 +15) kh> —
— ot (70019 — 28368 + 3205 4+ 2900% — 15002 + 105) kh? +
+20°(100% — 590° + 93 0% 4 6702 4 33) kh —

—0%(20% — 210* + 8402 4 15)],

G5a = [(430% —1650% — 110% + 32902 — 324) x

1
2561206
x (62 —=1)5kh8 —20 (111610 — 654 0% 4 76 6% + 258 0% +
+35702—660) (62 —1)3 kh® + 02 (62 —1)(465 012 — 3557010 +
+ 4286 0% — 8900% — 1683 0% 4 1071 02 — 1740) kh* —

—40% (125012 -983010 4151468 —1106 65+ 525 64 +377 0% +
+60) kh® + 304 (95010 — 568 0% 4+ 13865 — 756 0% + 52702 —
—460) kh? —20° (3908 — 550°% — 1107 0* — 465 02 — 588) kh +
+05 (765 +900% — 91702 — 300)],

1
2560812
x (62 —=1)° khS +20(630'2 —138 010 —98 0% +58 06 — 7270 +
+115202 —54) (62 —1)3kh® =02 (62 —1)(225 014 —1297 012 +
+1792010 4 440 08 + 161 65 — 5481 6% + 545462 — 270)kh* +
+403(6% —1)(45 012 — 246 010 4 42208 — 32205 — 3690% +
+ 158402 —90) kh® — 0 (45012 4+ 180010 — 740 0% — 2524 65 +
+3905 0% — 4464 6% + 270) kh? — 206° (9010 — 301 0% +
+11010% —930* + 81002 — 54) kh + 0% (9 0% — 198 0% +
+7390% + 25202 — 18)].

G55 = [—(27 10463 0% -85 0% —337 0 +414 02 —18) x
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0. B. Cedneyvrut

HEJIIHIMHE PIBHSHHS
IPEJIHT EPA I’ATOI'O ITOPAIKY
JJ15 XBIJIb HA TIOBEPXHI LIIAPY PIAVHN

B nponposxkenns nonepeanboi po6oru asropa (?KET®, 97,
2003) BUBEJEHO HACTYIIHOIO, II'SITOTO NOPsIAKY HejliHiiiHe piB-
usauHs [Ilpeninrepa mjs o6BiITHOT OCHMIIIOIOYMX XBUJIb Ha II0-
BepXHi mapy 6e3BHXOPHOI, HECTHCKA€E€MOI, HEB'SI3KOI DIIUHE Y
BHIIQIKY ILJIOCKOro nHa. lle piBHAHHS BpaxoBy€ Y€TBEPTOrO IO~
PAJKY JIHIMHY JMCIEPCiio, TPETbOro i I'STOro MOpsiAKYy HeJIi-
HiftHicTb 1 Ky6ivuHi o mucnepcil HesriHiTHO-qUCTIEpCiitHi edeKkTH.
KoedinienTu 1150ro piBHAHHA KAIOTHCA K PYHKILT 6e3po3mip-
Horo napamerpa kh, ge k — XBUJIbOBE YUCJIO HECY4Ol XBWJIi, h —
rinbuna He36ypPeHOl PiAUHY i JIHIIAIOTHCS OOMEXKEHUMU B TPa-
HUYHOMY BHUIIQJIKy HECKIHYEHHOI TVIMOUHH.

Kmowost caosa: Teopist HemiHIHUX XBUIb, CaabKa HesiHIH-
HicTb, HeqiHiiiHe piBHsAHHA [[Ipeninrepa, cosiTtonn o6BiHOT, me-
TEePMIiHICTHYHUNA OIUC XBUJIb.
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